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Abstract. In this paper we prove Hölder and Lipschitz stability estimates for determining all
coefficients of a dynamical Lamé system with residual stress, including the density, Lamé parameters,
and the residual stress, by three pairs of observations from the whole boundary or from a part of
it. These estimates imply first uniqueness results for determination of all parameters in the residual
stress systems from few boundary measurements. Our essential assumptions are that the Lamé
system possesses a suitable pseudoconvex function, residual stress is small, and three sets of the
initial data satisfy some independence condition.
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1. Introduction. We consider an elasticity system with residual stress. This
system is anisotropic; i.e., it exhibits elastic properties with different values when
measured in various directions. The assumption about isotropy is too restrictive
in most important applications, although it allows deeper mathematical analysis of
direct, and especially inverse, problems. While the theory of the unique solvability
of direct problems in a quite general anisotropic case is relatively well developed [3],
almost nothing is known about determination of anisotropic elastic parameters from
additional boundary value data (i.e., about inverse problems).

We handle the simplest anisotropy, known as the Lamé system with residual
stress, which is a small perturbation of the classical isotropic Lamé system, by a
scalar anisotropic second order operator. Smallness of perturbation is motivated by
applications to material science [14]. Assuming that speeds of propagation of shear
and compression waves in an unperturbed system satisfy some pseudoconvexity-type
conditions (which exclude trapped elastic rays) and that three sets of initial con-
ditions are in a certain sense independent, we obtain first uniqueness and stability
results about identification of all nine elastic parameters of an isotropic medium with
residual stress from lateral boundary observations. When observation time and the
observed part of the boundary are arbitrary, we explicitly describe a domain where
coefficients are guaranteed to be unique, and we give a Hölder stability estimate.
When observation time is sufficiently large and observation is from the whole lateral
boundary, we derive Lipschitz stability estimates. These estimates indicate the possi-
bility of a numerical solution of an inverse problem with high resolution and therefore
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a substantial applied potential.
While our assumptions exclude zero initial data (most natural in many appli-

cations), recent progress in generating wave fields by interior sources in geophysics,
material sciences, and medicine, and also by a substantial amount of historical seis-
mic data from earthquakes (which are interior sources), make our assumptions more
realistic.

Let Ω be an open bounded domain in R
3 with boundary ∂Ω ∈ C8. The residual

stress is modeled by a symmetric second-rank tensor R(x) = (rjk(x))3j,k=1 ∈ C7(Ω)
which is divergence free

(1.1) divR = 0 in Ω

and satisfies the boundary condition

(1.2) Rν = 0 on ∂Ω,

where divR is a vector-valued function with components given by

(divR)j =

3∑
k=1

∂krjk, 1 ≤ j ≤ 3.

In this paper, x = (x1, x2, x3) ∈ R3 and ν = (ν1, ν2, ν3)
� is the unit outer normal

vector to ∂Ω. Here and below, differential operators ∇ and Δ, without subscripts,
are with respect to x variables. Let Q = Ω× (−T, T ) and u = (u1, u2, u3)

� : Q → R
3

be the displacement vector in Q. We note that ε(u) = (∇u + ∇u�)/2 is the strain
tensor. We consider the initial boundary value problem

(1.3)
AEu := ρ∂2

t u−μΔu−(λ+μ)∇(div u)−(∇λ)div u−2ε(u)∇μ−div((∇u)R) = 0 in Q,

(1.4) u = u0, ∂tu = u1 on Ω × {0},

(1.5) u = g on ∂Ω × (−T, T ),

where ρ is density and λ and μ are Lamé parameters depending only on x and satis-
fying inequalities

(1.6) ε1 < μ, ε1 < ρ, ε1 < λ + μ on Ω

for some positive constant ε1. Hereafter, we use E to represent the set of elastic
coefficients in (1.3), i.e., E = (ρ, λ, μ,R). We will assume that ρ ∈ C6(Ω) and
λ, μ ∈ C7(Ω). The system (1.3) can be written as

ρ ∂2
t u − div σ(u) = 0,

where σ(u) = λ(tr ε)I+2με+R+(∇u)R is a stress tensor. Note that the term div R
does not appear in (1.3) due to (1.1). Also, due to the same condition, we can see
that

(div((∇u)R))i =

3∑
j,k=1

rjk∂j∂kui, 1 ≤ i ≤ 3.
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To make sure that problem (1.3) with (1.4) and (1.5) is well-posed, it suffices to
assume that

(1.7) ‖R‖C1(Ω) < ε0

for some (small) constant ε0 > 0. Assumption (1.7) is also motivated by mate-
rial science applications [14]. Indeed, residual stress of interest to engineers is due
to past thermal changes in steel production which do not significantly change the
elastic properties of steel. It is not hard to see that if ε0 is sufficiently small, then
the boundary value problem (1.3)–(1.5) is hyperbolic, and hence for any initial data
(u0,u1) ∈ H1(Ω) × L2(Ω) and lateral Dirichlet data g ∈ C1([−T, T ];H1(Ω)), u0 = g
on ∂Ω × {0}, there exists a unique solution u(·;E;u0,u1,g) ∈ C([−T, T ];H1(Ω)) to
(1.3)–(1.5).

In this paper we are interested in the following inverse problem: Let Γ be an
open subset of ∂Ω with ∂Γ ∈ C1. Determine density ρ, Lamé parameters λ, μ, and
the residual stress R (a total of nine functions) from Cauchy-type data (u, σ(u)ν) on
Γ × (−T, T ), where u = u(·;E;u0,u1,g), given for a finite number of pairs of initial
data (u0,u1).

We will address uniqueness and stability issues. Our main focus is on stability,
since stability implies uniqueness. This work is a sequel to our recent paper [11], where
we demonstrated uniqueness of only R assuming known constant ρ, λ, μ. Our method
is based on Carleman estimates techniques initiated by Bukhgeim and Klibanov [2].
For works on Carleman estimates and related inverse problems for scalar equations,
we refer to books [1] and [12] for further details and references. The method of [2] was
modified for scalar equations in the paper of Imanuvilov and Yamamoto [6]. It was
found by Imanuvilov, Isakov, and Yamamoto [8] that this modification allows one to
obtain uniqueness and stability for coefficients of systems of equations; in particular,
in [8] there is a first uniqueness result for all three elastic parameters ρ, λ, μ of isotropic
elasticity. For further results on identification of the isotropic Lamé system we refer
to [7]. For Carleman estimates and uniqueness of the continuation for the residual
stress system (1.3) and for identification of the source term and R with given constant
ρ, λ, μ, we refer to [10], [11], [13]. In the case of many boundary measurements and
zero initial data, there are only partial results on identification of residual stress [5],
[15]. In the present work we will show that we can determine all nine parameters in
(1.3)–(1.5) by three pairs of Cauchy data. We will derive a Hölder stability estimate
in the convex hull of the observation surface Γ and a Lipschitz stability estimate for
(ρ, λ, μ,R) in Ω when Γ = ∂Ω and observation time T is large.

We are now ready to state our main results. Let d = inf |x| and D = sup |x| over
x ∈ Ω. We will assume that

(1.8) 0 < d.

Let θ be a positive number. For a function c ∈ C1(Ω) we introduce the condition

(1.9) θ2 < c and θ2c + Dθ
√
c|∇c| + 1

2
c x · ∇c < c2 on Ω.

Let ε0 > 0 be given as in (1.7), M > 0 be arbitrarily fixed, and Eε0,M be the class
of functions (elastic parameters) defined by

Eε0,M = {(ρ, λ, μ,R) : ‖ρ‖C6(Ω) + ‖λ‖C7(Ω) + ‖μ‖C7(Ω) + ‖R‖C6(Ω) < M :

ρ, λ, μ satisfy (1.6) and c =
μ

ρ
, c =

λ + 2μ

ρ
satisfy (1.9),

R is symmetric and satisfies (1.1), (1.2), and (1.7)}.
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To study the inverse problem, we need not only the well-posedness of (1.3)–(1.5)
but also some extra regularity of the solution u. To achieve the latter property,
the initial and Dirichlet data (u0,u1,g) are required to satisfy some smoothness and
compatibility conditions. More precisely, we will assume that u0 ∈ H9(Ω),u1 ∈
H8(Ω), and g ∈ C8([−T, T ];H1(∂Ω)) ∩ C5([−T, T ];H4(∂Ω)) and that they satisfy
standard compatibility conditions of order 8 at ∂Ω × {0}. By using energy estimates
[3] and Sobolev embedding theorems as in [8], one can show that

(1.10) ‖∂α
x ∂

β
t u‖C0(Q) ≤ C

for |α| ≤ 2 and 0 ≤ β ≤ 5. We will use three sets of initial data (u0(·; j),u1(·; j)),
j = 1, 2, 3. To guarantee uniqueness in the inverse problem, we impose some nonde-
generacy condition on the initial data. Namely, let M denote the 18 × 13 matrix⎛
⎜⎜⎜⎜⎜⎜⎝

μΔu0(·; 1) + (λ + μ)∇(divu0(·; 1)) divu0(·; 1)I3 2ε(u0(·; 1)) R(u0(·; 1))
μΔu1(·; 1) + (λ + μ)∇(divu1(·; 1)) divu1(·; 1)I3 2ε(u1(·; 1)) R(u1(·; 1))
μΔu0(·; 2) + (λ + μ)∇(divu0(·; 2)) divu0(·; 2)I3 2ε(u0(·; 2)) R(u0(·; 2))
μΔu1(·; 2) + (λ + μ)∇(divu1(·; 2)) divu1(·; 2)I3 2ε(u1(·; 2)) R(u1(·; 2))
μΔu0(·; 3) + (λ + μ)∇(divu0(·; 3)) divu0(·; 3)I3 2ε(u0(·; 3)) R(u0(·; 3))
μΔu1(·; 3) + (λ + μ)∇(divu1(·; 3)) divu1(·; 3)I3 2ε(u1(·; 3)) R(u1(·; 3))

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where I3 is the 3 × 3 identity matrix, and where R(v) is a 3 × 6 matrix defined by

(1.11) R(v) =
(
∂2
1v 2∂1∂2v 2∂1∂3v ∂2

2v 2∂2∂3v ∂2
3v

)
.

We will assume that

(1.12)
there exists a 13 × 13 minor of M such that the absolute value of
its determinant is greater than some constant ε2 > 0 on Ω.

One can check that u0(·; 1) = (x1x2, 0, 0)�, u1(·; 1) = (0, 0, 0)�, u0(·; 2) = (x1, x2, x3)
�,

u1(·; 2) = (0, x2, x3), u0(·; 3) = (x2
1, x

2
2, x

2
3)

�, and u1(·; 3) = (x2x3, x1x3, x1x2)
� sat-

isfy (1.12). Here, 13 row vectors from rows 2 and 7–18 are linearly independent on
Ω. In fact, the direct calculations yield that the absolute value of the determinant
of 13 × 13 minor is 210(λ(x) + μ(x)), and we can choose ε2 = 210ε1 in (1.12), where
ε1 > 0 is given in (1.6).

Condition (1.12) does not hold physically, but for the identification of the residual
stress, the density, and the Lamé coefficients we have to set up the system by choosing
initial values artificially, e.g., in a laboratory. The above example of such initial values
suggests that there may be many choices for it.

We will use the following notation.
C, γ are generic constants depending only on Ω, T, δ, ε0, ε1, ε2,M,u0(·; j),u1(·; j),

j = 1, 2, 3 (any other dependence will be indicated). ‖ · ‖(k)(Q) is the norm in the

Sobolev space Hk(Q). Q(ε) = Q ∩ {ε < |x|2 − θ2t2 − d2
1} and Ω(ε) = Ω ∩ {ε <

|x|2 − d2
1}, where d1 ≥ d. Let u(; 1; j) and u(; 2; j) be solutions of (1.3), (1.4) with

initial data (u0(; j),u1(; j)), for j = 1, 2, 3, corresponding to sets of coefficients E1 =
(ρ1, λ1, μ1, R1) and E2 = (ρ2, λ2, μ2, R2), respectively. We will consider the Dirichlet
data (displacements) as measurements (observations). We introduce the norm of the
differences of the data as

F =

3∑
j=1

4∑
β=2

(‖∂β
t (u(; 2; j) − u(; 1; j))‖( 5

2 )(Γ × (−T, T ))

+‖∂β
t σ(u(; 2; j) − u(; 1; j))ν‖( 3

2 )(Γ × (−T, T ))).
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This data norm includes the fourth order time derivatives and is technically necessary
for our proof of the Lipschitz stability in the inverse problem. Because we have to
obtain a suitable number of equations in 13 unknown functions ρ, λ, μ, rjk (1 ≤ j ≤
k ≤ 3) in terms of data, we will use also ∂3

t u( ; k; j), j = 1, 2, 3 at t = 0 (see (3.9)).
For that, we need L2-estimates of ∂4

t u in (x, t) in the Carleman estimate, which yield
estimates of ∂3

t u( ; k; j) at t = 0 (see (3.12)).
We first state the Hölder-type estimate for determining coefficients in Ω(ε).
Theorem 1.1. Assume that the domain Ω satisfies (1.8) and for some d1 (≥ d),

(1.13) |x|2 − d2
1 < 0 when x ∈ (∂Ω \ Γ) and D2 − θ2T 2 − d2

1 < 0.

Let the initial data (u0(; j),u1(; j)), j = 1, 2, 3, satisfy (1.12) with λ = λ1, μ = μ1.
Then there exist ε0 and constants C, γ ∈ (0, 1) such that for E1, E2 ∈ Eε0,M with

(1.14) λ1 = λ2 and μ1 = μ2 on Γ,

one has

(1.15)
‖ρ1−ρ2‖(0)(Ω(ε))+‖λ1−λ2‖(0)(Ω(ε))+‖μ1−μ2‖(0)(Ω(ε))+‖R1−R2‖(0)(Ω(ε)) ≤ CF γ .

Remark 1.2. If d1 < D, then the second condition in (1.13) implies that

D2 − d2
1

θ2
< T 2.

In other words, the observation time T needs to be sufficiently large. In this case, we
can determine elastic parameters in the domain Ω(ε). The domain Ω(ε) is discussed
in [9, section 3.4].

If Γ is the whole lateral boundary and T is sufficiently large, then a much stronger
(and in a certain sense the best possible) Lipschitz stability estimate holds.

Theorem 1.3. Let d1 = d. Assume that

(1.16)
D2 − d2

θ2
< T 2 <

d2

θ2
.

Let the initial data (u0(; j),u1(; j)), j = 1, 2, 3, satisfy (1.12) with λ = λ1, μ = μ1,
and Γ = ∂Ω.

Then there exists ε0 in (1.7) and C such that for E1, E2 ∈ Eε0,M satisfying the
conditions

(1.17) ρ1 = ρ2, R1 = R2, ∂αλ1 = ∂αλ2, and ∂αμ1 = ∂αμ2 on Γ when |α| ≤ 1,

one has

(1.18) ‖ρ1 −ρ2‖(0)(Ω)+ ‖λ1 −λ2‖(0)(Ω)+ ‖μ1 −μ2‖(0)(Ω)+ ‖R1 −R2‖(0)(Ω) ≤ CF.

Remark 1.4. Condition (1.16) is needed for pseudoconvexity of weight function
ϕ in Carleman estimates in the next sections and generally cannot be removed. Exis-
tence of T is guaranteed by the condition D2 < 2d2. Under the additional assumption
e · ∇c(x) ≤ 0, x ∈ Ω for some direction e, the condition D2 < 2d2 can be achieved by
using translation x = y + Le with large L.

As mentioned previously, the proofs of these theorems rely on Carleman estimates.
We briefly describe the needed Carleman estimates in section 2. Using this estimate
we will prove in section 3 the Hölder stability estimate (1.15). In section 4, we derive
the Lipschitz stability estimate for our inverse problem.
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2. Carleman estimate. In this section we will collect Carleman estimates
needed to solve our inverse problem. Their proofs can be found in [10] and [11].
Let ψ(x, t) = |x|2 − θ2t2 − d2

1 and ϕ(x, t) = exp(η2ψ(x, t)). Due to conditions (1.9)
and (1.13) and known sufficient conditions of pseudoconvexity [9, Theorem 3.4.1], we
can fix (large) η > 0 so that the phase function ϕ is strongly pseudoconvex on Q(0)
with respect to

ρ

μ
∂2
t − Δ,

ρ

λ + 2μ
∂2
t − Δ.

Similarly, (1.9) and the second inequality in (1.16) guarantee strong pseudoconvexity
of ϕ on Q̄.

Theorem 2.1. There are constants ε0 and C such that under the conditions of
Theorem 1.3 for E ∈ Eε0,M ,

(2.1)∫
Q

(τ |∇x,tu|2 + τ |∇x,tdivu|2 + τ |∇x,tcurlu|2 + τ3|u|2 + τ3|divu|2 + τ3|curlu|2)e2τϕ

≤ C
∫
Q

(|AEu|2 + |∇(AEu)|2)e2τϕ

for all u ∈ H3
0 (Q), and under the conditions of Theorem 1.1,

(2.2)

∫
Q(0)

(τ2|u|2 + |divu|2 + |curlu|2 + τ−1|∇u|2)e2τϕ ≤ C

∫
Q(0)

|AEu|2e2τϕ

for all u ∈ H2
0 (Q(0)).

The Carleman estimates of Theorem 2.1 form our basic tool for treating the
inverse problem. The basic idea in proving Theorem 2.1 is to reduce (1.3) to an
extended system of dimension 7 for (u,divu, curlu). The resulting new system is not
principally diagonalized. However, when the residual stress R is small, the second
derivatives of u can be bounded by first derivatives of divu and curlu. We refer to
[10] and [11] for detailed computations. For the case considered here, we need only
verify the strong pseudoconvexity of ϕ on Q or on Q̄. Under conditions (1.9), (1.13)
or (1.16) one can check that ϕ satisfies the required property when ε0 is small and η
is large (see [9] or [10]). An estimate similar to (2.2) was also derived in [8].

In order to use (2.1), it is required that the Cauchy data of the solution and the
source term vanish on the lateral boundary. To handle nonvanishing Cauchy data,
the following lemma is useful.

Lemma 2.2. For any pair of (g0,g1) ∈ H
5
2 (∂Ω× (−T, T ))×H

3
2 (∂Ω× (−T, T )),

we can find a vector-valued function u∗ ∈ H3(Q) such that

u∗ = g0, σ(u∗)ν = g1, AEu∗ = 0 on ∂Ω × (−T, T ),

and

(2.3) ‖u∗‖(3)(Q) ≤ C(‖g0‖( 5
2 )(∂Ω × (−T, T )) + ‖g1‖( 3

2 )(∂Ω × (−T, T )))

for some C > 0, provided ε0 in (1.7) is sufficiently small.

Proof. By standard extension theorems for any g2 ∈ H
1
2 (∂Ω × (−T, T )) we can

find u∗∗ ∈ H3(Q) so that

u∗∗ = g0, σ(u∗∗)ν = g1, ∂2
νu

∗∗ = g2 on ∂Ω × (−T, T )



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1334 VICTOR ISAKOV, JENN-NAN WANG, AND MASAHIRO YAMAMOTO

and

‖u∗∗‖(3)(Q) ≤ C(‖g2‖( 1
2 )(∂Ω × (−T, T )) + ‖g1‖( 3

2 )(∂Ω × (−T, T ))

+ ‖g0‖( 5
2 )(∂Ω × (−T, T ))).

Since ∂Ω× (−T, T ) is noncharacteristic with respect to AE provided (1.6) holds and
ε0 is small, the condition AEu∗∗ = 0 on ∂Ω×(−T, T ) is equivalent to the fact that g2

can be written as a linear combination (with C1 coefficients) of ∂2
t g0 and tangential

derivatives of g0 (up to second order) and of g1 (up to first order) along ∂Ω. In
particular,

‖g2‖( 1
2 )(∂Ω × (−T, T )) ≤ C(‖g1‖( 3

2 )(∂Ω × (−T, T )) + ‖g0‖( 5
2 )(∂Ω × (−T, T ))).

Choosing g2 as this linear combination, we obtain (2.3).
To handle ∇λ and ∇μ in (1.3), we need other Carleman estimates. We first derive

the estimate needed in the proof of Theorem 1.1. Let d1 be given as in Theorem 1.1.
Then we can see that ∂Ω(ε) = (Γ ∪ {|x|2 = d2

1 + ε}) ∩ Ω̄.
Lemma 2.3. Let f ∈ C1(Ω) satisfy f |Γ = 0. Then

(2.4) τ

∫
Ω(ε)

|f(x)|2e2τϕ(x,0)dx ≤ C

∫
Ω(ε)

|∇f(x)|2e2τϕ(x,0)dx.

Proof. Denote ϕ0(x) = ϕ(x, 0). Let g = eτϕ0f ; then eτϕ0∇f = ∇g − τ∇ϕ0g.
Note that g|Γ = 0. We observe that ∇ϕ0(x) = ηxϕ0(x), and thus on ∂Ω(ε) \ Γ with
the unit outer normal ν(= −x/|x|),

(2.5) ∂νϕ0(x) = ∇ϕ0 · ν = −η|x|ϕ0(x).

Using integration by parts and (2.5), we have that∫
Ω(ε)

|∇g − τ∇ϕ0g|2

=

∫
Ω(ε)

|∇g|2 + τ2

∫
Ω(ε)

|∇ϕ0g|2 − 2τ

∫
Ω(ε)

∇g · ∇ϕ0g

≥ −τ

∫
Ω(ε)

∇ϕ0 · ∇(g2)

= −τ

∫
∂Ω(ε)\Γ

∂νϕ0g
2 + τ

∫
Ω(ε)

Δϕ0g
2

= τ

∫
∂Ω(ε)\Γ

η|x|ϕ0(x)g2(x)dΓ(x) + τ

∫
Ω(ε)

(3η + η2|x|2)ϕ0g
2(x)dx

≥ C

∫
Ω(ε)

g2,

which implies (2.4).
The following estimate is useful in proving Theorem 1.3 (see also [8, Lemma 3.6]).
Corollary 2.4. Let f ∈ C1(Ω) and f = 0 on ∂Ω. Then we have

τ

∫
Ω

|f(x)|2e2τϕ(x,0)dx ≤ C

∫
Ω

|∇f(x)|2e2τϕ(x,0)dx.
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3. Hölder stability for the determination of coefficients. In this section
we prove the first main result of the paper, Theorem 1.1. Let us denote u(; j) =
u(; 2; j) − u(; 1; j) for j = 1, 2, 3, and F = (f1, f2, . . . , f9, R)�, where f1 = ρ1 − ρ2,
f2 = λ1 − λ2, f3 = μ1 − μ2, (f4, f5, f6)

� = ∇f2, (f7, f8, f9)
� = ∇f3, and

R� =

⎛
⎜⎜⎜⎜⎜⎜⎝

r11
r12
r13
r22
r23
r33

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

r1,11 − r2,11
r1,12 − r2,12
r1,13 − r2,13
r1,22 − r2,22
r1,23 − r2,23
r1,33 − r2,33

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Subtracting equations (1.3) for u(; 1; j) from the equations for u(; 2; j) yields

(3.1) AE2u(; j) = A(u(; 1; j))F on Q,

where

A(v)F = −f1∂
2
t v + (f2 + f3)∇(divv) + f3Δv + divv(f4, f5, f6)

�

+ 2ε(v)(f7, f8, f9)
� +

3∑
j,k=1

rjk∂j∂kv

and

(3.2) u(; j) = ∂tu(; j) = 0 on Ω × {0}.

Differentiating (3.1) in t and using the time-independence of the coefficients of the
system, we get

(3.3) AE2
U(; j) = A(U(; 1; j))F on Q,

where

U(; j) =

⎛
⎝∂2

t u(; j)
∂3
t u(; j)

∂4
t u(; j)

⎞
⎠ , U(; 1; j) =

⎛
⎝∂2

t u(; 1; j)
∂3
t u(; 1; j)

∂4
t u(; 1; j)

⎞
⎠ ,

and

A(U(; 1; j)) =

⎛
⎝A(∂2

t u(; 1; j))
A(∂3

t u(; 1; j))
A(∂4

t u(; 1; j))

⎞
⎠ .

By extension theorems for Sobolev spaces, there exists U∗(; j) ∈ H2(Q) such that

(3.4) U∗(; j) = U(; j), σ(U∗(; j))ν = σ(U(; j))ν on Γ × (−T, T )

and

(3.5)
‖U∗(; j)‖(2)(Q) ≤ C(‖U(; j)‖( 3

2 )(Γ× (−T, T )) + ‖σ(U)(; j)ν‖( 1
2 )(Γ× (−T, T ))) ≤ CF

for all j = 1, 2, 3 due to the definitions of u(; j),U(; j), and F . We now introduce
V(; j) = U(; j) − U∗(; j). Then

(3.6) AE2
V(; j) = A(U(; 1; j))F − AE2

U∗(; j) on Q
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and

(3.7) V(; j) = σ(V)(; j)ν = 0 on Γ × (−T, T ).

To use the Carleman estimate (2.2), we introduce a cut-off function χ ∈ C2(R4)
such that 0 ≤ χ ≤ 1, χ = 1 on Q( ε2 ), and χ = 0 on Q \Q(0). By the Leibniz formula,

AE2(χV(; j)) = χAE2(V(; j)) + A1V(; j) = χAF − χAE2U
∗(; j) + A1V(; j)

due to (3.6). Here (and below) A1 denotes a first order matrix differential operator
with coefficients uniformly bounded by C(ε). By the choice of χ, A1V(; j) = 0 on
Q( ε2 ). It is not hard to see that (3.7) implies that V(; j) = ∂νV(; j) = 0 on Γ×(−T, T ).
Hence due to the first condition of (1.13), the function χV(; j) ∈ H2

0 (Q(0)) (see, for
example [4, Corollary 1.5.1.6, p. 39]). Observe, that χ = 0 is zero near the non-C8-
smooth part of ∂Q(0), and therefore we can use results for C8-smooth domains by
slightly extending Q(0). So we can apply to χV(; j) the Carleman estimate (2.2) to
get ∫

Q

τ |χV(; j)|2e2τϕ

≤ C

∫
Q

(|F|2 + |AE2(U
∗(; j))|2)e2τϕ + C

∫
Q\Q( ε

2 )

|A1V(; j)|2e2τϕ

(3.8) ≤ C

(∫
Q

|F|2e2τϕ + F 2e2τΦ + C(ε)e2τε1

)
,

where Φ = sup ϕ over Q and ε1 = e
ηε
4 . To get the last inequality, we used the bounds

(3.5) and (1.10).
On the other hand, from (1.3), (3.1), (3.2) we have

ρ2∂
2
t u(; j) = A(u(; 1; j))F,

ρ2∂
3
t u(; j) = A(∂tu(; 1; j))F

on Ω×{0}. We now want to rearrange the formulas above. Let akj = −∂2+k
t u(0; 1; j),

bkj = ∇(divuk(; j)), ckj = Δuk(; j)+∇divuk(; j), Bkj = divuk(; j), Ckj = 2ε(uk(; j)),
and Rkj = R(uk(; j)) (see the definition of R in (1.11)), where k = 0, 1 and j = 1, 2, 3.
Using that u(; 1; j) = u0(; j), ∂tu(; 1; j) = u1(; j) on Ω × {0}, we have

(3.9)

⎛
⎜⎜⎜⎜⎜⎜⎝

a01 B01I3 C01 R01

a11 B11I3 C11 R11

a02 B02I3 C02 R02

a12 B12I3 C12 R12

a03 B03I3 C03 R03

a13 B13I3 C13 R13

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1

f4

...
f9

r11
...

r33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ρ2

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2
t u(, 0; 1)

∂3
t u(, 0; 1)

∂2
t u(, 0; 2)

∂3
t u(, 0; 2)

∂2
t u(, 0; 3)

∂3
t u(, 0; 3)

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎝

b01 c01

b11 c11

b02 c02

b12 c12

b03 c03

b13 c13

⎞
⎟⎟⎟⎟⎟⎟⎠

(
f2

f3

)
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on Ω. From the system (1.3) at t = 0 and from this system differentiated in t and
taken at t = 0, we obtain

(3.10)

akj = −μ1

ρ1
Δuk(; j) −

λ1 + μ1

ρ1
∇(divuk(; j)) − divuk(; j)

∇λ1

ρ1

−2ε(uk(; j))
∇μ1

ρ1
−

3∑
�,m=1

r1,�m∂�∂muk(; j)

= −μ1

ρ1
Δuk(; j) −

λ1 + μ1

ρ1
∇(divuk(; j)) − Bkj

∇λ1

ρ1

−Ckj
∇μ1

ρ1
−

3∑
�,m=1

r1,�m∂�∂muk(; j)

when k = 0, 1 and j = 1, 2, 3.
We now consider the matrix on the left-hand side of (3.9). Using (3.10), one

can add to the first column the remaining columns multiplied by suitable factors such
that −divuk(; j)

∇λ1

ρ1
, −2ε(uk(; j))

∇μ1

ρ1
, and −

∑3
�,m=1 r1,�m∂�∂muk(; j) are eliminated

from the first column of this matrix. Then we multiply the first column of the new
matrix by −ρ1. We end up with the matrix M defined in section 1. Obviously,
determinants of corresponding minors of the matrix on the left side of (3.9) and of
the matrix M are the same. It follows from condition (1.12) and bounds (1.10) that

(3.11) |F|2 ≤ C

⎛
⎝ 3∑

j=1

3∑
β=2

|∂β
t u(0; j)|2 + |f2|2 + |f3|2

⎞
⎠ on Ω.

Since χ(·, T ) = 0,∫
Ω

|χ∂β
t u(; j)|2(x, 0)e2τϕ(x,0)dx = −

∫ T

0

∂t

(∫
Ω

|χ∂β
t u(; j)|2(x, t)e2τϕ(x,t)dx

)
dt

≤
∫
Q

2χ2(|∂β+1
t u(; j)||∂β

t u(; j)|+τ |∂tϕ||∂β
t u(; j)|2)e2τϕ+2

∫
Q\Q( ε

2 )

|∂β
t u(; j)|2χ|∂tχ|e2τϕ,

where β = 2, 3. The right side does not exceed

C

(∫
Q

τ |χU(; j)|2e2τϕ + C(ε)

∫
Q\Q( ε

2 )

|U(; j)|2e2τϕ

)

≤ C

(∫
Q

τ |χV(; j)|2e2τϕ + C(ε)

∫
Q\Q( ε

2 )

|U(; j)|2e2τϕ + τ

∫
Q

|U∗(; j)|2e2τϕ

)

because U(; j) = V(; j) + U∗(; j). Using that χ = 1 on Ω( ε2 ), ϕ < ε1 on Q \ Q( ε2 ),
and ϕ < Φ on Q from these inequalities, from (3.8), (3.5), and (1.10) we set

(3.12)

∫
Ω( ε

2 )

|∂β
t u(0; j)|2e2τϕ(,0) ≤ C

(∫
Q

|F|2e2τϕ + C(ε)e2τε1 + τe2τΦF 2

)

for β = 2, 3 and j = 1, 2, 3. Using that χ = 1 on Ω( ε2 ), from (3.11) and (3.12) we
obtain
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∫
Ω( ε

2 )

|F|2e2τϕ(,0) ≤ C

(∫
Q( ε

2 )

|F|2e2τϕ + τe2τΦF 2 + C(ε)e2τε1(3.13)

+

∫
Ω( ε

2 )

(|f2|2 + |f3|2)e2τϕ(,0)

)
,

where we also split Q in the right side of (3.12) into Q( ε2 ) and its complement and
used that |F| ≤ C and ϕ < ε1 on the complement.

To eliminate the first integral in the right side of (3.13), we observe that

∫
Q( ε

2 )

|F|2(x)e2τϕ(x,t)dxdt ≤
∫

Ω( ε
2 )

|F|2(x)e2τϕ(x,0)

(∫ T

−T

e2τ(ϕ(x,t)−ϕ(x,0))dt

)
dx.

Due to our choice of function ϕ, we have ϕ(x, t) − ϕ(x, 0) < 0 when t �= 0. Hence by
the Lebesgue theorem the inner integral (with respect to t) converges to 0 as τ goes
to infinity. By reasons of continuity of ϕ, this convergence is uniform with respect to
x ∈ Ω. Choosing τ > C we therefore can absorb the integral over Q( ε2 ) in the right
side of (3.13) by the left side and arrive at the inequality

(3.14)

∫
Ω( ε

2 )

|F|2e2τϕ(,0) ≤ C

(
τe2τΦF 2 + C(ε)e2τε1 +

∫
Ω( ε

2 )

(|f2|2 + |f3|2)e2τϕ(,0)

)
.

On the other hand, to eliminate the last integral on the right side of (3.14), we use
Lemma 2.3 with condition (1.14) to get

(3.15)

∫
Ω( ε

2 )

(|f2|2 + |f3|2)e2τϕ(,0) ≤ C

τ

∫
Ω( ε

2 )

(|∇f2|2 + |∇f3|2)e2τϕ(,0).

Using (3.15) with large τ and the inequality τ ≤ eτ , we absorb the last integral in the
right side of (3.14) into the left side and obtain

∫
Ω( ε

2 )

|F|2e2τϕ(,0) ≤ C(e2τ(Φ1+1)F 2 + C(ε)e2τε1).

Letting ε2 = e
ηε
2 ≤ ϕ on Ω(ε) and dividing both parts by e2τε2 yields

(3.16)∫
Ω(ε)

|F|2 ≤ C(τe2τ(Φ+1−ε2)F 2 + e−2τ(ε2−ε1)) ≤ C(ε)(e2τ(Φ+1)F 2 + e−2τ(ε2−ε1))

since τe−2τε2 < C(ε). If 1
C ≤ F , then bound (1.15) is obvious because the left side

in (1.15) is less than C. So to prove (1.15) it suffices to assume that F < 1
C . Then

τ = −logF
Φ+1+ε2−ε1

> C, and we can use this τ in (3.16). Due to the choice of τ ,

e−2τ(ε2−ε1) = e2τ(Φ+1)F 2 = F 2
ε2−ε1

Φ+1+ε2−ε1 ,

and from (3.16) we obtain (1.15) with γ = ε2−ε1
Φ+1+ε2−ε1

. The proof of Theorem 1.1 is
now complete.
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4. Lipschitz stability for the determination of coefficients. In this section
we will prove Theorem 1.3. The key ingredient is the following Lipschitz stability
estimate for the Cauchy problem for the system AEu = f .

Theorem 4.1. Suppose that Ω and T satisfy the assumptions of Theorem 1.3.
Let u ∈ (H3(Q))3 solve the Cauchy problem

(4.1)

{
AEu = f in Q,

u = σν(u) = 0 on ∂Ω × (−T, T )

with f ∈ L2((−T, T );H1(Ω)) and f = 0 on ∂Ω × (−T, T ). Furthermore, assume that
(1.7) holds for sufficiently small ε0.

Then there exists a constant C > 0 such that

(4.2) ‖u‖2
H1(Q) + ‖divu‖2

H1(Q) + ‖curlu‖2
H1(Q) ≤ C‖f‖2

L2((−T,T );H1(Ω)).

This estimate was proved in [11].
By virtue of (4.2) and an equivalence of the norms ‖u‖(1)(Ω) and of

‖divu‖(0)(Ω) + ‖curlu‖(0)(Ω) + ‖u‖(0)(Ω)

in H1
0 (Ω) (e.g., [3, pp. 358–359]), it is not hard to derive the following.
Corollary 4.2. Under the conditions of Theorem 4.1,

(4.3) ‖u‖(0)(Q) + ‖∇x,tu‖(0)(Q) + ‖∂t∇u‖(0)(Q) ≤ C‖f‖L2((−T,T );H1(Ω)).

Now we are ready to prove Theorem 1.3. We will use the notations in section 3.
Recall that

AE2U(; 1; j) = A(U(; 1; j))F,

where

A(U(; 1; j))F = −f1∂
2
t U(; 1; j) + (f2 + f3)∇(divU(; 1; j)) + f3ΔU(; 1; j)

+ divU(; 1; j)(f4, f5, f6)
� + 2ε(U(; 1; j))(f7, f8, f9)

�

+

3∑
j,k=1

rjk∂j∂kU(; 1; j).

So, from (1.17) we have

(4.4) AE2U(; j) = 0 on ∂Ω × (−T, T ).

Furthermore, in view of Lemma 2.2, there exists U∗(; j) ∈ H3(Q) such that

(4.5)
U∗(; j) = U(; j), σ(U∗(; j))ν = σ(U(; j))ν, AE2U

∗(; j) = 0 on ∂Ω × (−T, T )

and

(4.6)
‖U∗(; j)‖(3)(Q) ≤ C(‖U(; j)‖( 5

2 )(∂Ω×(−T, T ))+‖σ(U)(; j)ν‖( 3
2 )(∂Ω×(−T, T ))) ≤ CF

due to the definition of F . As before, we set V(; j) = U(; j) − U∗(; j). Due to (4.4)
and (4.5), we get

(4.7) V(; j) = σ(V)(; j)ν = 0, AE2
V(; j) = 0 on ∂Ω × (−T, T ).
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With (4.7), applying Corollary 4.2 to (3.6), (3.7) and using (4.6) gives

(4.8) ‖V(; j)‖2
(0)(Q)+‖∇x,tV(; j)‖2

(0)(Q)+‖∂t∇V(; j)‖2
(0)(Q) ≤ C(‖F‖(1)(Ω)2+F 2)

for j = 1, 2, 3.

On the other hand, as in the proof of Theorem 1.1 we will bound the right side of
(4.8) by V. To use the Carleman estimate (2.1) we need to cut off V(; j) near t = T
and t = −T . We first observe that from the definition,

1 ≤ ϕ(x, 0), x ∈ Ω,

and from condition (1.16),

ϕ(x, T ) = ϕ(x,−T ) < 1 when x ∈ Ω.

So there exists a δ > 1
C such that

(4.9) 1 − δ < ϕ on Ω × (0, δ), ϕ < 1 − 2δ on Ω × (T − 2δ, T ).

We now choose a smooth cut-off function 0 ≤ χ0(t) ≤ 1 such that χ0(t) = 1 for
−T + 2δ < t < T − 2δ and χ(t) = 0 for |t| > T − δ. As in the argument before
(3.8) (see also Lemma A.1 in [13]), from (4.7) we derive that V(; j) = ∂νV(; j) = 0
on ∂Ω × (−T, T ). Then since ∂Ω × (−T, T ) is not characteristic with respect to AE

the third equation in (4.7) implies that ∂2
νV(; j) = 0 on ∂Ω × (−T, T ). Summing up,

V(; j) = ∂νV(; j) = ∂2
νV(; j) = 0 on ∂Ω × (−T, T ). Now from known results about

traces in Sobolev spaces [4], as above we conclude that χ0V(; j) ∈ H3
0 (Q). Using the

Leibniz formula

AE2
(χ0V(; j)) = χ0A(U(; 1; j))F−χ0AE2

U∗(; j)+2ρ2(∂tχ0)∂tV(; j)+ρ2(∂
2
t χ0)V(; j)

and Carleman estimate (2.1) yields

∫
Q

χ2
0(τ

3|V(; j)|2 + τ |∇V(; j)|2)e2τϕ

≤ C

(∫
Q

(|F|2 + |∇F|2 + |AE2U
∗(; j)|2 + |∇(AE2U

∗)(; j)|2)e2τϕ

+

∫
Ω×{T−2δ<|t|<T}

(|V(; j)|2 + |∇x,tV(; j)|2 + |∂t∇V(; j)|2
)
e2τϕ)

≤ C

(∫
Q

(|F|2 + |∇F|2)e2τϕ + e2τΦF 2 + e2τ(1−2δ)

∫
Ω

(|F|2 + |∇F|2)
)
,
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where we let Φ = supQ ϕ and used (4.6), (4.8), (4.9). Since U(; j) = V(; j) + U∗(; j),
from (4.6) we obtain ∫

Q

χ2
0(τ

3|U(; j)|2 + τ |∇U(; j)|2)e2τϕ

(4.10) ≤ C

(
τ3e2τΦF 2 +

∫
Ω

(∫ T

−T

e2τϕ(x,t)dt + e2τ(1−2δ)

)
(|F|2 + |∇F|2)(x)

)
dx.

Utilizing (3.2) and (1.12), similarly to deriving (3.11), we get from (3.9) that

(4.11) |F|2 + |∇F|2 ≤ C

⎛
⎜⎜⎝

3∑
j=1

∑
β=2,3;
k=0,1

|∂β
t ∇ku(0; j)|2 +

∑
k=0,1

(|∇kf2|2 + |∇kf3|2)

⎞
⎟⎟⎠ .

Therefore, by (4.11) and Corollary 2.4 (with conditions (1.17) for Lamé coefficients),
we have ∫

Ω

(|F|2 + |∇F|2)e2τϕ(,0)

≤ C

⎛
⎜⎜⎝
∫

Ω

3∑
j=1

∑
β=2,3;
k=0,1

|∂β
t ∇ku(0; j)|2e2τϕ(,0) +

∫
Ω

∑
k=0,1

(|∇kf2|2 + |∇kf3|2)e2τϕ(,0)

⎞
⎟⎟⎠

≤ −C

∫ T

0

∂t

⎛
⎜⎜⎝
∫

Ω

3∑
j=1

∑
β=2,3;
k=0,1

χ2
0|∂

β
t ∇ku(; j)|2(x, t)e2τϕ(x,t)dx

⎞
⎟⎟⎠ dt

+
C

τ

∫
Ω

(|F|2 + |∇F|2)e2τϕ(;0).

Choosing τ large, we eliminate the last term and obtain∫
Ω

(|F|2 + |∇F|2)e2τϕ(,0)

≤ C

∫
Q

χ2
0

3∑
j=1

∑
β=2,3;
k=0,1

(|∂β
t ∇ku(; j)||∂β+1

t ∇ku(; j)| + τ |∂tϕ||∂β
t ∇ku(; j)|2)e2τϕ

+C

∫
Ω×(T−2δ,T )

χ0|∂tχ0|
3∑

j=1

∑
β=2,3;k=0,1

|∂β
t ∇ku(; j)|2e2τϕ.
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Now as in the proofs of section 3, the right side is less than

C

(∫
Q

τχ2
0(|U(; j)|2 + |∇U(; j)|2)e2τϕ +

∫
Ω×(T−2δ,T )

(|U(; j)|2 + |∇U(; j)|2)e2τϕ

)

≤ C

(∫
Q

τχ2
0(|U(; j)|2 + |∇U(; j)|2)e2τϕ + e2τ(1−2δ)(‖F‖2

(1)(Ω) + F 2)

)
,

where we used equality U(; j) = U∗(; j) + V(; j) and (4.6), (4.8). From the two
previous bounds and (4.10) we conclude that

∫
Ω

(|F|2 + |∇F|2)e2τϕ(,0)(4.12)

≤ C

(
τ3e2τΦF 2 +

∫
Ω

(∫ T

−T

e2τϕ(,t)dt + e2τ(1−2δ)

)
(|F|2 + |∇F|2)

)
.

Due to our choice of ϕ, 1 ≤ ϕ(, 0), ϕ(, t)−ϕ(, 0) < 0 when t �= 0. Thus by the Lebesgue
theorem as in the proofs of section 3, we have

2C

(∫ T

−T

e2τϕ(,t)dt + e2τ(1−δ)

)
≤ e2τϕ(,0)

uniformly on Ω when τ > C. Hence choosing and fixing such large τ , we eliminate the
second term on the right side of (4.12). The proof of Theorem 1.3 is now complete.

5. Conclusion. While natural in some applications, the assumption about the
smallness of residual stress is restrictive. In our opinion it can be relaxed by using
the methods of papers [8], [11], and this paper. More restrictive and much more diffi-
cult to remove is the condition that the initial data are not zero. At present, even for
scalar isotropic hyperbolic equations, global uniqueness of the speed of propagation or
of the potential from few lateral boundary measurements is an open and outstanding
research problem (see, for example, [9]). Moreover, in the case of zero initial data,
general anisotropic hyperbolic operators (and hence systems) cannot be uniquely de-
termined by all lateral boundary measurements (Dirichlet-to-Neumann map). In fact,
a large gauge transformation group changes equations inside Ω without affecting the
lateral boundary data. Hence (special) nonzero initial data are necessary for the
complete identification of such equations and systems.

Of substantial interest is uniqueness in inverse problems for more general anisotropic
systems, for example, for dynamical elasticity systems with transversal isotropy. For
such systems there are no Carleman estimates or uniqueness of the continuation re-
sults. On the other hand, such systems are quite important for applications to geo-
physics, material science, and medicine, and they are notorious mathematical chal-
lenges.
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[3] G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin,
New York, 1976.

[4] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
[5] S. Hansen and G. Uhlmann, Propagation of polarization in elastodynamics with residual

stress and travel times, Math. Ann., 326 (2003), pp. 536–587.
[6] O. Imanuvilov and M. Yamamoto, Determination of a coefficient in an acoustic equation

with a single measurement, Inverse Problems, 19 (2003), pp. 157–171.
[7] O. Imanuvilov and M. Yamamoto, Carleman estimates for the nonstationary Lamé system
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