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THE LIMITING ABSORPTION PRINCIPLE
FOR THE TWO-DIMENSIONAL INHOMOGENEOUS

ANISOTROPIC ELASTICITY SYSTEM

GEN NAKAMURA AND JENN-NAN WANG

Abstract. In this work we establish the limiting absorption principle for
the two-dimensional steady-state elasticity system in an inhomogeneous aniso-
tropic medium. We then use the limiting absorption principle to prove the ex-
istence of a radiation solution to the exterior Dirichlet or Neumann boundary
value problems for such a system. In order to define the radiation solution, we
need to impose certain appropriate radiation conditions at infinity. It should
be remarked that even though in this paper we assume that the medium is
homogeneous outside of a large domain, it still preserves anisotropy. Thus the
classical Kupradze’s radiation conditions for the isotropic system are not suit-
able in our problem and new radiation conditions are required. The uniqueness
of the radiation solution plays a key role in establishing the limiting absorp-
tion principle. To prove the uniqueness of the radiation solution, we make use

of the unique continuation property, which was recently obtained by the au-
thors. The study of this work is motivated by related inverse problems in the
anisotropic elasticity system. The existence and uniqueness of the radiation
solution are fundamental questions in the investigation of inverse problems.

1. Introduction

In this paper we investigate the uniqueness and existence of the radiation so-
lution for the two-dimensional steady-state elasticity system with inhomogeneous
anisotropic medium in an exterior domain. The main point is to establish the lim-
iting absorption principle for the related elastic operator. The limiting absorption
principle has been studied for many differential operators arising from mathemat-
ical physics. We refer to [10] and references therein for a more detailed discussion
of recent development.

Let Ω be an open exterior domain in R2 with smooth boundary ∂Ω such that
R2 \ Ω̄ ⊂ {|x| < R0} for some R0 > 0. Here we do not exclude the case when
Ω = R

2. In this paper we consider the steady-state inhomogeneous anisotropic
elasticity system in Ω

(1.1) ∇ · (C(x)∇u) + ω2u = f in Ω, ω > 0,
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where C(x) = (Cijkl(x)) is the elastic tensor and u = [u1, u2]t is the displacement
vector. Here and further on we use the convention that all Roman indices are set to
be from 1 to 2. Also we would like to call to the reader’s attention that “ı” denotes
the imaginary number

√
−1. In (1.1) and what follows, we interpret (∇u)kl = ∂luk,

(∇ · H)i =
∑

j ∂jhij for any matrix function H = (hij), and

(CH)ij =
∑
kl

Cijklhkl.

The elastic tensor C(x) is assumed to satisfy the full symmetry properties

(1.2) Cijkl(x) = Cjikl(x) = Cklij(x) ∀ i, j, k, l and x ∈ Ω

and the strong convexity condition, i.e., there exists a δ > 0 such that for all x ∈ Ω

(1.3) C(x)E · E ≥ δ|E|2

for any symmetric matrix E. Furthermore, we suppose that for large |x| the medium
is homogeneous, namely, C(x) = C for |x| ≥ R with some R > R0. In order to
avoid clumsy notations, we will use C (or Cijkl) and C(x) (or Cijkl(x)) to denote
the homogeneous and the inhomogeneous tensor, respectively. Note that we do
not assume that the constant elastic tensor C is isotropic. We recall here that the
elastic tensor C is called isotropic, if Cijkl = λδijδkl + µ(δjlδik + δilδjk), where λ
and µ are Lamé parameters. To formulate the boundary value problem related to
(1.1), we impose on the boundary ∂Ω the Dirichlet condition

(1.4) u|∂Ω = 0,

or the Neumann condition

(1.5) T (D, n)u|∂Ω = σn|∂Ω = 0,

where σ = (σij) is the stress tensor defined by σij(x) =
∑

kl Cijkl(x)∂luk and n is
the unit outer normal of ∂Ω.

In order to motivate our study, let us briefly discuss the isotropic case. Here
the existence and uniqueness of the radiation solution to the exterior boundary
value problems have been established in [2] and [10, Chapter 11]. The uniqueness
is assured by imposing appropriate radiation conditions at infinity, which are called
Sommerfeld-Kupradze radiation conditions (see [9]). The existence is shown by the
limiting absorption principle, which is proved by a general approach initiated by
Eidus [5]. Note that the results in [2] and [10] are valid for two or three dimen-
sions. Besides the radiation conditions, one of the key ingredients in [2] and [10]
is the unique continuation property for the isotropic elasticity system. The unique
continuation property for this system has been proved by several authors; see for
example [1], [3], [17], and [18]. In contrast to the isotropic setup, the unique contin-
uation property for the general anisotropic elasticity system still poses a challenging
open problem. Recently, the authors succeeded in proving the unique continuation
property for the two-dimensional anisotropic system under some generic assump-
tions, which paves the way for establishing the limiting absorption principle and
which enables them to prove existence and uniqueness of the exterior boundary
value problem for the same system. The study of this work is motivated by related
inverse problems in the anisotropic elasticity system. The existence and uniqueness
of the radiation solution are fundamental to the investigation of inverse problems.
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Although we assume that the elastic tensor C(x) is homogeneous for large |x|,
it still preserves the anisotropic character. Therefore, the classical Sommerfeld-
Kupradze radiation conditions are not applicable in our case. In order to derive
suitable radiation conditions for the anisotropic system, we are led to analyze the
radiation pattern of the fundamental solution for L(D, ω) := ∇ · (C∇•) + ω2I =
L(D) + ω2I. This is bound to be a complicated problem due to anisotropy. Never-
theless, when the slowness curves of the homogeneous system L(D, ω)u = 0 satisfy
certain “good” conditions (see (2.3), (2.4)), one can still analyze the radiation pat-
tern of the fundamental solution and derive appropriate radiation conditions. This
was done by Natroshvili in [14]. In fact, before Natroshvili’s work, Wilcox studied
the steady-state wave propagation problem in a class of anisotropic media governed
by first order systems of partial differential equations and derived similar radiation
conditions [20]. Working in the same first order systems, Schulenberger and Wilcox
also investigated the Rellich-type uniqueness theorem and the limiting absorption
principle when the medium is inhomogeneous [15], [16]. Perhaps the article [16]
is most closely related to the considerations of the present paper. Although the
elastic wave equations in an inhomogeneous anisotropic medium can be put into
a first order symmetric hyperbolic system [19], it is more natural to consider the
original second order system when we are dealing with the exterior boundary value
problem for the steady-state equations. On the other hand, the results in [16] (also
[15]) were proved by avoiding the point spectrum of the associated inhomogeneous
anisotropic operator due to the lack of the unique continuation property.

This paper is organized as follows. In Section 2, we recall some of Natroshvili’s
results that are needed later on. We also use this opportunity to briefly review
the unique continuation property proved by the authors. In Section 3, we formally
define the radiation solutions to the exterior Dirichlet and Neumann boundary value
problems and establish the uniqueness theorem. The limiting absorption principle
is then proved by means of several lemmas in Section 4. In Section 5 we discuss
the spectra of the exterior Dirichlet and Neumann operators.

2. Preliminaries

2.1. Outgoing (incoming) fundamental solution. For the sake of complete-
ness, we give a brief review of Natroshvili’s results in [14] about the outgoing (in-
coming) fundamental solution for the homogeneous system. Similar results can also
be found in [12] and [20] for first order systems. Let us consider a homogeneous
elastic tensor C satisfying (1.2) and (1.3). Denote Γ(x, ω) the fundamental solution
of L(D, ω), i.e.,

(2.1) L(D, ω)Γ(x, ω) = (L(D) + ω2I)Γ(x, ω) = δ(x)I,

where L(D) is a matrix differential operator with components given by

Lik(D) =
∑
jl

Cijkl∂j∂l.

Taking the Fourier transform of (2.1), we obtain that

(ω2I − L(ξ))Γ̂(ξ, ω) = I.
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Here the 2 × 2 matrix L(ξ) is described by

Lik(ξ) =
∑
jl

Cijklξjξl.

We now denote L11(ξ) = α(ξ), L12(ξ) = L21(ξ) = γ(ξ), and L22(ξ) = β(ξ). From
(1.3), it is clear that α(ξ) > 0 and β(ξ) > 0 for all ξ �= 0. Define

(2.2) φ(ξ, ω) := det(ω2I − L(ξ)) = α(ξ)β(ξ)− γ2(ξ) − ω2[α(ξ) + β(ξ)] + ω4.

Introducing the polar coordinates

ξ1 = ρ cos θ, ξ2 = ρ sin θ,

we get from (2.2) that

φ(ξ, ω) = ρ4α(η)β(η) − ρ4γ2(η) − ω2[α(η) + β(η)]ρ2 + ω4

= φ(η){ρ4 − φ−1(η)ω2[α(η) + β(η)]ρ2 + φ−1(η)ω4}
= φ(η)(ρ2 − ω2k2

1(θ))(ρ2 − ω2k2
2(θ)),

where η = η(θ) = (cos θ, sin θ), φ(η) = det(α(η)β(η) − γ2(η)) > 0, and

k2
j (θ) = (2φ(η))−1{(α(η) + β(η)) + (−1)j

√
(α(η) − β(η))2 + 4γ2(η)} > 0.

In the following, we will also denote ρj = ωkj . Let the curve Sj be defined by
{(ρ, θ) : ρ = ωkj(θ), 0 ≤ θ ≤ 2π}. Obviously, φ(ξ, ω) vanishes on the curve Sj . We
now assume that

(2.3) k1(θ) < k2(θ) ∀ 0 ≤ θ ≤ 2π

and

(2.4) S2 is a strictly convex curve.

Notice that the convexity of S1 is also assumed in [14]. However, this assumption is
redundant. The convexity of S1 is a well-known property in the theory of anisotropic
elastic waves (see [4] for detailed arguments). From (2.3) we can see that ∇φ(ξ, ω) �=
0 on Sj for all j. Furthermore, it follows from (2.4) that for any x �= 0 there exists
a unique point ξj on Sj such that the unit outer normal vector ñ(ξj) of Sj at ξj

is parallel to x, denoted by ñ(ξj) ‖ x. Since φ(−ξ, ω) = φ(ξ, ω), the normal vector
ñ(−ξj) is equal to −ñ(ξj). In fact, in terms of φ(ξ, ω), the unit normal vector ñ(ξj)
is given by

ñ(ξj) = (−1)j ∇φ(ξj , ω)
|∇φ(ξj , ω)| .

Moreover, it is readily seen that there exists positive constants δ1 and δ2 so that

δ1 ≤ k1(θ) < k2(θ) ≤ δ2 ∀ 0 ≤ θ ≤ 2π.

Based on conditions (2.3) and (2.4), Natroshvili constructed fundamental solu-
tions for L(D, ω) by considering the limits of Γ(x, τε) as ±ε → 0, where τε = ω+ ıε,
and

L(D, τε)Γ(x, τε) = (L(D) + τ2
ε I)Γ(x, τε) = δ(x)I.

In fact, by the light of Fourier transform, Γ(x, τε) is given by

Γ(x, τε) =
1

4π2

∫
R2

φ−1(ξ, τε)L∗(ξ, τε)eıxξdξ,
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where L∗(ξ, τε) is the adjoint of the matrix τ2
ε I − L(ξ), i.e.,

L∗(ξ, τε) =
[
τ2
ε − β(ξ) γ(ξ)

γ(ξ) τ2
ε − α(ξ)

]
.

Here φ(ξ, τε) is defined as in (2.2) with ω being replaced by τε. It is easy to see that
the matrix Γ(x, τε) ∈ C∞(R2 \ {0}) and, together with all its derivatives, decay
exponentially in |x| as |x| → ∞. We now summarize Natroshvili’s results in the
following theorem.

Theorem 2.1 ([14, Theorem 7 & Corollary 8]). Assume that (2.3) and (2.4) hold.
Then

(i) the limits
lim

±ε→0
Γ(x, τε) = Γ±(x, ω)

exist for all x �= 0 and uniformly in |x| > a > 0;
(ii) Γ±(x, ω) are fundamental solutions of L(D, ω) defined by

Γ±(x, ω) = (2π)−2

∫
R2

[1 − h(ξ)][ω2I − L(ξ)]−1eıxξdξ

+ (2π)−2p.v.
∫

R2
h(ξ)[ω2I − L(ξ)]−1eıxξdξ

± (4π)−1ı
∑

j

∫
Sj

(−1)jL∗(ξ, ω)|∇φ(ξ, ω)|−1eıxξdSj ,

where h ∈ C∞(R2) is given by

h(ξ) =

{
1 for |ξ| < c0,

0 for |ξ| > 2c0

with c0 > 2δ2ω, p.v. stands for the principal value, L∗(ξ, ω) is the adjoint of the
matrix ω2I − L(ξ) defined similarly as above, dSj is the arc-length element of Sj,
and moreover,

Γ±(x, ω) = Γ±(−x, ω) = Γ±(x, ω)t;

(iii) in the vicinity of the origin (0 < |x| < 1/2) the following estimates hold:

|∂ν(Γ±(x, ω) − Γ(x))| < cr|ν|(x), |ν| = 0, 1, 2, 3,

where r0(x) = r1(x) = 1, r2(x) = ln |x|−1, r3(x) = |x|−1, and Γ(x) is the funda-
mental solution of L(D), i.e.,

L(D)Γ(x) = δ(x)I;

(vi) for sufficiently large |x|, we have the following asymptotic behaviors:

Γ+(x, ω) =
∑

j |x|−1/2R+,je
ıxξj

+ O(|x|−2/3),
Γ−(x, ω) =

∑
j |x|−1/2R−,je

−ıxξj

+ O(|x|−2/3),

where ξj ∈ Sj with ñ(ξj) parallel to x and

R+,j(x) = R−,j(x) = (−1)j ı√
2π

eıπ/4√
ℵ(ξj)|∇φ(ξj , ω)|

L∗(ξj , ω),

where ℵ(ξj) is the curvature of Sj at ξj;
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(v) if y is in any bounded subset of R2, then we have that for any multi-indices
α, β

∂α
x ∂β

y Γ±(x − y, ω) =
∑

j

|x|−1/2R±,j(x)(±ξj)α(∓ξj)βe±ı(x−y)ξj

+ O(|x|−3/2)

as |x| → ∞.

Remark 2.2. Γ+(x, ω) corresponds to the outgoing fundamental solution and
Γ−(x, ω) is the incoming fundamental solution.

Remark 2.3. In R
2, the explicit form of Γ(x) is given by

Γ(x) =
1

(2π)2

∫
η∈ S1

ln |η · x| L−1(η)dη

(see [6, Page 127]). It is easy to see that Γ(x) = O(ln |x|) near the origin.

Now we are ready to define the radiation conditions for the anisotropic elasticity
system L(D, ω). Let u(x) be defined in Ω and C1 for large |x|. Then u(x) is
said to satisfy the generalized Sommerfeld-Kupradze outgoing (incoming) radiation
conditions if

(2.5)

⎧⎨
⎩

u(x) =
∑

j u(j)(x), u(j) = O(|x|−1/2),
∂lu

(j)(x) −
(+)

ıξj
l u

(j)(x) = O(|x|−3/2), j, l = 1, 2,

hold, where ξj = [ξj
1, ξ

j
2]

t is the vector on Sj with ñ(ξj) ‖ x. When u(x) is a
vector or a matrix, we say that u(x) satisfies (2.5) if each component of u satisfies
(2.5). It is clear that Γ+(x, ω) (Γ−(x, ω)) satisfies the outgoing (incoming) radiation
conditions (2.5). Similar to the isotropic case, if u satisfies the radiation conditions
(2.5), then it has an integral representation. More precisely, let u ∈ C1(Ω̄)∩H2(Ω)
satisfy the radiation conditions (2.5) and L(D, ω)u be compactly supported. Then

u(x) =
∫

Ω

Γ±(x − y, ω)L(Dy, ω)u(y)dy +
∫

∂Ω

{Γ±(x − y, ω)[T (Dy, n(y))u(y)]

− [T (Dy, n(y))Γ±(x − y, ω)]tu(y)}dS ∀ x ∈ Ω

(2.6)

(see [14]).

2.2. Unique continuation property. Here we would like to state a recent unique
continuation result for the two-dimensional anisotropic elasticity system established
in [13]. Assume that Ω0 is any bounded open connected domain in R

2. As before,
we suppose that the elastic tensor C(x) satisfies the symmetry properties (1.2).
Instead of the strong convexity condition (1.3), to guarantee the unique continuation
property, it suffices to impose the strong ellipticity condition on C(x), namely, there
exists δ̃ > 0 so that for any vectors a = [a1, a2]t and b = [b1, b2]t we have that

(2.7) Cijkl(x)aibjakbl ≥ δ̃|a|2|b|2

for all x ∈ Ω0. It is obvious that (1.3) implies (2.7). For the regularity of C(x), we
assume that each component of C(x) is Lipschitz in Ω0. Denote

Λ11 = (Ci1k1), Λ22 = (Ci2k2), Λ12 = Φ + Φt with Φ = (Ci2k1).

The following unique continuation result is proved in [13].
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Theorem 2.4. Let (a(x), z(x)) be an eigenpair of the quadratic matrix polynomial

Λ11p
2 + Λ12p + Λ22,

i.e.
(Λ11a

2 + Λ12a + Λ22)z = 0 ∀ x ∈ Ω0.

Assume that a(x), z(x) are Lipschitz and the matrix [z, z̄] is nonsingular for all
x ∈ Ω0. Then the operator ∇ · (C(x)∇•) + ω2I possesses the unique continuation
property. In other words, if u ∈ H2

loc(Ω0) satisfies ∇ · (C(x)∇u) + ω2u = 0 in Ω0

and u = 0 in any non-empty open subset of Ω0, then u ≡ 0 in Ω0.

The proof of Theorem 2.4 relies on converting the two-dimensional elasticity
system ∇ · (C(x)∇u) + ω2u = 0 into a first-order elliptic system and using suitable
Carleman-type estimates.

3. Exterior boundary value problems

In this section we would like to discuss the exterior boundary value problem
for the system (1.1) with Dirichlet condition (1.4) or Neumann condition (1.5) in
more detail. Before doing so, we want to precisely state what conditions we will
impose on the elastic tensor C(x). We assume that C(x) is a Lipschitz function in
Ω satisfying the symmetry properties (1.2), the strong convexity condition (1.3),
and C(x) = C for all |x| ≥ R > 0 for some constant anisotropic elastic tensor C.
Furthermore, we suppose that the assumptions in Theorem 2.4 hold for C(x) in
Ω2R := Ω ∩ {|x| < 2R}, which guarantee the validity of the unique continuation
property in Ω2R. In this section and the remaining sections, we always assume that
C(x) satisfies the above conditions.

In order to put the boundary value problem in the weak formulation, we define
two operators.

Definition 3.1. Let the bilinear form B(·, ·) be defined by

B(u, v) =
∫

Ω

∑
ijkl

Cijkl(x)∂luk∂jvidx =
∫

Ω

∑
ij

σij∂jvidx

=
∫

Ω

C(x)ε(u) · ε(v)dx, ∀ u, v ∈ H1(Ω),

where (ε(u))ij = (1/2)(∂jui + ∂iuj).
(i) The operator for the Dirichlet boundary value problem is given by LD :

L2(Ω) → L2(Ω) with the domain

D(LD) = {u ∈ H1
0 (Ω) : ∃ h ∈ L2(Ω), ∀ v ∈ H1

0 (Ω), B(u, v) = (h, v)}
and LDu = −∇ · (C(x)∇u) for u ∈ C∞

0 (Ω).
(ii) The operator for the Neumann boundary value problem is given by LN :

L2(Ω) → L2(Ω) with the domain

D(LN) = {u ∈ H1(Ω) : ∃ h ∈ L2(Ω), ∀ v ∈ H1(Ω), B(u, v) = (h, v)}
and LNu = −∇ · (C(x)∇u) for u ∈ C∞(Ω).

It is not hard to see that LD and LN are symmetric and self-adjoint. Also, it
follows from Korn’s inequalities that the bilinear form is coercive in H1

0 (Ω) and
H1(Ω).
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To formulate the exterior boundary value problem with radiation conditions, we
introduce two weighted Sobolev spaces. Let � = (1 + |x|)−s with s > 1/2 and the
weighted inner product

(f, g)H1,−s(Ω) = (�f, �g) + (�∇f, �∇g) for f, g ∈ H1
loc(Ω).

Denote

H1,−s
0 (Ω) = completion of H1

0 (Ω) and H1,−s(Ω) = completion of H1(Ω)

with completion being defined in terms of ‖f‖H1,−s(Ω) = (f, f)1/2
H1,−s(Ω).

Definition 3.2. (i) A function u ∈ H1,−s
0 (Ω) which is C1 smooth for sufficiently

large |x| is called an outgoing (incoming) radiation solution of the Dirichlet problem

LDu − ω2u = f

if and only if ∀ ψ(x) ∈ C∞
0 (Ω), B(u, ψ) − ω2(u, ψ) = (f, ψ) and u satisfies the

outgoing (incoming) radiation conditions (2.5).
(ii) A function u ∈ H1,−s(Ω) which is C1 smooth for sufficiently large |x| is called

an outgoing (incoming) radiation solution of the Neumann problem

LNu − ω2u = f

if and only if ∀ ψ(x) ∈ C∞(Ω)∩C∞
0 (R2), B(u, ψ)−ω2(u, ψ) = (f, ψ) and u satisfies

the outgoing (incoming) radiation conditions (2.5).

Our first task is to show that the radiation solution is unique. For definiteness,
we consider the case of outgoing radiation solution for the Dirichlet problem. The
same method works for other types of solutions. To begin, we prove that a radiation
solution with homogeneous data decays at a rate O(|x|−3/2) at infinity.

Lemma 3.3. Let u(x) be an outgoing radiation solution of the homogeneous Dirich-
let problem, i.e. f = 0. Then u(x) = O(|x|−3/2) as |x| → ∞.

Proof. The proof of this lemma is inspired by the arguments in [14]. Since C(x) = C
for |x| > R, using the representation formula (2.6) in {|x| > R′} with R′ > R and
taking into account of f = 0, we obtain that
(3.1)

u(x) =
∫

ΣR′

{Γ+(x − y, ω)[T (Dy, η(y))u(y)] − [T (Dy, η(y))Γ+(x − y, ω)]tu(y)}dS

for all |x| > R′, where ΣR′ = {|x| = R′} and η(y) = y/|y|. By the asymptotic
behavior of Γ+(x − y, ω) (see (v) of Theorem 2.1), we can see that

(3.2) Γ+(x − y, ω) =
∑

j

|x|−1/2L∗(ξj , ω)aj(ξj , y)eıxξj

+ O(|x|−3/2)

and
[T (Dy, η(y))Γ+(x − y, ω)]t = −[T (Dx, η(y))Γ+(x − y, ω)]t

= −
∑

j

|x|−1/2L∗(ξj , ω)[T (ıξj, η(y))]taj(ξj , y)eixξj

+ O(|x|−3/2),(3.3)

where aj(ξj , y) is a scalar function. Substituting (3.2) and (3.3) into the represen-
tation formula (3.1), we get that

(3.4) u(x) =
∑

j

u(j) =
∑

j

|x|−1/2L∗(ξj , ω)Hj(ξj)eıxξj

+ O(|x|−3/2),
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where Hj = [hj1, hj2]t is determined by u on ΣR′ . Clearly u =
∑

j u(j) satisfies the
outgoing radiation conditions (2.5). Similarly, we can derive that

T (D, ν)u(x) = T (D, ν)
∑

j

u(j)

= ı
∑

j

|x|−1/2T (ξj , ν)L∗(ξj , ω)Hj(ξj)eıxξj

+ O(|x|−3/2)
(3.5)

for any vector ν(x).
Now letting R̃ > R and using the Green formula in ΩR̃, we obtain that∫

ΣR̃

{T (D, η(x))u(x) · u(x) − u(x) · T (D, η(x))u(x)}dS

=
∫

∂Ω

{T (D, n)u(x) · u(x) − u(x) · T (D, n)u(x)}dS = 0
(3.6)

since u(x) = 0 on ∂Ω, where n, as defined before, is the unit outer normal of ∂Ω.
Here we want to remark that the traction operator T is defined in terms of the
inhomogeneous elastic tensor C(x), which is homogeneous on ΣR̃ for all R̃ > R. It
follows from (3.6) that for sufficiently large �

(3.7)
1
�

∫ 2	

	

∫
ΣR̃

∑
k,j

{T (D, η)u(k)(x) · u(j)(x)− u(j)(x) · T (D, η)u(k)(x)}dSdR̃ = 0.

We first deal with the integrands in (3.7) with k �= j. It is enough to consider
the term T (D, η)u(1) · u(2). By the light of the radiation conditions (2.5), we can
deduce that

1
�

∫ 2	

	

∫
ΣR̃

T (D, η)u(1)(x) · u(2)(x)dSdR̃

=
1
�

∫ 2	

	

∫
ΣR̃

∑
ijkl

Cijkl∂lu
(1)
k (x)ηju

(2)
i (x)dSdR̃

=
1
�

∫ 2	

	

∫
ΣR̃

∑
ijkl

Cijklηj{(ıξ1
l )u(1)

k (x) + O(|x|−3/2)}u(2)
i (x)dSdR̃

=
1
�

∫ 2	

	

∫
ΣR̃

{
∑
ik

Aik(η)u(1)
k (x)u(2)

i (x) + O(|x|−2)}dSdR̃

=
1
�

∫ 2	

	

∫
ΣR̃

∑
ik

Aik(η)u(1)
k (R̃η)u(2)

i (R̃η)dSdR̃ + O(�−1),

(3.8)

where Aik =
∑

jl Cijklηj(ıξ1
l ). Again, in view of the radiation conditions, we have

that
u

(1)
k (R̃η) = O(R̃−1/2), ∂

∂R̃
u

(1)
k (R̃η) − ıϑ1(η)u(1)

k = O(R̃−3/2),
u

(2)
i (R̃η) = O(R̃−1/2), ∂

∂R̃
u

(2)
i (R̃η) − ıϑ2(η)u(2)

i = O(R̃−3/2),

where ϑj(η) = ξj · η. Recall that here ξj is the point on Sj related to η. Since Sj

is strictly convex for each j, we can see that

ϑj(η) > 0 and ϑ1(η) − ϑ2(η) = (ξ1 − ξ2, η) �= 0 for all η.
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We now compute

1
�

∫ 2	

	

∫
ΣR̃

∑
ik

Aik(η)u(1)
k (R̃η)u(2)

i (R̃η)dSdR̃

=
1
�

∫ 2	

	

∫
ΣR̃

∑
ik

(−ı)Aik(η)
ϑ1(η) − ϑ2(η)

[ıϑ1u
(1)
k (R̃η)u(2)

i (R̃η) + u
(1)
k (R̃η)ıϑ2u

(2)
i (R̃η)]dSdR̃

=
1
�

∫ 2	

	

∫
ΣR̃

∑
ik

(−ı)Aik(η)
ϑ1(η) − ϑ2(η)

[
∂

∂R̃
u

(1)
k (R̃η)u(2)

i (R̃η)+u
(1)
k (R̃η)

∂

∂R̃
u

(2)
i (R̃η)]dSdR̃

+ O(�−1)

=
1
�

∫ 2π

0

∑
ik

(−ı)Aik(η)
ϑ1(η) − ϑ2(η)

∫ 2	

	

∂

∂R̃
[u(1)

k (R̃η)u(2)
i (R̃η)]R̃dR̃dθ

+ O(�−1)

=
1
�

∫ 2π

0

∑
ik

(−ı)Aik(η)
ϑ1(η) − ϑ2(η)

{[R̃u
(1)
k (R̃η)u(2)

i (R̃η)]2	
	 −

∫ 2	

	

u
(1)
k (R̃η)u(2)

i (R̃η)dR̃}dθ

+ O(�−1)

= O(�−1),

(3.9)

where in the third equality we have set η(θ) = (cos θ, sin θ). Combining (3.8) and
(3.9) leads to

1
�

∫ 2	

	

∫
ΣR̃

T (D, η)u(1)(x) · u(2)(x)dSdR̃ = O(�−1)

and hence

(3.10)
1
�

∫ 2	

	

∫
ΣR̃

T (D, η)u(k)(x) · u(j)(x)dSdR̃ = O(�−1)

for all k �= j. Plugging (3.4), (3.5) into (3.7) and using (3.10), we obtain that

1
�

∫ 2	

	

∫
ΣR̃

∑
j

|x|−1[T (ξj , η)L∗(ξj , ω)Hj(ξj) · L∗(ξj, ω)Hj(ξj)

+ T (ξj , η)L∗(ξj , ω)Hj(ξj) · L∗(ξj , ω)Hj(ξj)]dSdR̃ = O(�−1).

(3.11)

Letting � → ∞ in (3.11) gives∑
j

∫ 2π

0

T (ξj , η)L∗(ξj , ω)Hj(ξj) · L∗(ξj , ω)Hj(ξj)

+ T (ξj , η)L∗(ξj , ω)Hj(ξj) · L∗(ξj , ω)Hj(ξj)dθ = 0.

(3.12)

Now it is useful to take a closer look at L∗(ξj , ω). Since det(L∗(ξj , ω)) =
φ(ξj , ω) = 0, the two column vectors of L∗(ξj , ω) must be linearly dependent.
More precisely, let W 1(ξ, ω) := [ω2 −β(ξ), γ(ξ)]t and W 2(ξ, ω) := [γ(ξ), ω2 −α(ξ)]t

be two column vectors of L∗(ξ, ω). Then there exists a scalar function c(ξ) such
that

W 2(ξj , ω) = c(ξj)W 1(ξj, ω).



LIMITING ABSORPTION PRINCIPLE 157

Therefore, we get that

(3.13) L∗(ξj , ω)Hj(ξj) = (hj1(ξj) + c(ξj)hj2(ξj))W 1(ξj , ω) = v(ξj)W 1(ξj , ω),

where v(ξj) = hj1(ξj)+ c(ξj)hj2(ξj). Notice that W 1(ξj , ω) and W 2(ξj , ω) are real
vectors. Substituting (3.13) into the formula (3.12) yields

(3.14)
∑

j

∫ 2π

0

[T (ξj , η)W 1(ξj , ω) · W 1(ξj , ω)]|v(ξj)|2dθ = 0.

It has been shown in [14] (see the proof of Lemma 12 there) that

T (ξj , η)W 1(ξj , ω) · W 1(ξj , ω) > 0 ∀ η,

which immediately implies v(ξj) = 0. From the asymptotic formula of u (see (3.4)),
we now conclude that u(x) = O(|x|−3/2). �

Now we are at a position to prove the uniqueness of the outgoing radiation
solution for the Dirichlet problem. As mentioned before, the same proof can be
applied to other types of solutions.

Theorem 3.4. There exists at most one outgoing radiation solution for the Dirich-
let problem.

Proof. It suffices to prove that if u(x) ∈ H1,−s
0 (Ω), which is C1 for |x| large, satisfies

LDu − ω2u = 0 and the radiation conditions, then u(x) ≡ 0 in Ω. It follows from
Lemma 3.3 that

u(x) = o(|x|−1/2) as |x| → ∞.

Since C(x) = C for |x| > R, u(x) is in fact C∞ in {|x| > R}. Let χ(x) = χ(|x|) ∈
C∞(R2) satisfy

χ(x) =

{
0 in |x| < 5R/4,

1 in |x| > 3R/2.

Then v(x) = χ(x)u(x) ∈ C∞(R2) satisfies

(3.15) v(x) = o(|x|−1/2) as |x| → ∞
and

L(D, ω) = (L(D) + ω2I)v(x) = g(x),

where supp (g) ⊆ {|x| ≤ 3R/2}. Define the differential operator L∗(D, ω) with
symbol L∗(ξ, ω). It is readily seen that

L∗(D, ω)L(D, ω)v = φ(D, ω)v = L∗(D, ω)g =: g̃,

where φ(D, ω) is the differential operator (scalar) with symbol φ(ξ, ω). Likewise, we
have supp (g̃) ⊆ {|x| ≤ 3R/2}. Having conditions (2.3), (2.4) and the asymptotic
formula (3.15) in mind, we now apply Littman’s result [11], which is a generalization
of Rellich’s result, to conclude that

u(x) = v(x) = 0 in {|x| > 3R/2}.
Now by the unique continuation property, we have that u(x) = 0 in Ω2R and thus
u(x) ≡ 0 in Ω. To use the unique continuation property, we need u(x) ∈ H2(Ω2R),
which is guaranteed by the elliptic regularity theorem with Lipschitz coefficients
Cijkl(x) [7].
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4. Limiting absorption principle

The main theme of this paper is to prove the following theorem.

Theorem 4.1 (Limiting absorption principle). Let C ⊃ Q+ := (ω0, ω1) × ı(0, ε),
where 0 < ω0 < ω1 and ε > 0. Assume f ∈ L2

c(Ω) := {f ∈ L2(Ω) : supp (f) is
compact}. Then the map

R(·) : Q+ → H1,−s
0 (Ω)

defined by R(z)f = (LD − z)−1f is uniformly continuous.

Remark 4.2. Likewise, we can prove that R(·) : Q− → H1,−s
0 (Ω) is uniformly

continuous by the same arguments, where Q− := (ω0, ω1)×ı(−ε, 0). Also, the same
conclusion holds when LD is replaced by LN with H1,−s

0 (Ω) being substituted by
H1,−s(Ω).

Theorem 4.1 will be proved below by a series of lemmas. We first need a uniform
estimate of the fundamental solution Γ(x,

√
ζ) with ζ ∈ Λ+

ε0
= {ζ ∈ C : |ζ − κ| <

δ̃, Im ζ > ε0}, where ε0 ≥ 0, κ > 0, and δ̃ is sufficiently small so that 0 /∈ Λ+
ε0

. Here√
ζ is taken with positive imaginary part. Recall that Γ(x,

√
ζ) is defined by

Γ(x,
√

ζ) =
1

4π2

∫
R2

(ζI − L(ξ))−1eıxξdξ.

Lemma 4.3. Let ν be any multi-index. Then
(i) for ε0 > 0, ∂νΓ(x,

√
ζ) is a continuous function in R2\{0}×Λ+

ε0
and converges

to zero more rapidly than any power of |x|−1 as |x| → ∞, where the convergence is
uniform in Λ+

ε0
;

(ii) for ε0 = 0, ∂νΓ(x,
√

ζ) = O(|x|−1/2) as |x| → ∞ uniformly for x/|x| and in
Λ+

0 , where Λ+
0 is defined as Λ+

ε0
with ε0 = 0.

Proof. This lemma can be proved by methods in [12], where the same results were
shown for first order systems of partial differential equations. Here we only sketch
some crucial steps and refer to [12] for more details. To establish (i), we observe
that for ε0 > 0

(a) ∂ν
ξ (ζI − L(ξ))−1 is a continuous function of (ξ, ζ) in R2 × Λ+

ε0
;

(b) for any ξ, (ζI − L(ξ))−1 is an analytic function of ζ in Λ+
ε0

;
(c) there exists a constant cν such that

|∂ν
ξ (ζI − L(ξ))−1| ≤ cν(1 + |ξ|)−2−|ν|.

Then (i) is an easy consequence of Lemma 3 in [12].
To prove (ii), we first observe that

det(λ2 − L(ξ)) = α(ξ)β(ξ)− γ2(ξ) − λ2[α(ξ) + β(ξ)] + λ4

= (λ2 − λ1(ξ)2)(λ2 − λ2(ξ)2)
= (λ + λ1(ξ))(λ− λ1(ξ))(λ + λ2(ξ))(λ− λ2(ξ)),

where λj(ξ)2 = {(α(ξ) + β(ξ)) + (−1)j
√

(α(ξ)− β(ξ))2 + 4γ2(ξ)}/2 > 0 for all
ξ �= 0. It is clear that λj(ξ)2 is homogenous of degree 2 and therefore λj(ξ)(> 0)
is homogeneous of degree 1. In view of (2.3) and (2.4), the two curves defined by
{ξ ∈ R2 : λj(ξ) = 1}, j = 1, 2, are strictly convex and nonintersecting. Now we can
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express (λ2I − L(ξ))−1 by the method of partial fraction, namely,

(λ2I − L(ξ))−1

= (det(λ2I − L(ξ)))−1L∗(ξ, λ)

=
∑

j

{
P+

j (ξ)
λ − λj(ξ)

+
P−

j (ξ)
λ + λj(ξ)

},

where P±
j (ξ) = ±2λj(ξ)−1L∗(ξ, λj(ξ)) are C∞ functions in R2 \ {0}. Therefore, we

have that

(4.1) Γ(x,
√

ζ) =
1

4π2

∫
R2

∑
j

{
P+

j (ξ)
√

ζ − λj(ξ)
+

P−
j (ξ)

√
ζ + λj(ξ)

}eıxξdξ.

The integral on the right side of (4.1) is exactly the one studied in [12]. Thus, (ii)
follows directly from the main theorem in [12]. �

Remark 4.4. As for the local behavior of Γ(x,
√

ζ) near 0, it is not hard to check
that

(4.2) Γ(x,
√

ζ) = O(ln |x|)
and

(4.3) ∂νΓ(x,
√

ζ) = O(|x|−1) ∀ |ν| = 1,

uniformly for ζ ∈ Λ+
0 .

By means of Lemma 4.3, we can prove that

Lemma 4.5. There exist a number R′ > 0 and a constant c > 0 such that for all
ζ ∈ Λ+

0 and all u(x) ∈ D(LD) satisfying

LDu − ζu = f ∈ L2
c(Ω),

we have

(4.4) ‖u‖H1,−s(Ω) ≤ c(‖u‖L2(ΩR′) + ‖f‖L2(Ω)).

Proof. Let ϕ ∈ C∞(R2) satisfy ϕ(x) = 0 for |x| ≤ R +1; = 1 for |x| > R +2. Then

−[L(D,
√

ζ)(ϕu)]i = [(−L(D) − ζI)(ϕu)]i

= −
∑
jkl

Cijkl(x){∂j∂lϕuk + ∂lϕ∂juk + ∂jϕ∂luk} + ϕfi

= −
∑
jkl

Cijkl{∂j∂lϕuk + ∂lϕ∂juk + ∂jϕ∂luk} + ϕfi

= gi.

(4.5)

The right-hand side of (4.5) has compact support. It is clear that

(4.6) ϕu(x) = −
∫

R2
Γ(x − y,

√
ζ)g(y)dy = −

∫
K

Γ(x − y,
√

ζ)g(y)dy,

where K = {R + 1 ≤ |x| ≤ R + 2} ∪ supp (f) is a compact set in Ω. We want to
estimate

‖ϕu‖2
H1,−s(Ω) =

∫
Ω

�2(|ϕu|2 + |∇(ϕu)|2)dx.
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In view of (4.6) and using (ii) of Lemma 4.3 and (4.2), we immediately have that

(4.7)
∫

Ω

�2|ϕu|2dx ≤ c1

∫
Ω

|g|2dx.

Next, let K0 be a bounded open neighborhood of K. Then

∫
Ω

�2|∇(ϕu)|2dx =
∫

Ω

�2|
∫
K
∇xΓ(x − y,

√
ζ)g(y)dy|2dx

=
∫

Ω\K0

�2|
∫
K
∇yΓ(x − y,

√
ζ)g(y)dy|2dx

+
∫
K0

�2|
∫
K
∇yΓ(x − y,

√
ζ)g(y)dy|2dx

=: I + II.

(4.8)

Using (ii) of Lemma 4.3 again, we get that

(4.9) I ≤ c2

∫
Ω

|g|2dx.

On the other hand, we can estimate

II ≤ c3

∫
K0

|
∫
K0

|x − y|−1g(y)dy|2dx

≤ c3

∫
K0

(
∫
K0

|g(y)|2|x − y|−1dy)(
∫
K0

|x − y|−1dy)dx

≤ c4

∫
K0

∫
K0

|g(y)|2|x − y|−1dxdy

≤ c5

∫
K0

|g(y)|2dy

≤ c5

∫
Ω

|g|2dy.

(4.10)

Combining (4.7), (4.8), (4.9), and (4.10) yields

‖ϕu‖H1,−s(Ω) ≤ c6‖g‖L2(Ω)

and therefore
(4.11)
‖u‖H1,−s(Ω) ≤ ‖ϕu‖H1,−s(Ω) + ‖(1 − ϕ)u‖H1,−s(Ω) ≤ c7(‖u‖H1(ΩR+2) + ‖f‖L2(Ω)).

Now let ϕ̃(x) ∈ C∞
0 (R2) be a real-valued function with supp (ϕ̃) ⊂ {|x| < R+3}

and ϕ̃(x) = 1 on {|x| ≤ R+2}. Then by Korn’s inequality and the strong convexity
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condition, we get that

‖∇u‖2
L2(ΩR+2)

≤ ‖∇(ϕ̃u)‖2
L2(Ω) ≤ c8B(ϕ̃u, ϕ̃u)

= c8

∫ ∑
ijkl

Cijkl(x)∂l(ϕ̃uk)∂j(ϕ̃ui)dx

= c8

∫ ∑
ijkl

Cijkl(x){∂lϕ̃∂jϕ̃ukuj + ϕ̃∂lϕ̃uk∂jui + ϕ̃∂jϕ̃∂lukui + ϕ̃2∂luk∂jui}dx

= c8

∫ ∑
ijkl

Cijkl(x)∂lϕ̃∂jϕ̃ukujdx + c8/2
∫ ∑

ijkl

Cijkl(x)∂luk∂j(ϕ̃2ui)dx

+ c8/2
∫ ∑

ijkl

∂l(ϕ̃2uk)Cijkl(x)∂juidx

= c8

∫ ∑
ijkl

Cijkl(x)∂lϕ̃∂jϕ̃ukujdx + c8/2(ζu + f, ϕ̃2u) + c8/2(ϕ̃2u, ζu + f)

≤ c9(‖u‖2
L2(ΩR+3)

+ ‖f‖2
L2(ΩR+3)

).

(4.12)

Substituting (4.12) into (4.11) immediately gives (4.4). �

Remark 4.6. Using (i) of Lemma 4.3, we can replace ‖u‖H1,−s(Ω) by ‖u‖H1(Ω) on
the left-hand side of (4.4) and the estimate is uniform with respect to ζ ∈ Λ+

ε0
with

ε0 > 0.

Remark 4.7. Lemma 4.5 is also valid for the Neumann problem LN . The boundary
data only play a role in (4.12), which is satisfied for zero Neumann data. Also, we
use Korn’s (second) inequality in this case. Consequently, we get an extra term
‖ϕ̃u‖2

L2(Ω), but it does not affect the estimate (4.4).

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We prove this theorem by a contradictory argument. The
similar approach was also used in [2] and [10]. Let the theorem be not true. Then
there exist two sequences {µn}, {µ′

n} ⊂ Q+ such that

|µn − µ′
n| <

1
n

and ‖R(µn)f −R(µ′
n)f‖H1,−s(Ω) ≥ c > 0.

Assume that µn → µ ∈ Q+. Denote un = R(µn)f and u′
n = R(µ′

n)f . Since LD is
self-adjoint, the resolvent R(ζ) with Imζ �= 0 is a bounded operator in L2(Ω). It is
readily seen that un, u′

n ∈ H1
0 (Ω) ⊂ H1,−s

0 (Ω). We first want to claim that

(4.13) sup
n

‖un‖H1,−s(Ω) < ∞.

We give an indirect proof of (4.13). Suppose that (4.13) does not hold. Then
there exists a subsequence of {un}, still denoted by {un}, such that

lim
n→∞

‖un‖H1,−s(Ω) = ∞.

Define wn = un/‖un‖H1,−s(Ω), so ‖wn‖H1,−s(Ω) = 1. Therefore, by Rellich’s com-
pactness theorem, there exists a subsequence of {wn}, denoted by {wn} as well,
such that

wn → w in L2(ΩR1).
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Also, wn solves

(4.14) LDwn − µnwn = f/‖un‖H1,−s(Ω) =: fn,

where supp (fn) = supp (f). By choosing R1 > R′ with R′ given in Lemma 4.5
and using Lemma 4.5, we obtain that ‖wn − w‖H1,−s(Ω) → 0 and w ∈ H1,−s

0 (Ω).
Moreover, for any ϕ(x) ∈ C∞

0 (Ω), we have that

B(w, ϕ) − µ(w, ϕ) = lim
n→∞

{B(wn, ϕ) − µn(wn, ϕ)} = lim
n→∞

(fn, ϕ) = 0.

In other words, w satisfies

(4.15) LDw − µw = 0.

Now if Imµ �= 0, then ‖wn − w‖H1 → 0 and w ∈ H1
0 (Ω) (see Remark 4.6), i.e.

w ∈ D(LD). Hence w must be zero. This leads to a contradiction since

‖w‖H1,−s(Ω) = lim
n→∞

‖wn‖H1,−s(Ω) = 1.

On the other hand, for the case Im µ = 0, we aim to show that w satisfies the
radiation conditions. To this end, let supp (f) ⊂ {|x| < R2} for some R2 > 0 and
ς(x) ∈ C∞(R2) satisfy

ς(x) =

{
0 in {|x| ≤ R2},
1 in {|x| > R2 + 1}.

Doing the same computations as in (4.5), we can deduce that

−L(D)(ςwn) − µn(ςwn) = g(x, wn,∇wn) in R
2,

where g(x, wn,∇wn) contains ∂νwn(x) for |ν| ≤ 1 and is supported in {R1 ≤ |x| ≤
R1 + 1} =: K (see the right-hand side of (4.5)). Note that g does not involve fn

since ςfn = 0. Therefore, ςwn can be represented by

(4.16) ςwn(x) = −
∫

K

Γ(x − y,
√

µn)g(y, wn(y),∇wn(y))dy.

Clearly, g(x, wn,∇wn) → g(x, w,∇w) in L2(K). Recall that Γ(x,
√

µn) converges
to Γ+(x,

√
µ) uniformly in |x| > a > 0 (see (i) of Theorem 2.1). Therefore, taking

n → ∞ in (4.16) gives

w(x) = ςw(x) = −
∫

K

Γ+(x − y,
√

µ)g(y, w(y),∇w(y))dy

for any x in {|x| > R2 + 2}. Now it is easy to see that w(x) satisfies the radiation
conditions (2.5). That is, w(x) is an outgoing radiation solution of (4.15). By the
uniqueness theorem, we obtain w(x) = 0, which is impossible since ‖w‖H1,−s(Ω) = 1.
Thus, (4.13) holds. Likewise, we can show

(4.17) sup
n

‖u′
n‖H1,−s(Ω) < ∞.

In view of (4.13), (4.17) and using Rellich’s compactness theorem and Lemma 4.5
again, we can prove that there exist u, u′ ∈ H1,−s

0 (Ω) such that

‖un − u‖H1,−s(Ω) → 0 and ‖u′
n − u′‖H1,−s(Ω) → 0,

where, as usual, {un} and {u′
n} represent subsequences. Going over the same

arguments as above, we immediately obtain that u and u′ are solutions of LDu −
µu = f and satisfy the outgoing radiation conditions if Im µ = 0. Therefore, we
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must have u = u′. But this is not possible since ‖u − u′‖H1,−s(Ω) ≥ c > 0. The
proof of Theorem 4.1 is now complete. �

From Theorem 4.1 and its proof, we immediately have that

Corollary 4.8. There exists an outgoing (incoming) radiation solution to the ex-
terior Dirichlet or Neumann boundary value problem for f ∈ L2

c(Ω).

5. Discussion of the spectrum of LD
and LN

With the help of the limiting absorption principle, we want to show that all
spectrum of LD and LN are absolutely continuous spectrum. It suffices to prove
that HD

ac = L2(Ω) and HN
ac = L2(Ω), where HD

ac and HN
ac are called the subspaces

of absolute continuity of LD and LN , respectively. We refer to [8] for the definition
and other properties of the subspace of absolute continuity.

To begin, we observe that s(LD) ⊂ R and s(LN) ⊂ R because they are self-
adjoint. Here and below, s(·) denotes the spectrum of the operator. Now let
−λ < 0. Then we get from Korn’s inequality that for u ∈ H1

0 (Ω)

B(u, u) + λ‖u‖2
L2(Ω) ≥ c

∑
|ν|=1

‖∂νu‖2
L2(Ω) + λ‖u‖2

L2(Ω) ≥ min{c, λ}‖u‖2
H1(Ω),

which implies s(LD) ⊂ [0,∞). Similarly, using Korn’s inequality for u ∈ H1(Ω),
we can derive

B(u, u) + λ‖u‖2
L2(Ω) ≥ ε(c′‖u‖2

H1(Ω) − c′′‖u‖2
L2(Ω)) + λ‖u‖2

L2(Ω)

= εc′‖u‖2
H1(Ω) + (λ − εc′′)‖u‖2

L2(Ω),

where c′ > 0, c′′ > 0, and 0 < ε < 1. Taking ε sufficiently small so that λ−εc′′ > 0,
we obtain s(LN ) ⊂ [0,∞).

Theorem 5.1. HD
ac = HN

ac = L2(Ω) and sac(LD) = sac(LN ) = [0,∞). Here sac(·)
denotes the absolutely continuous spectrum of the operator.

Proof. We will prove this theorem for LD. The proof for LN is similar. To show
HD

ac = L2(Ω), it suffices to prove that f ∈ L2
c(Ω) belongs to HD

ac since HD
ac is closed

in L2(Ω) and L2
c(Ω) is dense in L2(Ω).

Now let {E(λ)} be the spectral family for the self-adjoint operator LD. Then
E(λ) satisfies

(a) E(λ) = limε→0+ E(λ + ε) = E(λ + 0);
(b) E(−0) = limλ→0− E(λ) = 0, for s(LD) ⊂ [0,∞);
(c) (E(λ)f, f) = ‖E(λ)f‖2

L2(Ω) ≥ 0 is nondecreasing in λ and

lim
λ→∞

‖E(λ)f‖2
L2(Ω) = ‖E(∞)f‖2

L2(Ω) = ‖f‖2
L2(Ω)

(see [8]). Let λ > λ0 > 0. Then by Stone’s formula we obtain that

(5.1) ([E(λ) − E(λ0)]f, f) = lim
ε→0+

1
2πı

∫ λ

λ0

([R(z + ıε) −R(z − ıε)]f, f)dz.

Theorem 4.1 asserts that

([R(z + ıε) −R(z − ıε)]f, f) → ([R+(z) −R−(z)]f, f)
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uniformly on [λ0, λ], where R±(z) = limε→0+ R(z ± ıε). Therefore, interchanging
the limit and the integral in (5.1) gives

(5.2) ([E(λ)− E(λ0)]f, f) =
1

2πı

∫ λ

λ0

([R+(z) −R−(z)]f, f)dz.

Because the left-hand side of (5.2) is nonnegative, nondecreasing, and continuous
in λ, we can assume that

([R+(z) −R−(z)]f, f) = ıG(z)

for some nonnegative function G(z). Taking λ0 → 0 leads to

(E(λ)f, f) =
1
2π

∫ λ

0

G(z)dz.

It is clear that G(z) ∈ L1((0,∞)) because of (c). Extending G(z) = 0 for z < 0,
we obtain that

(E(λ)f, f) =
1
2π

∫ λ

0

G(z)dz ∀ λ ∈ R,

and thus (E(λ)f, f) is an absolutely continuous measure, i.e. f ∈ HD
ac. As men-

tioned above, this implies HD
ac = L2(Ω). In other words, the subspace of singularity

HD
s is {0} and we have sac(LD) = [0,∞). �

Corollary 5.2. There exists no embedded eigenvalue for LD and LN .
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