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ABSTRACT

In this paper, we present a framework of constructing oscillating-decaying solutions for the general
inhomogeneous anisotropic elasticity system. These oscillating-decaying solutions can be used in
solving inverse problems concerning the identification of cavities or inclusions embedded in an elastic

body.
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1. INTRODUCTION

Special type solutions for the elliptic equation or
system has played an important role in solving related
inverse problems. In 1987, Sylvester and Uhlmann
[12] introduced exponentially growing solutions (they
called complex geometrical optics solutions) to solve
the inverse boundary value problem for the
conductivity equation. Recently, Ikehata used
exponentially growing solutions for A having the form
u=exp {t (xo— ¢+ ix-0)}, where ® and o" are unit
vectors orthogonal to each other and © >> 1, to solve
several inverse problems concerning the reconstruction
of the convex hull of a polygonal or polyhedral source
domain, a polygonal inclusion or cavity, or the
reconstruction of the convex hull of a general inclusion
[4~7]. He called this method the enclosure method.
It should be pointed out that so far exponentially
growing solutions considered in [4~7] and [12] have
been available only for operators and system of
operators whose leading part are Laplacian and diagonal
operators with Laplacian in the diagonal elements,
respectively. For the details of the construction for

these operators and system of operators see [1] and [11].

Notably, when the medium in the elasticity system is
isotropic, exponentially growing solutions have been
constructed in [2,9,10].

In order to extend Ikehata’s idea to the elliptic
equation or system with variable coefficients, it is
quite natural to ask for a substitute of the
exponentially growing solution. In this paper we
look for the “oscillating-decaying solution” as a
substitute of the exponentially growing solution.
Roughly speaking, given a hyperplane or hypersurface,

* Professor ** Associate Professor

the oscillating-decaying solution is defined in the one
side of this plane or surface including the plane or
surface which is highly oscillating along this plane or
surface and decaying exponentially in the direction
orthogonal to the same plane or surface. Of course,
by this substitute we may loose some of nice
properties of the exponentially growing solution.
However, it is still possible to preserve some other
properties of it so that we can apply the
oscillating-decaying solution. to inverse problems.
This type of solution was first described and applied
for inverse problems for scalar elliptic equations in [8].
In this paper we mainly aim to present a framework of
constructing the oscillating-decaying solution defined
in the one side of hyperplane including this plane for
the general anisotropic elasticity system. The main
step of this construction is to suitably decompose the
conjugate operator M according to an appropriate
definition of order (see Theorem 3.2). These oscillating-
decaying solutions can be applied to some inverse
problems concerning the identification of cavities or
inclusions embedded in an elastic body. These
results will be reported elsewhere.

2. DEFINITION OF OSCILLATING-DECAYING
SOLUTIONS

Assume that C(x) = (C,u(x)) € B* (R®) = {f e C° (R’):
*fe L” (R, Yo € Z°,) is the elasticity tensor
satisfying the following conditions:

(Hyperelasticity)

Ciu (%) =Cyy (x) VxeR’
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(Strong convexity) There exists 8 > 0 such that for any
x € R? and real matrices E = (g;), G = (g))

C(x)E-E>8|E| )
where
C(E Y Chu() gy
k,l
and

E-G=) &;8;, |E[=EE
i

Here and below, all Latin indices are set to be from 1 to 3
unless otherwise indicated. Note that from the
hyperelasticity we have

CE-G=CG-E
for any real matrices £ and G.  Also, we denote
(Vu)y =0,u,
and

V-G), = Z 0, g; for any matrix function G =(g;)
j

Before going to the main theme of the section, we
want to define several notations. ~Assume that Q c R? is
an open set and o € S”is given. Letn € S*and{ € §°
be chosen so that {n, £, o} forms an orthonormal
system of R’.  We then denote x' = (x-1, x-£). Lette
R, (o) = Q N{x-0 > ¢} and Z(0)={x® =1¢}. LetS
be a closed connected disk on =, on which £, 1 Q # 0.
We consider a vector function u,,p, 1, (¥, T) = : u(x, 7)

= [ul(x, T)’ uZ(x: T)a u3(x:v T)]T € Cw(Q{(m) ) Wlth T >> 1
satisfying

in Q,(o)

| {}:Cu =V -(C(x)Vu)=0 @

u |z, @)~ eimeXI (xb

where 6 € S? lying in the span of 1) and  is chosen and
fixed, ¥, (x') € Co° (R?) with supp(y,) cSand 0% b €
C’.  Furthermore, Uy, b4, N,o 1S Written into u,, s, n,0 =

Vbt Mo T Fyub N0 with
— n 0 —t(xo—t)A4,(x)
Ux,,b,r,N,m _Xr(x)e € ' b+yx,,b,z,N,m(x> T)

and r, pbLNo satisfying

|7, <ect VY2 3)

Yoo bt N0 ”H‘(Q,(m))

where A(-) € B® (R?) is a matrix function such that all
eigenvalues of 4,, denoted by spec(4,), satisfies spec(4,)
c C,={z e C:Rez>0} and v, 5o is 2 smooth

vector function supported in supp () satisfying

-3/2 —1(s—1)A
”az YX,,b,I,N,m ”LZ(Q:((D»SC‘C'OL' € e (4)

for jof < 1 and s 2 ¢, where A > 0 is some comnstant
depending on spec(4,). Here and below, we use ¢ to
denote a general positive constant whose value may
vary from line to line.

3. CONSTRUCTION OF
OSCILLATING-DECAYING SOLUTIONS

Without loss of generality, we consider the special
case where = 0, ® = e3=(0, 0, 1) and choose 1 =(1, 0, 0),
£ =1(0, 1, 0). The general case can be easily obtained
from this special case by obvious change of coordinates.

Define £ = £cand M - = ™Y £(e™?.), where x' =
(x1, x;) and 0’ = (0, 0,) with |6’| = 1.  Clearly, i
is a matrix differential operator. To be precise, the

component }\Z(,.k of M is given by
My, =72 ,C0 0, +1 2 ,Cy(i6,)0, +1 2 ,Cy (10,0,

42, Cyu, 8, +Z 1(8; Cp)i18)) +Z 1(8,C )0
= 2% ,Cyu0 8, +7 Z,C,y (10,)8; +7 £ ,C;1 (18,0,

+ Ci3k3632 +1 ijs,z Cijkl (iel)aj +1 Elats,j Cijkl (iej )9,

+25 Cyy 0,0, + £ (8 ,Cyy )(i10,) + Z (8,Cy ) 0,

J

with 6; = 0, where X'y = Z;p33. Our task is now

reduced to solve
Mv=0 (5)
Obviously, we observe that (5) is equivalent to

Mvu=0 (6)

where M = -Cj 'M and the (i, k) entry of C; is Cyyg.
Define < a, b >=(<a, b >;) for a = (a, a,, a;) and b =
(bl, b, b3), where < a, b > ;= ZjICijklajbl- Also, we
denote <a, b >=<a, b > |, -o. We define the order
of P, denoted by ord(P), in the following sense:

“ P(e—‘txaA(X')(’b(xl)) ”Lz(Ri)s c Tord(P)—l/Z

where R} = {x; > 0}, 4(x") is a smooth matrix
function of x' with spec(4) ¢ C, and &(x")e C7(R?).

In this sense, we can see that t, 0; are of order 1, 3;, 05,
are of order 0 and x; is of order —1. Note that the order
of x5 is a simple consequence of the integration by parts.
To verify the order of §;, j = 1 or 2, we observe that
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aj (e—u3A(x')("3(xl)) — e—u;A(x')aj¢(x!)
x3 ' ,
_T,L e—1(x3—x)A(x)aj A(x')e'm(x)@(x')ds
and therefore

I aj(e—uzA(x')("‘)(xl)) ”LZ(R?:_)S c T2

According to the definition of order, the principal
part M, (order 2) of M is given by

M,={D}+1<e,,e,>;' (<e,, 9>, +<9,¢, >,)D,
+1% <ey,e,>,'<9,9>0} (7)

with Dy =—i0; and § = (8, 0,, 0) = (6", 0). Notice that
M, is obtained by the Taylor’s expansion of M at x; =0,
ie.,

M, %) =M, 0)+x,0,M(x, 0)+---

xN—]
+ =2 YT M (X, 0) +---
(N -1}
=M, +M, + M+ +-+M_ +--
=E3?=-2 M—j (®

where ord(M.)) = —j for j = —2. We can find that the

symbol of M, is

TL(x', 0,8, i )=1{(&, /1)
+<e,e > (<e, 9>, +<9, e >)E, /1)
+<e,e >,'<9,9>)

It follows from the strong convexity condition (1) that
for any fixed (¥, ©"), det(L)(x', 6', ) = 0 in { admits
roots A with+Im A7 >0,1<;<3. Now we can

factorize the symbol of M, by the following result.

Theorem 3.1 [3] Let
K(,01):= (] C(<er, ey > L(x,0%,0)7d0)
(d (<eg e L0500 )" (9)

where ' c C,:={{ € C:Im{ > 0 is a closed contour
enclosing all xf for 1 £j<3. Then we have
L(x',6",8)=({ - K'(x,0))(C - K(x,8"))

with spec(K(x', 8")) < C, and K’ =<es, e3> K'<es, es>q,

where K" is the transpose of X .
Next we observe that the operator M can be
explicitly written as

_ S22 j+2 Jj+l
M_;=x{"vH_ | +x{"tH_;,Dy+xy TH_

+x3j+l H_,,D, +(j+)x3j H_;; (G=z-D (10)

where

+

1if j20

0 otherwise
and H; ;= H,; ;(x',0) forj2-1,1=1,2,H;, =
H;,(x', 0, D) with D' = (=i, —ib,), j 2-1,1=3,4,5
are operators of zeroth order. In other words, H_;; for j

>-1,1=3, 4, 5 contain x’ derivatives with coefficients
independent of x3. We now want to show that

Theorem 3.2 There exist K~j, K, (j > —1) of

order —j containing no D; elements such that for any N
eN

R(N):=M_(D3“1?(N))(D3_K(N)) (11)

is of order —N, where Ky, and K (v are defined by

N ~ N ~
Ky = Z}K_, Koy = _ZIK—/'
= -

with K| = 1 K(x', 8"), K, = 1K (¢, 8) and K(x', ©')
being given by (9). Moreover, K_; and K. ;(720)can

be written as

{K_j =1/ Eiﬁ) (x3'c)k G_j,k(x,, o, D) (12)

K, =7 3 (50)* G, ,(x, 0, D)

Here Gj;0(¥', 0, D) = G (¥, ©') and G, ,,(x,0,D")
=G . a(x,8) and C* matrix functions of x’, 8’ con-

taining no differential operator D', which are uniformly
Also, Gux', &, D)
and G_ ;4 (', 0, D) are matrix differential operator in

bounded in any compact set of x'.

D' of order at most two with coefficients uniformly
bounded C” in any compact set of x', 0 S k <.

Proof: We first compute

(D; =K (D, =K )
=D} ~(K yy + K y)Ds —(DsK 3y )+ Ky K
=D} —(K, +K,)D, -2 (K_; +K_;)D,
~ZL0(Ds K )+ KK,

Comparing this with M, we hope to have
M2=D32"(121+K1)D3_121K1 (13)
and

M=~ (E—j-—l +K_;1)D, _(DaK—f—l)'*'ZE’ K,
i

~1<j<N-1 (14)
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where X, is the summation with respect to 7, 5 € Z
satisfyingr, s <1, r +s=-j.
From (13) and Theorem 3.1, we immediately get that

K, =tK(x',6) and K, =1K'(x,90)
Forj =-1, (14) becomes
M, =—~(K, +K,)D; ~(D,K,)+Z K K,
=—(K, +K,)D, ~(D,K,) +K K, + KK, (15)

which is equivalent to
xUH, +x,TH,,D, +1H,; + H, D,
= ~(Ky +K,)Dy ~(D,K )+ TK'K, +1K K (16)
Now let Koand K, be defined by
K, =x,1G,, + G, = x,7K (1, 0)
+(KA(x', 0+ KL(x', 0", D))
and
K, =x,1 (N?OJ +(~?0’0 =x,1K(x', 9;)
+(RO(x, 0+ K+, ', D))

where K! and K! are pure first order in D'

Comparing both sides (16), we find that K, and 120,1
are required to satisfy

{ K +KS=-H,, a7

K'KO+KK=H,,

We get from the first equation of (17) that K? =

-H,,~K;. Substituting this into the second equation
of (17) yields

K'K{-KJK=H, +H ,K (18)

Since spec(K) m spec(X’) = 0, the equation (18) is
uniquely solvable. Therefore, we can find suitable
K and K? satisfying (17).

To find other terms in K, and I?O , we also need to

compare related terms on both sides of (16). However,
here we have to work on the full symbol of the

composition K K. Before going further, we first set

H ,(x',0', D) =H,(x',6', D"y + H,(x',0)

where H|, contains terms with first derivatives in x'

variables and H;(x,0') is the usual zeroth order term.

Let the (full) symbol of H,(x',8,D) be

H{,(x',6',&). Here and below, for simplicity, we use
the same notation for the operator and the associated
symbol. Similarly, we set

H (x',0,D")=H|,(x',0,D)+H],(x,0)

We now look at the principal symbols of K'K, and
K, K and deduce from (16) that

K'(x', 00Ky (x', 0, &N+ Ky (x, 8, ENK (X', 0')

= H,(x,0,8) - Ko (', 0, 8) - Ko(x',6,8)  (19)

= K1,(x,8,8)
It is clear that the system of equations (19) is simiiar to
(17) and we can find a unique pair of K,(x',6’,¢&")
and K!(x', 9, £") because of the condition spec(K’) M

spec(K) = 0.
use (16) again and obtain that

Having determined K. and K, we

K'(x', 0NKS(x', 0)+ K (x', YK (', 8)
=H)(x',0)-iKy(x', 0"
—{o(KLK)(x', 8, &)~ Ky (x', ', E)K (', 0)}
~ K3 (x',0) - K3 (x', 0') = H,(x',0)

(20)

where o(K!K) denote the full symbol of the

Notice that the last
term on the right hand side of the first equation of (20)
stands for the zeroth order symbol of I?f,K . Now the
system of equation (20) can be solved in a similar way
since spec(K’) M spec(K) = 0. Henée, 1%(? and 1%3
are determined.

composition operator (I?éK).

In other words, we have found X

and IZ'O such that (15) is satisfied.

For clarity, we would like to work out the case j = 0.
The rest of results (j = 1) are then derived by induction.
Putting j = 0 in (14) gives

M, =~(K,+K_)D,=(D;K_ )+ Y K K, (21)

=0
which can be written as
2,2 2
Xy UV Hg +x3 T Hyy Dy +x,T Hos +x,Hy Dy + Hy 5

=—~(K_,+K_)D,~(D,K_)+1 KK_ + KK, +1 K_ K
(22)
Note that here H, s has the following form

H,s(x', 0, D) = Hy 5(x', 0, D) + Hy s (', 0, D)

1 2 :
where H;s and H;, are first and second operators in
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D', respectively. Therefore, we anticipate that
K, =x31G ,+x,G ., +1"' G,
= x21K° (x', 0)+x, (K (', 0') + K, (x, ', D))
+1 (KO (2, 0+ K (', 0, DY+ K2 (x', 6, D)

and

I?_l =x; 15_1,2 +x,Gp + 7! CN;_I)O
=3} TR (x, ) +x, (KO, (x', )+ K, (x', 6/, D)
oK (', )+ K\ (x', 8, D)+ K2 (x', 6, D)

To determine all terms in K_, and 12_1, we simply

compare related terms on both sides of (22). For
example, we can deduce that

K'(x', 0K (x', 0"+ K° (x', 0K (', ')
= H,,(x, 0)— K3 (x', 00K (x', 0") (23)
~K%(x', 0)~K°\(x', 8" = H,y, (x', 8)

The system of equations (23) can be solved in the same
way as before by taking into account of spec(K’) N
spec(K) = 0. Similar equations can be found for the

restof terms in K | and E_l , l.e.,

{ KK’ + I%flK = konwn quantity

K I+ K / =konwn quantity
forj=0, 1 and

KK’ + K/ K = konwn quantity
K/ +K% =0

forj=0,1,2. Here we note that I?_jl + I?_jl =0 for
7 =0, 1, 2 since the left side of (22) does not contain any
term with t™'D;. Thus, we can find suitable K_; and

K, satisfying (21).

Now we are going to do the induction. Assume that
we have proved (12) up toj with 1 <j <N, ie., for 1 <j
<N

K =t/ 21 (50" G, (x, 0, D)
K ;=17 L5 (x,1)° G, (x', 6/, D)

where G_;;(x',8',D')= G_u(x',0) and G_, ,,, (%', 0, D)
=G 5, n(x',8). Therefore, using (14) and the form
-of M_; we have that

J+2,.2 J+2
X TH_j+x7tH

J+1 J+l J
_j,zD3 + x5 'cH_j,3 + x4 H_MD3 +x3H_j’5

= _(]Z—j—l +K—j—1)D3 _(DSK—j—l)+EjErKs
=—(K_;,+ K, )D, - (D3K_H)
+1KK_ +1K K+ KK

KK, (25)
where X' is the” summation with respect to 7, s

satisfying r, s < 0 and r + 5 = /.
ansatz

We now plug the

K, =17 2 (5,1 G, (', 0, D)
K =t 20 (50"G (¢, 6, D)

into (25) and get that

x{PCH_ | +x{PtH_ Dy +xitH L +xIMH
=S () G, v (60 G D,
—t D E (3 G )
+17 B () HK'G_ L, + G K}
+ I (50 G H E L (6D Gl (26)

Clearly, we can see that

H_,,=H_ (x,0)

H,,= H_j,z(x’, 0"

H_ ,=H (x,0)+H., ,(x,0,D)
H_,,=H (x,0)+H! ,(x,6,D
H_,s=H! (x,0,D)+H? (x,0,D"

As before, comparing related terms on both sides of
(26), assuming appropriate forms for G_;.;, ,and G FRy
we are able to find all G, ;’s and é_j_l,,;s recursively
under the condition spec(K’) M spec(K) = 0.  For
example, for G_;_; ;1, and G j-1, j+2» We have that

s, —s~1

{K’ ezt G—j—l, j+2K = H—j,l -G, G (27)

Jr,-r-1
- G—j«l,j+2 - G—j—l,j+2 = H—j,Z

Notice that by the induction assumption (N?,,_,+1 and
G,-s+1in T'; above satisfy G, _,, = G, _,,(x,0) and
Gy, s41= Gy (¥, 8N forall r, s <O and r + 5 = .
Therefore, we can solve for Gy 1, and (N?_j_,, 2
from (27) provided spec(K’) m spec(K) = 0. Also, we
can get that Gy, j12 = Gy, j2(x", 8") and G. sz
G. o1, j+2(x,8) . Tt is complicated but straightforward
to derive similar equations for G, ; and G. e With
0<k<j+1
give explicitly forms of G_._; , and G jax for0<ks
j+1.

Solving those. derived equations will

Thus, we have proved (12) forj + 1.
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We now want to solve the following initial value
problem

D,-K,,)z=0 in x>0
( 3 (N)) ' ; 3 (28)
Z[o0=%.(x)b  beC

We will not intend to solve (28) exactly. Instead, we

would like to find an approximate solution of (28).

(0 (=) N-1)

Namely, let wy’, wy ", -, wﬁ,‘ satisfy

0, W1(\?)|x3=o X (x')b
0 -1
=Kowy', Wy |

(D, —TtK(x', )W =
(D, -t K(x', 0w

x5=0"

(D, —tK(x', 0 ))w( N-1) _ E_?Lo K, wgv-mj)’ ( ~N- l)l

x3=0 =0

(29)

The system of equations (29) can be solved recursively.
For example, it is easy to see that

w{) =exp(itx,K)y, (x")b
and
w(?P =exp(itx, K)J. exp (—ity, K)K,w (X', v5, T, 0')dy,
=exp(itx, K) J;)J exp (~ity, K){(ty,) G, (¥, 6, D)
+G,o(x', 0", D)} w (x', 8)dy,
Furthermore, we can obtain that
W52 12

o= J.dex'fo |exp@tx,K) _[)Jexp(—z VKK, widy, | dx,
D X 2
< Lz dx'J.o e 37‘(".0 y3h | K, w(0) Idys) dx,
e A A e

=)™ jkz &' j: e"z‘*a*{ L e | K, w |2dy,
+ x| Ky wid Iz}dx3

=@ [ a [ 1Kw 1? a,
@ L dx [T x| KW | d,

<ect™? (30)

where the parameter A > 0 depending on X. Notice
that the last two equalities of (30) are obtained from the
integration by parts. To get the last inequality of (30),
0 and ord((x)?)= —1/2.

Similar arguments can be carried out and we deduce that

we make use of ord(K,) =

118,05 wi Il

X3 X

<ct?*? (31

2R

for any 0 < B < 1 and any multi-index o € Z>. Also,
by induction, it is not difficult to show that

” aﬁ atx l) ” 2B-1-2;

X3 %

<ct Q<jSN+1) (32)

L2(RY)

for0<B<landoa e Z>.
useful to compute that

For the later purpose, it is

(D, K(N))ZNH -
=(Dy 1K =Ky~ = K_ )W +w§P 4+ w7V
={(D; =t K) W} +{(D, —tK) w” =Ko wi'} + -+

+{(D, ~tK) WM - K wi MY

N
Zk:{ Z
r+s=k+N+1
ZN_— )
k

0<r<N,1Ss<N+1
=0 vy

-3
K_,wy

Z K_, wy

r+s=k+N+1
0<r<N,ISssN+1

Now let vy = exp(itx’ - 8) Z¥ wi” then we have that

v = exp(itx’- 0" exp(itx, K)x, (x)b
+exp(inx’- 0N wi )
= exp(itx’-0") exp(itx, K)x, (x )b+ 7 5

and vy satisfies the estimate (4). In addition, we

observe that
£vy =-e™% C,M 2V Wi
=™ C, [(Dy = K ) )((Ds = K ) + Ripy 1270 W
e 3 3 N3 (V) (M1 ~j=0 Wy

- Cy [(Dy = Kiyy) Oyt + Ry Zﬁl:t)l wi /)
=8y

It is readily seen that Sy satisfies

N (33)

By (33) and the Lax-Milgram theorem, there exists a
unique solution 7y to the boundary value problem

£ry==8, in Q,:=Q(e,)
{ Iy |an(,= 0
and the following estimate holds
-N-1/2

173 sy S €7

which is the estimate (3). Therefore, let uy= oy + 7y
then uy is the desired oscillating-decaying solution for
the case ¢+ = 0 and @© = e Now the
oscillating-decaying solution in the general case can be
constructed by reducing it to this case with the help of
change of coordinates. On the other hand, since the
construction of the oscillating-decaying solution is local
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near any point on the hyperplane £(®) and the strong
convexity condition is invariant under change of
coordinates, we can construct the oscillating-decaying

solution with respect to any curved hypersurface as well.

The only extra work needed to do is to flatten the
boundary.
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