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Abstract. In this paper we prove the unique continuation property for an elasticity system
with small residual stress. The constitutive equation of this elasticity system differs from that of
the isotropic elasticity system by T + (∇u)T , where T is the residual stress tensor. It turns out this
elasticity system becomes anisotropic due to the existence of residual stress T . The main technique
in the proof is Carleman estimates. Having proved the unique continuation property, we study the
inverse problem of identifying the inclusion or cavity.
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1. Introduction. Let B be an isotropic elastic body with residual stress, and
let the reference configuration of B be Ω, a bounded open set in R

n with smooth
boundary. The residual stress is modeled by a symmetric, smooth, second-rank tensor
T (x) = (tij(x))1≤i,j≤n satisfying

∂xj tij = 0 in Ω, 1 ≤ i ≤ n,(1.1)

and

tijνj = 0 on ∂Ω, 1 ≤ i ≤ n,(1.2)

where ν = (ν1, . . . , νn) is the unit outer normal to ∂Ω. Hereafter, we adopt the
summation convention. Let u : Ω → R

n be the displacement vector; then the first
Piola–Kirchhoff stress is written as

σ = T + (∇u)T + λ(trε)I + 2µε+ β1(trε)(trT )I + β2(trT )ε

+β3((trε)T + tr(εT )I) + β4(εT + Tε),

where λ, µ are the Lamé moduli, β1, . . . , β4 are material parameters, and

ε = Sym(∇u) = 1

2
(∇u+ (∇u)t)

is the strain tensor [18]. Moreover, we assume that the Lamé moduli satisfy the strong
ellipticity condition

µ(x) > δ > 0, λ(x) + 2µ(x) > δ > 0 ∀x ∈ Ω(1.3)
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and

β3 = β4 = 0,

i.e.,

σ = T + (∇u)T + λ̃(trε)I + 2µ̃ε,(1.4)

where

λ̃ = λ+ β1(trT ), µ̃ = µ+
1

2
β2(trT ).

With the constitutive equation (1.4), the elasticity system considered here is quite
close to the one studied by Robertson [22]. Hoger [8] also considered an elasticity
system with residual stress where she used the constitutive equation

σ = T + (∇u)T − 1

2
(εT + Tε) + λ̃(trε)I + 2µ̃ε

in her study.
Now the stationary elasticity system is expressed as

(Lu)i = (∇ · σ)i + ω2ρ(x)ui = ∂jσij + ω
2ρ(x)ui = 0 in Ω, 1 ≤ i ≤ n, ω ∈ R,

(1.5)

where ρ(x) > 0 is the density of the medium. In another setting, if we define the
elasticity tensor C with components

Cijkl = λ̃δijδkl + (µ̃δjl + tjl)δik + µ̃δilδjk(1.6)

and denote

(CE)ij = CijklEkl for any matrix E,

then (1.5) is equivalent to

(Lu)i = (∇ · C∇u)i + ω2ρui = ∂j(Cijkl∂luk) + ω
2ρui = 0 in Ω, 1 ≤ i ≤ n.

It is clear to see that (1.5) is an anisotropic elasticity system. In this paper, we will
investigate the (weak) unique continuation property (UCP) for the system (1.5); i.e.,
if u ∈ H2

loc(Ω) is a solution to (1.5) in Ω and vanishes in a nonempty open subset of
Ω, then u vanishes identically in Ω.

The UCP for differential equations has a long history. Many deep results about
scalar elliptic equations or elliptic systems have been established. We refer the reader
to [3] and references therein for details. Recently, few attempts have been made at
studying the UCP for systems of equations in mathematical physics such as the Dirac
equations and the Maxwell equations [4], [15], [20], [23], [24]. Here we mention two
interesting articles [24] and [20] in which Vogelsang and Ōkaji, respectively, proved the
strong UCP for the Maxwell system with anisotropic coefficients. In this paper we pay
attention to the elasticity system. Several results of weak continuation property for
the inhomogeneous isotropic elasticity have been obtained in [1], [5] (stationary) and
[6], [14] (nonstationary). Moreover, a strong UCP was recently proven by Alessandrini
and Morassi [2]. Unlike the isotropic case, the UCP for the inhomogeneous anisotropic
elasticity has not been fully explored.

Our study of the UCP for the inhomogeneous anisotropic elasticity is motivated
by its application to inverse problems. It was first recognized by Lax [17] that the
Runge approximation property is a consequence of the weak UCP. The Runge ap-
proximation property is shown to be a useful technique in dealing with some inverse
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problems, especially the inverse problem of recovering inclusions or cavities (see [13],
[9], [10], [11], [12], [16], and references therein). It should be noted that the Runge ap-
proximation property with constraint for the anisotropic elasticity were proved in [11]
and [12]. However, the elasticity tensor there is assumed to be either homogeneous
or real-analytic. The weak UCP is an obvious fact in these two situations.

To prove the UCP for the general inhomogeneous anisotropic elasticity is very
challenging and difficult. Here we want to consider the system (1.5) which has the
simplest form of anisotropy. It turns out we are able to establish the UCP for (1.5),
provided the residual stress is sufficiently small. Our main idea comes from Weck’s
recent article [25], where he proved the UCP for the isotropic elasticity system with
zeroth or first order perturbations which contains the results previous obtained by
[1], [5]. Weck actually proved something more, namely, he established the UCP for
a rather general system of second order differential inequalities with the Laplacian
principal part. Like much of the literature on the UCP, the key step in [25] is to
prove appropriate Carleman estimates. Here we will adopt Weck’s approach to (1.5)
with small residual stress, but we have to work a little harder to derive the desired
Carleman estimates because we need to deal with variable coefficients second order
principal parts due to the presence of residual stress. As indicated previously, having
established the UCP, we can prove the Runge approximation property for (1.5) with
constraints on Dirichlet data. With this tool at hand, we can solve the inverse problem
of identifying inclusions or cavities inside an elastic body with small residual stress
by the localized Dirichlet-to-Neumann map using the methods in [11] and [12].

This paper is organized as follows. In section 2, we state and prove the UCP for
(1.5) with small residual stress based on suitable Carleman estimates. The derivation
of these Carleman estimates is given in section 3. In section 4, we will discuss the
application of UCP for (1.5) to the aforementioned inverse problem. In the paper, C
stands for a generic constant, and its value may vary from line to line.

2. Unique continuation. To begin, let us denote vi = ui for 1 ≤ i ≤ n and
vn+1 = ∂iui. Then, it follows from (1.5) that

0 = (Lu)i

= (µ̃∆+ tkj∂j∂k)vi + (λ̃+ µ̃)∂ivn+1 + (∂jtkj)∂kvi + (∂iλ̃)vn+1

+(∂jµ̃)(∂ivj + ∂jvi) + ω
2ρvi

= (µ̃∆+ tkj∂j∂k)vi +R
(1)
i (v1, . . . , vn, vn+1) in Ω, 1 ≤ i ≤ n,

(2.1)

where R
(1)
i ’s are some first order differential operators. Next, by taking the divergence

of (1.5), we obtain that

0 = ∂i(Lu)i

= ((λ̃+ 2µ̃)∆ + tkj∂j∂k)vn+1 + 2(∂iµ̃)∆vi + (∂itkj)∂j∂kvi + 2∂i(λ̃+ µ̃)∂ivn+1

+(∂jtkj)∂kvn+1 + (∂i∂jtkj)∂kvi + (∆λ̃)vn+1 + (∂i∂jµ̃)(∂ivj + ∂jvi)

+ω2(∂iρ)vi + ω
2ρvn+1

= ((λ̃+ 2µ̃)∆ + tkj∂j∂k)vn+1 +R
(2)(v1, . . . , vn) +R

(1)
n+1(v1, . . . , vn+1),

(2.2)
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where R(2) is a pure second order differential operator and R
(1)
n+1 is a first order

differential operator, respectively. It should be mentioned that R(2) acts only on
v1, . . . , vn. In view of (1.3), we can see that if

max
kj

‖tkj‖L∞(Ω) < ε(2.3)

with ε
 1, then

µ̃ > δ′ > 0 and λ̃+ 2µ̃ > δ′ > 0 ∀x ∈ Ω.

With (2.1) and (2.2) in mind, motivated by Weck’s paper [25], we will prove the
UCP for the following system of differential inequalities:

|A1(x, ∂)u
1| ≤ CQ(u1, u2)1/2,

|A2(x, ∂)u
2| ≤ C

{∑
ijk

|∂i∂ju1
k|+Q(u1, u2)1/2

}
,

(2.4)

where ul : Ω → R
ml ,ml ∈ Z+(positive integers) and Al(x, ∂) = alij∂i∂j with real

symmetric matrix (alij), l = 1, 2, and Q(u1, u2) =
∑

ikl(|∂iulk|2 + |ulk|2).
Theorem 2.1. Let alij ∈W 1,∞(Ω) and (u1, u2) ∈ H2

loc(Ω)×H2
loc(Ω) satisfy (2.4).

Then there exists an ε > 0 such that if

max
ij

‖alij(x)− δij‖L∞(Ω) < ε,(2.5)

then (u1, u2) vanishes identically in Ω if it vanishes in a nonempty open subset of Ω.
Theorem 2.1 immediately implies the UCP for (1.5) with small residual stress.
Corollary 2.2. Let coefficients λ, µ, β1, β2, tkj belong to W

2,∞(Ω), and let ρ be
in W 1,∞(Ω). Then there exists an ε > 0 such that if (2.3) is satisfied with this ε,
then the system (1.5) possesses the UCP.

The proof of Theorem 2.1 relies on the following Carleman estimates.
Proposition 2.3. Assume that the differential operators A1 and A2 satisfy the

assumptions in Theorem 2.1. Let r0 < 1 and Ur0 = {u ∈ C∞
0 (Rn \ {0}) : supp(u) ⊂

Br0}, where Br0 is the ball centered at the origin with radius r0. Then there exist
positive constants β0 and ε0 such that if (2.5) is satisfied with ε ≤ ε0, then for all
β ≥ β0 and u ∈ Ur0 we have that∫

r−σψ2
∑
ij

|∂i∂ju|2dx ≤ C
∫
r−σψ2(β2r−2β−2|∇u|2 + |Alu|2)dx(2.6)

and

β2

∫
r−σ−β−1ψ2(|∇u|2 + |u|2)dx ≤ C

∫
r−σψ2|Alu|2dx(2.7)

for l = 1, 2, where r = |x|, ψ = exp(r−β), and σ = σ0 + cβ with σ0, c ∈ R.
The proof of Proposition 2.3 is postponed until the next section. Here we want

to prove Theorem 2.1 based on this proposition.
Proof of Theorem 2.1. It suffices to prove the theorem for the case m1 = m2 = 1.

Let (u1, u2) vanish in a neighborhood of x0 ∈ Ω. Without loss of generality, we assume
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x0 = 0. We set r̃ = min{1/2,dist(0, ∂Ω)}. Now let χ ∈ C∞
0 (Rn) be a cut-off function

satisfying 0 ≤ χ ≤ 1, χ|Br̃/2
= 1, and supp(χ) ⊂ Br̃. Denote vl = χu

l, l = 1, 2. From
(2.4) we have that

|A1v1| ≤ C(e(v1) + e(v2))1/2 + f1,

|A2v2| ≤ C
[∑

ij

|∂i∂jv1|+ (e(v1) + e(v2))
1/2

]
+ f2,

(2.8)

where e(v) = |∇v|2 + |v|2 and fl is supported in Br̃ \Br̃/2 for l = 1, 2. It follows from
(2.8) that

I := γ

∫
r−βψ2|A1v1|2dx+

∫
rψ2|A2v2|2dx ≤ C

(
F +G+

∫
rψ2

∑
ij

|∂i∂jv1|2dx
)
,

(2.9)

where

F = γ

∫
r−βψ2f2

1 dx+

∫
rψ2f2

2 dx,

G =

∫
(r + γr−β)ψ2(e(v1) + e(v2))dx.

Here γ is a large positive parameter which will be chosen later on. By the standard
approximation argument, we can see that v1 and v2 satisfy estimates (2.6) and (2.7).
Taking σ = −1 in the estimate (2.6) for l = 1 and substituting it into (2.9) yield

I ≤ C
(
F +G+

∫
rψ2|A1v1|2dx+ β2

∫
r−2β−1ψ2|∇v1|2dx

)
.(2.10)

Replacing the last term of (2.10) with the help of (2.7) for σ = β and l = 1, we obtain
that

I ≤ C
(
F +G+

∫
r−βψ2|A1v1|2dx

)
.(2.11)

Now taking γ sufficiently large, we can absorb the last term of (2.11) and get

I ≤ C(F +G).(2.12)

From now on we fix the parameter γ.
Next using σ = β in (2.7) for l = 1 and σ = −1 in (2.7) for l = 2, we find that

H := β2

∫
r−2β−1ψ2e(v1)dx+ β

2

∫
r−βψ2e(v2)dx

≤ C
(∫

r−βψ2|A1v1|2dx+
∫
rψ2|A2v2|2dx

)
.

(2.13)

Combining (2.12) and (2.13) gives

H ≤ C(F +G) ≤ C
(
F +

∫
(r + γr−β)ψ2(e(v1) + e(v2))dx

)
.(2.14)
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Now observing that r < r−β < βr−β < βr−2β−1 when r ≤ r̃ and β > 1, we obtain
from (2.14) that

H ≤ C
(
F + β

∫
r−2β−1ψ2e(v1)dx+ β

∫
r−βψ2e(v2)dx

)
.(2.15)

Taking β sufficiently large in (2.15), we get that

H ≤ CF,
i.e.,

β2

∫
r−2β−1ψ2e(v1)dx+ β

2

∫
r−βψ2e(v2)dx ≤ C

(∫
r−βψ2f2

1 dx+

∫
rψ2f2

2 dx

)
,

from which we immediately have

β2

∫
Br̃/2

r−βψ2(v21 + v22)dx ≤ C
∫
Br̃\Br̃/2

r−βψ2(f2
1 + f2

2 )dx.(2.16)

Since r−βψ2 is a strictly decreasing function, (2.16) implies that

β2

∫
Br̃/2

(v21 + v22)dx ≤ C
∫
Br̃\Br̃/2

(f2
1 + f2

2 )dx,

and therefore (v1, v2) = 0 on Br̃/2 if we choose β sufficiently large. Clearly, (u1, u2)
must be zero throughout Ω.

3. Proof of Carleman estimates. This section is devoted to the proof of
Proposition 2.3. It suffices to prove (2.6) and (2.7) for A1. Therefore, we denote
a1
ij = aij and A1 = A. To prove (2.6), we first recall the following estimate in [25]:∫

r−σψ2
∑
ij

|∂i∂ju|2dx ≤ C
∫
r−σψ2(β2r−2β−2|∇u|2 + |∆u|2)dx

(see [25, Lemma 2]), from which we have that∫
r−σψ2

∑
ij

|∂i∂ju|2dx ≤ C
∫
r−σψ2(β2r−2β−2|∇u|2 + |Au|2 + |∆u−Au|2)dx

≤ C
∫
r−σψ2

(
β2r−2β−2|∇u|2 + |Au|2 + ε2

∑
ij

|∂i∂ju|2
)
dx.

Thus, choosing ε small enough immediately implies the estimate (2.6).
The proof of (2.7) is lengthy. Here we will adopt some techniques from [21], [25],

and [26]. Let φ = ψ−1 and u = rτ/2φz. Then

r−σ/2ψAu = r−σ/2ψA(rτ/2φz)

= r−σ/2ψ[rτ/2φAz + 2aij∂iz∂j(r
τ/2φ) + zA(rτ/2φ)].

By virtue of the inequality (a+ b+ c)2 ≥ 2ab+ 2bc, we have that∫
r−σψ2|Au|2dx ≥ 4

∫
r−σψ2aij∂iz∂j(r

τ/2φ)rτ/2φAzdx

+4

∫
r−σψ2aij∂iz∂j(r

τ/2φ)zA(rτ/2φ)dx.

(3.1)
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With the choice of τ = σ + β + 2, we can compute

I :=

∫
r−σψ2aij∂iz∂j(r

τ/2φ)rτ/2φAzdx

= β

∫
aij∂izxjAzdx+ τ/2

∫
rβaij∂izxjAzdx.

It is readily seen that the leading term (for large β) of I is β
∫
aij∂izxjAzdx. Repeated

integration by parts shows that

2

∫
aij∂izxjAzdx = 2

∫
aij∂izxjakl∂k∂lzdx

= −
∫
∂iz∂l(aklaijxj)∂kzdx+

∫
∂kz∂i(aklaijxj)∂lzdx

−
∫
∂lz∂k(aklaijxj)∂izdx.

(3.2)

Using (3.2), we obtain that

|I| ≤ Cβ
∣∣∣∣
∫
∂iz∂l(aklaijxj)∂kzdx

∣∣∣∣
≤ Cβ‖∇z‖2

≤ Cβ(‖∇(r−τ/2ψ)u‖2 + ‖r−τ/2ψ∇u‖2)

≤ C
(
β3

∫
r−σ−3β−4ψ2|u|2dx+ β

∫
r−σ−β−2ψ2|∇u|2dx

)
.

(3.3)

Next we observe that

J :=

∫
r−σψ2aij∂iz∂j(r

τ/2φ)zA(rτ/2φ)dx

= β

∫
r−σ+τ/2−β−2ψaij∂izxjzA(r

τ/2φ)dx

+ τ/2

∫
r−σ+τ/2−2ψaij∂izxjzA(r

τ/2φ)dx.

Straightforward calculations show that

∂i∂jφ = (β2xixjr
−2β−4 + βδijr

−β−2 − β(β + 2)xixjr
−β−4)φ

and

∂i∂jr
τ/2 = (τ/2)(τ/2− 2)rτ/2−4xixj + (τ/2)rτ/2−2δij .

So the leading term of J is

β3

∫
r−2β−4aij∂izxjaklxkxlzdx.

Note that we have chosen τ = σ+ β+2. Performing the integration by parts, we can
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see that

β3

∫
r−2β−4aij∂izxjaklxkxlzdx

= −1

2
β3

∫
z∂i(r

−2β−4aijxjaklxkxl)zdx

≥ (1− o(β))β4

∫
r−2β−6aijxixjaklxkxl|z|2dx

≥ (1− o(β))β4(1−O(ε))
∫
r−2β−2|z|2dx

≥ (1− o(β))β4(1−O(ε))
∫
r−σ−3β−4ψ2|u|2dx,

where 0 ≤ o(β) → 0 as β → ∞ and O(ε) is a positive constant bounded by Cε. In
other words, we have that

J ≥ (1− o(β))β4(1−O(ε))
∫
r−σ−3β−4ψ2|u|2dx.(3.4)

Notice that we need to keep track of the leading constant here in order to obtain the
desired estimate. Combining (3.1), (3.3), and (3.4) gives

∫
r−σψ2|Au|2dx+ C

(
β3

∫
r−σ−3β−4ψ2|u|2dx+ β

∫
r−σ−β−2ψ2|∇u|2dx

)

≥ 4(1− o(β))β4(1−O(ε))
∫
r−σ−3β−4ψ2|u|2dx,

from which we can derive that

∫
r−σψ2|Au|2dx+ Cβ

∫
r−σ−β−2ψ2|∇u|2dx

≥ 4(1− o(β))β4(1−O(ε))
∫
r−σ−3β−4ψ2|u|2dx.

(3.5)

By the ellipticity condition and performing the integration by parts, we can get
that

(1−O(ε))
∫
r−σ−β−2ψ2|∇u|2dx

≤
∫
r−σ−β−2ψ2aij∂iu∂judx

≤
∣∣∣∣
∫
u∂i(r

−σ−β−2ψ2)aij∂judx

∣∣∣∣+
∣∣∣∣
∫
r−σ−β−2ψ2u∂i(aij)∂judx

∣∣∣∣
+

∣∣∣∣
∫
r−σ−β−2ψ2uaij∂i∂judx

∣∣∣∣
:= K1 +K2 +K3.

(3.6)
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Using the relation |ab| ≤ (a2 + b2)/2, we can estimate

K1 =

∣∣∣∣
∫
u∂i(r

−σ−β−2ψ2)aij∂judx

∣∣∣∣
≤
∫
(2 + o(β))βr−σ−2β−4ψ2|uaijxi∂ju|dx

≤ (2 + o(β))β2(1 +O(ε))

∫
r−σ−3β−4ψ2|u|2dx

+(1 +O(ε))/2

∫
r−σ−β−2ψ2|∇u|2dx.

(3.7)

Likewise, for K2 and K3, we have that

K2 ≤ C
(
rβ0

∫
r−σ−3β−4ψ2|u|2dx+ rβ+2

0

∫
r−σ−β−2ψ2|∇u|2dx

)
(3.8)

and

K3 ≤ C
(
rβ0β

2

∫
r−σ−3β−4ψ2|u|2dx+ β−2

∫
r−σψ2|Au|2dx

)
.(3.9)

Plugging (3.7), (3.8), and (3.9) into (3.6) and multiplying the new inequality by β2,
we obtain that

β2(1−O(ε))
∫
r−σ−β−2ψ2|∇u|2dx

≤ (2 + o(β))β4(1 +O(ε))

∫
r−σ−3β−4ψ2|u|2dx+ β2(1 +O(ε))/2

∫
r−σ−β−2ψ2|∇u|2dx

+C

(
rβ0β

2

∫
r−σ−3β−4ψ2|u|2dx+ rβ+2

0 β2

∫
r−σ−β−2ψ2|∇u|2dx

)

+C

(
rβ0β

4

∫
r−σ−3β−4ψ2|u|2dx+

∫
r−σψ2|Au|2dx

)
.

(3.10)

Adding (3.10) to (3.5) and taking β sufficiently large and ε small enough, we conclude
that

β4

∫
r−σ−3β−4ψ2|u|2dx+ β2

∫
r−σ−β−2ψ2|∇u|2dx ≤ C

∫
r−σψ2|Au|2dx,

which immediately implies (2.7).

4. Applications to inverse problems. In this section we will discuss the ap-
plication of the UCP for (1.5) to the inverse problem of identifying inclusions or
cavities by boundary measurements. To begin, assume that D is an open subset of Ω
with Lipschitz boundary such that Ω \ D̄ is connected. The domain D stands forthe
region of the inclusion or cavity embedded in Ω. Let the reference elasticity tensor
C(x) with components Cijkl(x) be defined by (1.6), i.e.,

Cijkl = λ̃δijδkl + (µ̃δjl + tjl)δik + µ̃δilδjk,

where λ̃ = λ + β1(trT ) and µ̃ = µ + (1/2)β2(trT ). Here we require that the Lamé
moduli satisfy the strong convexity condition

µ(x) > δ > 0 and nλ(x) + 2µ(x) > δ > 0 ∀ x ∈ Ω(4.1)
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and T satisfies

ET · E ≥ (ε/2)|E|2,
which is equivalent to

C(x)E · E ≥ κEijEij = κ|E|2, κ(ε) > 0, ∀ x ∈ Ω(4.2)

for all matrices E, provided that ε in (2.3) is sufficiently small. It is obvious that (4.1)
implies (1.3). Next we assume that C̃ is some fourth-rank tensor such that C + χDC̃

satisfies the strong convexity condition (4.2), where χD denotes the characteristic
function of D. Moreover, suppose that C̃ satisfies the jump condition

∀ x ∈ ∂D, ∃ Cx > 0, ∃ δx > 0 such that C̃(y)E · E ≥ Cx|E|2 or C̃(y)E · E ≤ −Cx|E|2
(4.3)

for almost all y ∈ Bδx(x) ∩ D and all real matrices E. Let all components of C(x)
and C̃(x) be in L∞(Ω). Then it is easy to show that there exists a unique solution
u ∈ H1(Ω) to {

∇ · ((C + χDC̃)∇u) = 0 in Ω,

u = f on ∂Ω

for any f ∈ H1/2(∂Ω). In this case, the domain D is an inclusion. So we can define the
Dirichlet-to-Neumann (displacement-to-traction) map ΛI : H1/2(∂Ω) → H−1/2(∂Ω)
by

ΛI(f) = (C∇u)ν|∂Ω.

Equivalently, ΛI can be defined by the formula

〈ΛI(f), g〉 =
∫

Ω

(C + χDC̃)∇u · ∇vdx,

where v ∈ H1(Ω) with v|∂Ω = g. We are interested in the following inverse problem:
IP.A. Reconstruct the inclusion D from the knowledge of ΛI(f)Γ0

for infinitely many
f ∈ H1/2(∂Ω) with supp(f) ⊂ Γ0, where Γ0 is a nonempty subset of ∂Ω.

Likewise, in the extreme case, if the tensor C̃ becomes −C, then the domain D
corresponds to a cavity. In the same way, we can prove that there exists a unique
solution u ∈ H1(Ω \ D̄) to the boundary value problem{

∇ · (C∇u) = 0 in Ω \ D̄,
(C∇u)ν = 0 on ∂D, (C∇u)ν = g on ∂Ω

for any g ∈ H1/2(∂Ω). Therefore, we can define the Dirichlet-to-Neumann map
ΛC : H1/2(∂Ω) → H−1/2(∂Ω) by

ΛC(g) = (C∇u)ν|∂Ω.

Similarly, we will consider the following inverse problem:
IP.B. Reconstruct the cavity D from the knowledge of ΛC(g)|Γ0 for infinitely many

g with supp(g) ⊂ Γ0.
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Note that uniqueness theorems of determining the inclusion or cavity embedded
in an elastic body have been established in [11] and [12], where the reference medium
is assumed to be either inhomogeneous isotropic or anisotropic with homogeneous
or analytic elasticity tensors. Besides, a reconstruction algorithm for recovering the
cavity is given in [12]. A similar algorithm can be developed for the inclusion case.
Here we want to extend their results to the elasticity system with residual stress (1.5).
To this end, we will need the Runge approximation property with constraint for (1.5),
which is a consequence of the UCP (see Corollary 2.2). Its proof can be found in [12].

Proposition 4.1. Assume that all coefficients of C are in W 2,∞(Ω) and the
residual stress satisfies (2.3) with ε given in Corollary 2.2. Let U and Ω be two open
bounded domains with Lipschitz and C2 boundaries, respectively, such that Ū ⊂ Ω.
Denote Γ0 a subset of the boundary ∂Ω. Let u ∈ H1(U) satisfy

∇ · (C∇u) = 0 in U.

Then for any compact subset K ⊂ U such that Ω\K is connected and any ε̃ > 0 there
exists w ∈ H1(Ω) satisfying

∇ · (C∇w) = 0 in Ω

with supp(w|∂Ω) ⊂ Γ0 such that

‖w − u‖H1(K) < ε̃.

Remark. The reason for using C2 boundary on Ω is that we want to extend all
coefficients of C into a larger domain Ω̃ and the newly extended coefficients have the
same regularity W 2,∞ in Ω̃.

Having the Runge approximation property Proposition 4.1 at hand, we now can
apply the methods in [11] and [12] to solve IP.A and IP.B. It should be pointed out that
the reference elasticity tensor in [11] and [12] satisfies the full symmetry properties,
i.e.,

Cijkl = Cklij = Cjikl.

Nevertheless, it is not hard to check that the proofs in [11] and [12] are still valid if
we only assume Cijkl = Cklij , which is the case for the elasticity system with residual
stress (1.5). For IP.A, we prove the following theorem (see [11]).

Theorem 4.2 (identification of inclusion). Let the domain Ω have C2 boundary.
Assume that the elasticity tensor C given by (1.6) possesses W 2,∞(Ω) coefficients
satisfying (4.1). Furthermore, the residual stress tensor T in C satisfies the smallness
condition described in Corollary 2.2. Let (D1, C̃1) and (D2, C̃2) be two inclusions such
that C + χDi

C̃i and C̃i satisfy (4.2) and (4.3), respectively, and Ω \ D̄i is connected,
i = 1, 2. If

ΛI1(f) = ΛI2(f) on Γ0

for all f ∈ H1/2(∂Ω) with supp(f) ⊂ Γ0, then

D1 = D2.

The proof of Theorem 4.2 is based on integral inequalities∫
D

{C
−1 − (C + C̃)−1}C∇w · C∇wdx ≤ 〈(ΛI − Λ0)f, f〉 ≤

∫
D

C̃∇w · ∇wdx,(4.4)
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where w ∈ H1(Ω) solves {
∇ · (C∇w) = 0 in Ω,

w|∂Ω = f.
(4.5)

Here C
−1 (or (C + C̃)−1) is called the compliance tensor (see, e.g., [7]). Notice that

we do not assume C̃1 = C̃2 in Theorem 4.2. Also, the regularity of the medium
inside of the inclusions is only assumed to be essentially bounded. Theorem 4.2
provides the uniqueness of determining the inclusion embedded in an elastic body
with small residual stress by the localized Dirichlet-to-Neumann map. For the sake of
completeness, we want to briefly describe a reconstruction algorithm for identifying
the inclusion. Let y ∈ Ω and G0(·; y) be the fundamental solution for the operator
∇ · C(y)∇ (see, e.g., [19]). One can find e(·; y) such that

∇ · (C(x)∇e(·; y)) = 0 in Ω \ {y}

and

(e(·; y)−G0(· − y; y)b)y∈Ω is bounded in H1(Ω),

where b is a nonzero constant vector. Note that if y ∈ ∂D, then∫
D∩Br(y)

|∇{G0(x− y; y)b}|2dx = ∞(4.6)

for any ball Br(y) centered at y with radius r and nonzero vector b. The symmetric
version of (4.6) has been proved in [11], i.e.,∫

D∩Br(y)

|Sym∇{G0(x− y; y)b}|2dx = ∞,

which clearly implies (4.6).
A continuous map c : [0, 1] → Ω̄ is called a needle if it satisfies (i) c(0), c(1) ∈ ∂Ω;

(ii) c(t) ∈ Ω for 0 < t < 1. In view of Proposition 4.1, we can see that for each
needle and t ∈ (0, 1), there exists a sequence {fj} = {fj(·; c(t))} in H1/2(∂Ω) with
supp(fj) ⊂ Γ0 such that the solution wj of (4.5) with f = fj satisfies wj → e(·; c(t))
in H1

loc(Ω \ {c(t′) : 0 < t′ ≤ t}) as j → ∞. We call {fj} a fundamental sequence with
respect to Γ0. For each needle c, define

t(c) = sup{0 < s < 1 : C(t) ∈ Ω \ D̄ (0 < t < s)}.

It should be noted that 0 < t(c) ≤ 1, and if t(c) = 1, then c never touches ∂D. On
the other hand, if t(c) < 1, then c touches ∂D at t = t(c) at the first time. Since
Ω \ D̄ is connected, we have that

∂D = {c(t(c)) : c is a needle and t(c) < 1}.(4.7)

Let Λ0 be the Dirichlet-to-Neumann map associated with the boundary value problem
(4.5). Denote

II(t, c) = lim
j→∞

〈(ΛI − Λ0)fj(·; c(t)), fj(·; c(t))〉
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and

TI(c) =
{
0 < s < 1 : II exists ∀ 0 < t < s and sup

0<t<s
|II(t, c)| <∞

}
.

Using (4.3), (4.4), and (4.6) and pursuing the arguments in [11], we can show that
TI(c) = (0, t(c)), and therefore t(c) = sup TI(c) (see similar arguments in [12]). In
summary, we have a reconstruction algorithm for determining the inclusion as follows.

Reconstruction algorithm for IP.A.
(i) For each needle c and each t ∈ (0, 1), find the fundamental sequence {fj(·; c(t))}

with respect to Γ0.
(ii) Compute TI(c) and set t(c) = sup TI(c).
(iii) Use the formula (4.7) to reconstruct ∂D.
Now for IP.B, we show the following (see [12]).
Theorem 4.3 (identification of cavity). Let the assumptions in Theorem 4.2 on

Ω and C hold. Assume that D1 and D2 are two cavities and Ω \ D̄1 and Ω \ D̄2 are
connected. Let

ΛC1(f) = ΛC2(f) on Γ0

for all f ∈ H1/2(∂Ω) with supp(f) ⊂ Γ0. Then D1 = D2.
As for reconstructing the cavity, we follow the lines of the above algorithm and

define

IC(t, c) = lim
j→∞

〈(Λ0 − ΛC)fj(·; c(t)), fj(·; c(t))〉

and

TC(c) =
{
0 < s < 1 : IC exists ∀ 0 < t < s and sup

0<t<s
IC(t, c) <∞

}
.

Note that 〈(Λ0 − ΛC)f, f〉 ≥ 0 for all f ∈ H1/2(∂Ω). Now using (4.6) and the
inequalities

1

M

∫
D

|∇e(x; c(t))|2dx ≤ IC(t, c) ≤M
∫
D

|∇e(x; c(t))|2dx

for some constant M > 0, one can prove that TC(c) = (0, t(c)) and thus t(c) =
sup TC(c) (see the arguments in [12]). So a reconstruction algorithm for identifying
the cavity is described as follows.

Reconstruction algorithm for IP.B.
(i) For each needle c and each t ∈ (0, 1), find the fundamental sequence {fj(·; c(t))}

with respect to Γ0.
(ii) Compute TC(c) and set t(c) = sup TC(c).
(iii) Use the formula (4.7) to reconstruct ∂D.
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[20] T. Ōkaji, Strong unique continuation property for time harmonic Maxwell equations, J. Math.
Soc. Japan, 54 (2002), pp. 89–122.

[21] M. Protter, Unique continuation for elliptic equations, Trans. Amer. Math. Soc., 95 (1960),
pp. 81–91.

[22] R. Robertson, Boundary identifiability of residual stress via the Dirichlet to Neumann map,
Inverse Problems, 13 (1997), pp. 1107–1119.

[23] V. Vogelsang, Absence of embedded eigenvalues of the Dirac equation for long range poten-
tials, Analysis, 7 (1987), pp. 259–274.

[24] V. Vogelsang, On the strong continuation principle for inequalities of Maxwell type, Math.
Ann., 289 (1991), pp. 285–295.

[25] N. Weck, Unique continuation for systems with Lamé principal part, Math. Methods Appl.
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