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UNIQUE CONTINUATION FOR THE TWO-DIMENSIONAL
ANISOTROPIC ELASTICITY SYSTEM AND ITS

APPLICATIONS TO INVERSE PROBLEMS

GEN NAKAMURA AND JENN-NAN WANG

Abstract. Under some generic assumptions we prove the unique continu-
ation property for the two-dimensional inhomogeneous anisotropic elasticity
system. Having established the unique continuation property, we then inves-
tigate the inverse problem of reconstructing the inclusion or cavity embedded
in a plane elastic body with inhomogeneous anisotropic medium by infinitely
many localized boundary measurements.

1. Introduction

Assume that B is an anisotropic elastic body and the reference configuration of
B is Ω, a bounded open connected set in R

2. Let C(x) = (Cijkl(x)) be the elastic
tensor. Here and below, all Latin indices are set to be from 1 to 2. We assume that
the elastic tensor C satisfies the full symmetric properties

(1.1) Cijkl = Cjikl = Cklij ∀ i, j, k, l.

The displacement equation of equilibrium when there is no body force is given by

(1.2) LCu = ∇ · (C(x)∇u) = 0 in Ω,

where (∇u)kl = ∂luk and (∇ · G)i =
∑

j ∂jgij for any matrix function G = (gij).
Also, we have used the convention notation

(CH)ij =
∑
kl

Cijklhkl,

where H = (hij) is a 2 × 2 matrix. Here u = t[u1, u2] is the displacement vector.
In this paper we are concerned with the unique continuation property (UCP) for
(1.2). Precisely, we want to know whether u vanishes identically in Ω whenever it
vanishes in some nonempty open subset of Ω.

The unique continuation property for differential equations has a long history.
There exists a vast number of literature in this field, especially for scalar differential
equations. We will not try to give a full account of its development here. Instead,
we only mention some related results on the elasticity system. When the medium
is isotropic, the UCP has been established in [1], [4] and [21]. Moreover, a strong
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unique continuation property for the isotropic system was recently proven in [2]
and in [15]. Unlike the isotropic case, the unique continuation property for the
inhomogeneous anisotropic elasticity has not been fully explored. In this direction,
the authors of this paper have proved the UCP for an elasticity system with residual
stress [18]. It is known that this system is no longer isotropic due to the existence of
residual stress. A strong unique continuation for the elasticity system with residual
stress was recently proved in [14].

In this paper we want to investigate the UCP for (1.2) when the elastic tensor
is anisotropic with finite smoothness. To the authors’ knowledge, this problem has
not been studied before. For our UCP result in this paper, we assume that the
elastic tensor is merely a locally Lipschitz function in Ω. One of the key ideas in our
proof is that under suitable conditions the original elasticity system (1.2) can be
transformed into a first order elliptic system locally (see (2.11)). Therefore, proving
the UCP for (1.2) is now reduced to proving the UCP for (2.11). There were several
results on the UCP for first order elliptic systems; see, for example, [3], [5] and [8].
However, in those papers, the matrix function N in (2.11) is assumed to be either
(locally) diagonalizable ([3], [5]) by a C1 invertible matrix or normal ([8]). In this
work we are not assuming that N is normal. Instead, we will suppose that near
every point x0 ∈ Ω the quadratic pencil Λ11p

2 + Λ12p + Λ22 (see (2.12)) has at
least one eigenvalue θ(x) with associated eigenvector z(x), and both are Lipschitz,
such that the matrix function [z, z̄] is nonsingular. Under this assumption, we
can show that the diagonal blocks of N are Lipschitz diagonalizable. From now
on, we say that a matrix function is Lipschitz diagonalizable if it can be similarly
transformed to a diagonal matrix with Lipschitz entries by a Lipschitz invertible
matrix. Nevertheless, it should be emphasized that the whole matrix N is not
necessarily Lipschitz diagonalizable. There are two obstructions preventing it from
having this property. On one hand, the two diagonal blocks may have common
eigenvalues. On the other hand, the lower left block of N , i.e. the (2, 1) block of
N , is only L∞. In view of these two points, it is, in general, not possible to find
a Lipschitz invertible matrix to diagonalize N . In other words, we have to treat a
lower triangular matrix function. Our proof of the UCP for (1.2) via (2.11) relies
on some delicate Carleman estimates. To deal with the lower triangular matrix
function N , we will borrow some ideas from [21] (or [18]). The proof of the UCP
is given in Section 2.

Also in Section 2, we give an example to show that the assumption on one
eigenpair of the quadratic pencil Λ11p

2 + Λ12p + Λ22 is not too restrictive. This
condition is in fact generic. Moreover, it is easy to verify that this assumption holds
true when the elastic tensor is isotropic. Therefore, as a by-product of our UCP
result, we prove that the UCP holds for the two-dimensional isotropic elasticity
system with locally Lipschitz Lamé coefficients, which is an improvement of previous
UCP results for the same system in two dimensions. We remark that for the UCP
result obtained in [1] or [21], the Lamé coefficients are required to be at least C2,
while for the strong UCP proved in [2], one needs C1,1 coefficients.

Our study of the UCP for the inhomogeneous two-dimensional anisotropic elas-
ticity system (1.2) is motivated by its application to inverse problems. Having
proved the UCP for (1.2), in Section 3 we will establish reconstruction algorithms
for identifying the inclusion or cavity embedded inside a plane anisotropic elastic
body by infinitely many localized boundary measurements with the help of Runge’s
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approximation property. For the inclusion identification in the conductive medium,
we refer to the pioneer work by Isakov [13]. It is well known that Runge’s ap-
proximation property is an easy consequence of the UCP. Here the reconstruction
algorithms of determining the inclusion or cavity are based the probe method de-
veloped by Ikehata in [9] (see [10] and references therein for related results). It
should be noted that Runge’s approximation theorem for the anisotropic elasticity
was proved in [11] and [12]. However, the elasticity tensor there was assumed to
be either homogeneous or real-analytic. The UCP is an obvious fact in these two
situations. For other interesting inverse boundary value problems, we refer readers
to a nice survey article [20].

2. Unique continuation property

This section is devoted to the proof of the UCP for (1.2) when the elastic tensor
C(x) is locally Lipschitz. We will first transform the system (1.2) into a first
order elliptic system with appropriate matrix coefficients. Next we will derive some
useful Carleman estimates. The proof of the UCP for (1.2) is carried out with
the help of those Carleman estimates. Throughout this section, in addition to the
symmetric properties (1.1), we assume that the elastic tensor satisfies the strong
ellipticity condition, i.e. there exists δ > 0 so that for any vectors a = t[a1, a2] and
b = t[b1, b2] we have that

(2.1) Cijkl(x)aibjakbl ≥ δ|a|2|b|2

for all x ∈ Ω.

2.1. First order elliptic system. Our goal here is to transform (1.2) into a first
order elliptic system. To this end, we would like to express (1.2) in a more detailed
form, namely,

(2.2) LCu = Λ11∂
2
1u + Λ12∂1∂2u + Λ22∂

2
2u + R(u) = 0 a.e. in Ω,

where

Λ11 = (Ci1k1), Λ22 = (Ci2k2), Λ12 = Φ + tΦ with Φ = (Ci2k1)

and
R(u) =

∑
jkl

(∂jCijkl)∂luk.

Since C(x) is locally Lipschitz, it is well known that ∂jCijkl(x) is locally bounded
for all i, j, k, l. In other words, R is a first order differential operator with locally
bounded coefficients. From the strong ellipticity condition (2.1), we can see that
Λ11 and Λ22 are invertible (in fact, positive definite). Let x0 ∈ Ω and ωx0 ⊂ Ω be
a small open neighborhood of x0. We now define W = t[w1, w2] = t[u, ∂1u + T∂2u]
for x ∈ ωx0 , where T = T (x) is a Lipschitz invertible matrix (in ωx0) which will be
chosen later. Thus, we can compute that

(2.3)

{
∂1w1 = ∂1u = (∂1u + T∂2u) − T∂2u = −T∂2w1 + w2,

∂1w2 = ∂2
1u + T∂1∂2u + ∂1T∂2w1.

Here and below, to simplify expressions, all equations are interpreted in the sense
of a.e. in ωx0 unless otherwise indicated. It follows from (2.2) that

(2.4) ∂2
1u = −Λ−1

11 (Λ12∂1∂2u + Λ22∂
2
2u + R(u)).
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Using the definition of w2, we immediately see that

∂2w2 = ∂1∂2u + T∂2
2u + ∂2T∂2w1,

which implies

(2.5) ∂1∂2u = −T∂2
2u − ∂2T∂2w1 + ∂2w2.

Plugging (2.5) into (2.4) yields

(2.6) ∂2
1u = −Λ−1

11 Λ12(−T∂2
2u − ∂2T∂2w1 + ∂2w2) − Λ−1

11 Λ22∂
2
2u − Λ−1

11 R(u).

Now substituting (2.5) and (2.6) into the second equation of (2.3) we have that
(2.7)

∂1w2 = {−Λ−1
11 Λ12(−T∂2

2u − ∂2T∂2w1 + ∂2w2) − Λ−1
11 Λ22∂

2
2u − Λ−1

11 R(u)}
+T (−T∂2

2u − ∂2T∂2w1 + ∂2w2) + ∂1T∂2w1

= −(T 2 − Λ−1
11 Λ12T + Λ−1

11 Λ22)∂2
2u + (Λ−1

11 Λ12∂2T − T∂2T + ∂1T )∂2w1

+(T − Λ−1
11 Λ12)∂2w2 − Λ−1

11 R(u).

By the relations ∂1u = ∂1w1 and ∂2u = −T−1∂1w1 + T−1w2, we can see that R
is a first order linear operator containing only x1 derivative acting on w1. More
precisely, we can derive
(2.8)

R(u) = ∂1Λ11∂1u + ∂1
tΦ∂2u + ∂2Φ∂1u + ∂2Λ22∂2u

= (∂1Λ11 + ∂2Φ)∂1w1 + (∂2Λ22 + ∂1
tΦ)(−T−1∂1w1 + T−1w2)

= (∂1Λ11 + ∂2Φ − T−1∂2Λ22 − T−1∂1
tΦ)∂1w1 + (∂2Λ22 + ∂1

tΦ)T−1w2.

Replacing R(u) in (2.7) by (2.8) and choosing T such that

(2.9) T 2 − Λ−1
11 Λ12T + Λ−1

11 Λ22 = 0 ∀ x ∈ ωx0

or equivalently

Λ11(−T )2 + Λ12(−T ) + Λ22 = 0 ∀ x ∈ ωx0 ,

we get from (2.3) that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂1w1 + T∂2w1 − w2 = 0,

Λ−1
11 (∂1Λ11 + ∂2Φ − T−1∂2Λ22 − T−1∂1

tΦ)∂1w1

+∂1w2 − (Λ−1
11 Λ12∂2T − T∂2T + ∂1T )∂2w1

+(Λ−1
11 Λ12 − T )∂2w2 + Λ−1

11 (∂2Λ22 + ∂1
tΦ)T−1w2 = 0.

Equivalently, in the matrix form, we have that

(2.10) A∂1W + B∂2W + FW = 0,

where

A =
[

I 0
Λ−1

11 (∂1Λ11 + ∂2Φ − T−1∂2Λ22 − T−1∂1
tΦ) I

]
,

B =
[

T 0
−(Λ−1

11 Λ12∂2T − T∂2T + ∂1T ) Λ−1
11 Λ12 − T

]
,

and

F =
[
0 −I
0 Λ−1

11 (∂2Λ22 + ∂1
tΦ)T−1

]
.

The matrix A is obviously invertible. We at once deduce the following first elliptic
system from (2.10):

(2.11) ∂1W + N∂2W + MW = 0
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with

N = A−1B =
[
T 0
n Λ−1

11 Λ12 − T

]
and M = A−1F,

where

n = −Λ−1
11 (∂1Λ11 + ∂2Φ − T−1∂2Λ22 − T−1∂1

tΦ)T − (Λ−1
11 Λ12∂2T − T∂2T + ∂1T ).

It should be noted that n(x) is in L∞(ωx0) and so is M .

Now we are at a position to discuss the solvability of (2.9) and the Lipschitz
diagonalizabilities of T and Λ−1

11 Λ12 − T .

Proposition 2.1. Let ωx0 ⊂ Ω be a sufficiently small open neighborhood of x0 and
let (θ(x), z(x)) be a local eigenpair of the quadratic pencil

(2.12) Λ11p
2 + Λ12p + Λ22,

i.e.
(Λ11θ

2 + Λ12θ + Λ22)z = 0 ∀ x ∈ ωx0 .

Assume that θ(x), z(x) are Lipschitz and the matrix function [z, z̄] is nonsingular
for all x ∈ ωx0 . Then by choosing

(2.13) −T = [z, z̄]diag(θ, θ̄)[z, z̄]−1

we have that T (x) satisfies (2.9) and is Lipschitz diagonalizable. Moreover, by
possibly shrinking the neighborhood ωx0 , there exist a Lipschitz invertible matrix
Q(x) and a Lipschitz diagonal matrix diag(ρ, ρ̄) such that

Q(x)−1(Λ−1
11 Λ12 − T )Q(x) = diag(ρ(x), ρ̄(x)) ∀ x ∈ ωx0 .

Proof. By the strong ellipticity condition (2.1) and the fact that Λ11, Λ12, Λ22 are
real, we can see that the eigenvalues of the quadratic pencil Λ11p

2 + Λ12p + Λ22

are all genuine complex values (with nonvanishing imaginary parts) and appear in
conjugate pairs. Therefore, if (θ, z) is an eigenpair of the quadratic pencil, then so
is (θ̄, z̄), i.e.

(Λ11θ̄
2 + Λ12θ̄ + Λ22)z̄ = 0.

Clearly θ̄(x) and z̄(x) are all Lipschitz. Let T be defined by (2.13); then we have
that

(Λ11(−T )2+Λ12(−T )+Λ22)[z, z̄]=[(Λ11θ
2+Λ12θ+Λ22)z, (Λ11θ̄

2+Λ12θ̄+Λ22)z̄]=0,

which implies (2.9).
Having found T satisfying (2.9), we observe that

(2.14)

det(T − Λ−1
11 Λ12 − pI) det(−T − pI)

= det
(
(T − Λ−1

11 Λ12 − pI)(−T − pI)
)

= det
(
p2I + Λ−1

11 Λ12p + Λ−1
11 Λ12T − T 2

)
= det

(
p2I + Λ−1

11 Λ12p + Λ−1
11 Λ22

)
= det(Λ−1

11 ) det(Λ11p
2 + Λ12p + Λ22).

It is easily seen from (2.14) that if {θ, θ̄,−ρ,−ρ̄} are eigenvalues of the quadratic
pencil Λ11p

2 + Λ12p + Λ22, then {ρ, ρ̄} are eigenvalues of Λ−1
11 Λ12 − T . Note that

ρ(x) is a genuine complex function and, hence, ρ(x) and ρ̄(x) are distinct. In other
words, ρ(x) and ρ̄(x) are simple eigenvalues of the matrix Λ−1

11 Λ12 − T . Note that
the matrix Λ−1

11 Λ12 − T is not continuously differentiable. So we cannot use the
classical implicit function theorem to conclude that ρ(x) is Lipschitz. However,
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since ρ(x) and ρ̄(x) are simple roots of a polynomial with Lipschitz coefficients,
we can apply a generalized version of the implicit function theorem proved by
Hildebrandt and Graves [7] (or see [22, Theorem 4.B]) to get that ρ(x) and ρ̄(x) are
indeed Lipschitz in a possibly smaller ωx0 . Now let q̃1 be a constant vector so that
[(Λ−1

11 Λ12 − T )(x0) − ρ̄(x0)I]q̃1 �= 0; then q1(x) = [(Λ−1
11 Λ12 − T )(x) − ρ̄(x)I]q̃1 �= 0

and [(Λ−1
11 Λ12−T )(x)−ρ(x)I]q1(x) = 0 for all x ∈ ωx0 (possibly smaller). Note that

q1(x) is as smooth as Λ−1
11 Λ12 − T and ρ̄. Repeating the same argument for ρ̄, we

can construct q2(x), which is an eigenvector associated with ρ̄(x). Since ρ(x) and
ρ̄(x) are distinct in ωx0 , Q(x) = [q1, q2](x) must be nonsingular there (see similar
arguments in [8]). �

Now we provide an example showing that the assumptions given in Proposi-
tion 2.1 are in fact generic.

Example 1. Consider the two-dimensional orthotropic medium where the associ-
ated matrices Λ11, Λ12, and Λ22 are defined as

Λ11 =
[
C11 0
0 C66

]
, Λ12 =

[
0 C12 + C66

C12 + C66 0

]
,

and

Λ22 =
[
C66 0
0 C22

]
.

Note that C11, C22, C66 are all positive. The related quadratic pencil is now written
as [

C11p
2 + C66 (C12 + C66)p

(C12 + C66)p C66p
2 + C22

]
.

We can show that if all C’s are locally Lipschitz functions and satisfy the relation
(2.15)
(C11C22 − C2

12 − 2C12C66)2 − 4C11C22C
2
66 =: ∆ > 0 and C12 + C66 �= 0 ∀ x ∈ Ω,

or

(2.16) ∆ < 0, C12 + C66 �= 0, and
√

C11C22 − C66 �= 0 ∀ x ∈ Ω,

then the assumptions in Proposition 2.1 hold true. To verify this, we first observe
that if ∆ �= 0, then

det
[

C11p
2 + C66 (C12 + C66)p

(C12 + C66)p C66p
2 + C22

]
= C11C66p

4 + [(C11C22 + C2
66) − (C12 + C66)2]p2 + C22C66 = 0

gives rise to four distinct roots, which are locally Lipschitz. If ∆ > 0, then all roots
are purely imaginary (p2 is real-valued). Now let θ(x) be any root (eigenvalue) and
choose the associated eigenvector

z(x) =

[
1

− (C11θ2+C66)
(C12+C66)θ

]
.

Then it is easy to see that [z, z̄] is nonsingular because the second component of z
has a nonvanishing imaginary part. Thus, we have verified condition (2.15).

Now we look at condition (2.16). Let θ(x) and z(x) be chosen as above. In this
case, θ2 is a complex-valued function (with nonvanishing real and imaginary parts)
and so is θ. To see that [z, z̄] is nonsingular, it suffices to show that (C11θ2+C66)

(C12+C66)θ
has
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a nonvanishing imaginary part. We prove this by contradictory arguments. Assume
that (C11θ2+C66)

(C12+C66)θ
becomes real-valued at some point x0. Then we must have that

(C11θ
2 + C66)

(C12 + C66)θ
=

(C11θ̄
2 + C66)

(C12 + C66)θ̄
at x0

which leads to
C11|θ|2 = C66 at x0.

Note that |θ|2 =
√

C22
C11

. Therefore, we have that
√

C11C22 = C66 at x0, which is a
contradiction. �

In next example we consider the isotropic case. It turns out that the assumptions
in Proposition 2.1 hold without further restriction on the Lamé coefficients other
than the usual strong ellipticity condition.

Example 2. Let the medium be isotropic; then we have that

C11 = C22 = λ + 2µ, C12 = λ, C66 = µ

in Example 1, where λ(x) and µ(x) are locally Lipschitz functions in Ω. Assume
that µ(x) > 0 and λ(x)+2µ(x) > 0 for all x ∈ Ω. Then the eigenvalues of the related
quadratic pencil are ±i (repeated) with associated eigenvectors t[1,∓i]. Therefore,
if we choose θ = i and z = t[1,−i], then the assumption of Proposition 2.1 is clearly
satisfied. Furthermore, we can compute that

Λ−1
11 Λ12 − T =

[
0 −µ

λ+2µ
λ+2µ

µ 0

]
.

So when we take

Q =
[

1 1
−λ+2µ

µ i λ+2µ
µ i

]
,

we get that

Q−1(Λ−1
11 Λ22 − T )Q = diag(i,−i). �

Now, in view of Proposition 2.1, we define a Lipschitz invertible matrix

P (x) =
[
[z, z̄] 0

0 Q

]
and set W = PV in ωx0 . Then from (2.11) we obtain that

(2.17) ∂1V + Ñ∂2V + M̃V = 0 (a.e. in ωx0),

where

Ñ =
[
diag(−µ,−µ̄) 0

n diag(ρ, ρ̄)

]
and

M̃ = P−1∂1P + P−1N∂2P + P−1MP ∈ L∞(ωx0).
As we have mentioned in the Introduction, N is not necessarily Lipschitz diagonal-
izable since −µ(x) and ρ(x) may coincide at some points in ωx0 , and n(x) is merely
essentially bounded. Now, to prove the UCP for (1.2), it suffices to prove that for
(2.17). To do this, we will derive some Carleman estimates, which will be carried
out in the following section.
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2.2. Carleman estimates. Let Lλv = ∂1v+λ(x)∂2v be a first order scalar elliptic
operator, where λ(x) = α(x) + iβ(x) is a locally Lipschitz function and β(x) never
vanishes in R

2. Given 0 < r0 < 1, define U = {v ∈ C∞
0 (R2 \ {0}) : supp(v) ⊂ Br0},

where Br0 is the disk centered at the origin with radius r0. From now on, we use c
or c̃ to denote general positive constants whose values may vary from line to line.

Theorem 2.2. There exist a constant c > 0 and a sufficiently large number s0 > 0
such that for all v ∈ U and s ≥ s0 we have that

(2.18) s2

∫
r−σ−s−2φ2

s|v|2dx ≤ c

∫
r−σφ2

s|Lλv|2dx,

where r = |x|, φs = exp(r−s) and σ = σs = σ0 + σ1s with σ0, σ1 ∈ R.

Proof. The proof of the theorem is motivated by Hile and Protter’s paper [8] in
which they considered the system of equations without the parameter σ. As in
[8], we will work on a slightly different operator instead of Lλ. For simplicity, we
denote L := Lλ. Define the scalar function

η(x) =
1
2
(
∂1β

β
+ i∂2β + α

∂2β

β
)

and consider the operator

L̃v = Lv + ηv = ∂1v + λ∂2v + ηv.

It is easily seen that there exists a constant c > 0 such that

(2.19) |L̃v| ≤ |Lv| + c|v|.

Now we set ψ(r) = r−s − σ
2 log r and denote w = eψv. Then we can find that

(2.20)
∫

e2ψ|L̃v|2dx =
∫

|∂1w + λ∂2w − ∂1ψw − λ∂2ψw + ηw|2dx.

Following the notations in [8] we set

a1 = ∂1w, a2 = α∂2w, a3 = iβ∂2w, a4 = −(∂1ψw + α∂2ψw),
a5 = −iβ∂2ψw, a6 = 1

2
∂1β
β w, a7 = 1

2 i∂2βw, a8 = 1
2 (α∂2β

β w).

Now from (2.20) we can write
(2.21)∫

e2ψ|L̃v|2dx =
∫
|
∑8

j=1 aj |2dx

=
∫
{|a1 + a2 + a5 + a6 + a8|2 + 2Re

(
(a1 + a2 + a5 + a6 + a8) · (a3 + a4 + a7)

)
+|a3 + a4 + a7|2}dx

≥ 2Re
∫
(a1 + a2 + a5 + a6 + a8) · (a3 + a4 + a7)dx.

It is readily seen that Re(a2ā3) = Re(a5ā4) = Re(a6ā7) = Re(a8ā7) = 0 and

2Re(a2ā7 + a8ā3) = Re(−iα∂2β(w̄∂2w + w∂2w̄)) = 0.

We at once deduce that

2Re
∫

a2ā3dx = 2Re
∫

a5ā4dx = 2Re
∫

a6ā7dx = 2Re
∫

a8ā7dx

= 2Re
∫

(a2ā7 + a8ā3)dx = 0.
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Next, note that

Re(∂2(iβw∂1w̄) + ∂1(−iβw∂2w̄)) = Re(2iβ∂2w∂1w̄ + i∂2βw∂1w̄ − i∂1βw∂2w̄)
= 2Re(a1ā3 + a1ā7 + a6ā3).

Therefore, performing the integration by parts leads to

2Re
∫

(a1ā3 + a1ā7 + a6ā3)dx = 0.

Thus, there are five terms left on the right side of (2.21) needed to be estimated,
namely,

(2.22) 2Re
∫

(a1ā4 + a2ā4 + a5(ā3 + ā7) + a6ā4 + a8ā4)dx.

We begin with the first term of (2.22). Using the integration by parts, we get
that

(2.23)

2Re
∫

a1ā4dx = −2Re
∫

∂1w(∂1ψw̄ + α∂2ψw̄)dx
= −

∫
(∂1ψ∂1|w|2 + α∂2ψ∂1|w|2)dx

=
∫
{(∂2

1ψ + α∂1∂2ψ)|w|2 + ∂1α∂2ψ|w|2}dx
≥

∫
(∂2

1ψ + α∂1∂2ψ)|w|2dx − c
∫
|∂2ψ||w|2dx.

Similarly, we can find that
(2.24)

2Re
∫

a2ā4dx = −2Re
∫

α∂2w(∂1ψw̄ + α∂2ψw̄)dx
= −

∫
(α∂1ψ∂2|w|2 + α2∂2ψ∂2|w|2)dx

=
∫
{(α∂1∂2ψ + α2∂2

2ψ)|w|2 + (∂2α∂1ψ + ∂2α
2∂2ψ)|w|2}dx

≥
∫

(α∂1∂2ψ + α2∂2
2ψ)|w|2dx − c

∫
(|∂2ψ| + |∂1ψ|)|w|2dx

and

(2.25)

2Re
∫

a5ā3dx = −2Re
∫

β2∂2ψw∂2w̄dx
= −

∫
β2∂2ψ∂2|w|2dx

=
∫

β2∂2
2ψ|w|2dx +

∫
∂2β

2∂2ψ|w|2dx
≥

∫
β2∂2

2ψ|w|2dx − c
∫
|∂2ψ||w|2dx.

Furthermore, we can estimate

(2.26)

⎧⎪⎨⎪⎩
2Re

∫
a5ā7dx ≥ −c

∫
|∂2ψ||w|2dx,

2Re
∫

a6ā4dx ≥ −c
∫

(|∂1ψ| + |∂2ψ|)|w|2dx,

2Re
∫

a8ā4 ≥ −c
∫

(|∂1ψ| + |∂2ψ|)|w|2dx.

Combining (2.23), (2.24), (2.25) and (2.26) yields

(2.27) 2Re
∫

(a1ā4 + a2ā4 + a5(ā3 + ā7) + a6ā4 + a8ā4)dx
≥

∫
(∂2

1ψ + 2α∂1∂2ψ + (α2 + β2)∂2
2ψ)|w|2dx − c

∫
(|∂1ψ| + |∂2ψ|)|w|2dx.

Through direct computations, we obtain that

∂jψ = − sr−s−2xj − (σ/2)r−2xj ,

∂2
j ψ =s(s + 2)r−s−4x2

j − sr−s−2 + σr−4x2
j − (σ/2)r−2, j = 1, 2,

and
∂1∂2ψ = s(s + 2)r−s−4x1x2 + σr−4x1x2.

Therefore, by taking s sufficiently large, we can get from (2.27) that

(2.28) 2Re
∫
(a1ā4 + a2ā4 + a5(ā3 + ā7) + a6ā4 + a8ā4)dx

≥ s2
∫

r−s−4(x2
1 + 2αx1x2 + (α2 + β2)x2

2)|w|2dx − cs
∫

r−s−2|w|2dx.
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Note that

(2.29) x2
1 + 2αx1x2 + (α2 + β2)x2

2 = |x1 + λx2|2.

By easy computations, we have the following identity:

(1 + |λ|2)|x1 + λx2|2 = β2(x2
1 + x2

2) + (x1 + αx2)2 + (αx1 + α2x2 + β2x2
2)

2,

which leads to

(2.30) |x1 + λx2|2 ≥ β2r2

1 + sup
Br0

|λ|2 ∀ x ∈ Br0 .

In view of the assumption on the imaginary part of λ, we immediately get that

(2.31) |β(x)| ≥ δ > 0 ∀x ∈ Br0 .

Substituting (2.29), (2.30), (2.31) into (2.28) and taking s large enough, we conclude
that

2Re
∫

(a1ā4 + a2ā4 + a5(ā3 + ā7) + a6ā4 + a8ā4)dx ≥ cs2

∫
r−s−2|w|2dx

and, hence, ∫
e2ψ|L̃v|2dx =

∫
r−σφ2

s|L̃v|2dx ≥ cs2

∫
r−s−2r2ψ|v|2dx

= cs2

∫
r−σ−s−2φ2

s|v|2dx.

Finally, in view of (2.19), we obtain the estimate (2.18). �

To handle the possible nonzero off-diagonal block in Ñ , we need another Carle-
man estimate.

Theorem 2.3. There exist a constant c > 0 and a sufficiently large number s0 > 0
such that for all v ∈ U and s ≥ s0 we have the following estimate:

(2.32)
∫

r−σφ2
s|∂2v|2dx ≤ c

∫
r−σφ2

s(|Lλv|2 + s2r−2s−2|v|2)dx.

Proof. To begin with, we set v = vR + ivI and Lλ = L. Now we can compute
(2.33)∫

r−σφ2
s|Lv|2dx

=
∫

r−σφ2
s{|∂1v|2 + |λ|2|∂2v|2 + 2Re(∂1vλ∂2v)}dx

=
∫

r−σφ2
s(|∂1v|2 + (α2 + β2)|∂2v|2)dx + 2

∫
r−σφ2

sα(∂1vR∂2vR + ∂1vI∂2vI)dx
−2

∫
r−σφ2

sβ(∂1vR∂2vI − ∂1vI∂2vR)dx.

Using the inequality

(2.34) |ab| ≤ (εa2 + ε−1b2)/2 for any ε > 0,

we have that
(2.35)

|
∫

r−σφ2
sα(∂1vR∂2vR + ∂1vI∂2vI)dx|

≤ 1
2

∫
r−σφ2

s{(∂1vR)2 + (∂1vI)2}dx + 1
2

∫
r−σφ2

sα
2{(∂2vR)2 + (∂2vI)2}dx

= ε1
2

∫
r−σφ2

s|∂1v|2dx + 1
2ε−1

1

∫
r−σφ2

sα
2|∂2v|2dx,
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where ε1 > 0 will be chosen later. On the other hand, from the integration by
parts, one can easily derive that

(2.36)

|
∫

r−σφ2
sβ(∂1vR∂2vI − ∂1vI∂2vR)dx|

= | −
∫

∂1(r−σφ2
sβ)∂2vIvRdx +

∫
∂2(r−σφ2

sβ)∂1vIvRdx|
≤ |

∫
{(−σr−σ−2 − 2sr−σ−s−2)φ2

sx1β∂2vIvR + r−σφ2
s∂1β∂2vIvR}dx|

+|
∫
{(−σr−σ−2 − 2sr−σ−s−2)φ2

sx2β∂1vIvR + r−σφ2
s∂2β∂1vIvR}dx|

≤ |
∫

(−σ)r−σ−2φ2
sx1β∂2vIvRdx| + |

∫
(−2s)r−σ−s−2φ2

sx1β∂2vIvRdx|
+|

∫
(−σ)r−σ−2φ2

sx2β∂1vIvRdx| + |
∫
(−2s)r−σ−s−2φ2

sx2β∂1vIvRdx|
+|

∫
r−σφ2

s∂1β∂2vIvRdx| + |
∫

r−σφ2
s∂2β∂1vIvRdx|

≤ 1
2ε2

∫
r−σφ2

sβ
2(∂2vI)2dx + 1

2 |σ|2ε
−1
2

∫
r−σ−4φ2

sx
2
1v

2
Rdx

+1
2ε2

∫
r−σφ2

sβ
2(∂2vI)2dx + 2s2ε−1

2

∫
r−σ−2s−4φ2

sx
2
1v

2
Rdx

+1
2ε2

∫
r−σφ2

s(∂1vI)2dx + 1
2 |σ|2ε

−1
2

∫
r−σ−4φ2

sx
2
2β

2v2
Rdx

+1
2ε2

∫
r−σφ2

s(∂1vI)2dx + 2s2ε−1
2

∫
r−σ−2s−4φ2

sx
2
2β

2v2
Rdx

+1
2ε2

∫
r−σφ2

sβ
2(∂2vI)2dx + 1

2ε−1
2

∫
r−σφ2

s(
∂1β
β )2v2

Rdx

+1
2ε2

∫
r−σφ2

s(∂1vI)2dx + 1
2ε−1

2

∫
r−σφ2

s(∂1β)2v2
Rdx

≤ 3ε2
2

∫
r−σφ2

s{(∂1vI)2 + β2(∂2vI)2}dx + cs2ε−1
2

∫
r−σ−2s−2φ2

sv
2
Rdx,

where ε2 > 0 will be determined below. In deriving (2.36), we once again used the
inequality (2.34). Combining (2.33), (2.35), (2.36) and choosing 3ε2 = 1 − ε1 with
0 < ε1 < 1, we obtain that
(2.37)∫

r−σφ2
s|Lv|2dx

≥ (1 − ε1 − 3ε2)
∫

r−σφ2
s|∂1v|2dx +

∫
r−σφ2

s(α
2 + β2 − ε−1

1 α2 − 3ε2β
2)|∂2v|2dx

−2cε−1
2 s2

∫
r−σ−2s−2φ2

s|v|2dx
≥

∫
r−σφ2

s((1 − ε−1
1 )α2 + ε1β

2)|∂2v|2dx − 6c(1 − ε1)−1s2
∫

r−σ−2s−2φ2
s|v|2dx.

Since |β(x)| ≥ δ > 0 for all x ∈ Br0 , we can find an ε1 sufficiently close to 1 such
that

(2.38) (1 − ε−1
1 )α2 + ε1β

2 ≥ δ̃ > 0 ∀ x ∈ Br0 .

Now the Carleman estimate (2.32) follows from (2.37) and (2.38). �
2.3. Proof of the UCP. Here we will prove a weaker version of UCP for (1.2).
Namely, we would like to show that a solution u of (1.2) that vanishes at one
point in Ω of any exponential order must vanish in Ω provided that the assumption
of Proposition 2.1 holds near every point in Ω. It is clear that the UCP follows
from this version of continuation property. We say that u vanishes at x0 of any
exponential order if

lim
|x−x0|→0

exp(|x − x0|−s)u(x) = 0 ∀ s > 0.

Theorem 2.4. Assume that the assumptions of Proposition 2.1 are satisfied near
every point in Ω. Let u vanish at some x0 ∈ Ω of any exponential order; then u ≡ 0
in Ω.

Proof. Without loss of generality, we assume x0 = 0. Let the assumptions of
Proposition 2.1 hold in ω0 ⊂ Ω, where ω0 is a small neighborhood of 0. Then
we can convert (1.2) into (2.17) in ω0. Define r0 = min{1/2, dist(0, ∂ω0)}. Now
let χ ∈ C∞

0 (R2) be a cut-off function satisfying 0 ≤ χ ≤ 1, χ|Br0/2 = 1 and
supp (χ) ⊂ Br0 . Define Ṽ = t(ṽ1, ṽ2, ṽ3, ṽ4) = χV . Then from (2.17), we get that

(2.39) ∂1Ṽ + Ñ∂2Ṽ = −M̃Ṽ + G,
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where G = t(g1, g2, g3, g4) ∈ L2(Ω) is supported in Br0 \ Br0/2. Denote λ1 = λ̄2 =
−θ and λ3 = λ̄4 = ρ. We set

H = γ
∫

r−sφ2
s(|Lλ1 ṽ1|2 + |Lλ2 ṽ2|2)dx +

∫
φ2

s(|Lλ3 ṽ3|2 + |Lλ4 ṽ4|2)dx,
K = γ

∫
r−sφ2

s(|ṽ1|2 + |ṽ2|2)dx +
∫

φ2
s(|ṽ3|2 + |ṽ4|2)dx,

J = γ
∫

r−sφ2
s(|g1|2 + |g2|2)dx +

∫
φ2

s(|g3|2 + |g4|2)dx,

where γ > 0 will be chosen later. It follows from (2.39) that

(2.40) H ≤ c(K + J +
∫

φ2
s(|∂2ṽ1|2 + |∂2ṽ2|2)dx).

By the standard approximation argument, we can see that ṽj satisfies estimates
(2.18) and (2.32) for all 1 ≤ j ≤ 4. Now replacing the last term of (2.40) by the
estimate (2.32) for Lλ1 and Lλ2 with σ = 0, we have that

(2.41) H ≤ c(K+J+
∫

φ2
s(|Lλ1 ṽ1|2+|Lλ2 ṽ2|2)dx+s2

∫
r−2s−2φ2

s(|ṽ1|2+|ṽ2|2)dx).

Substituting the estimate (2.18) for Lλ1 and Lλ2 with σ = −s into the last term of
(2.41) leads to

(2.42) H ≤ c(K + J +
∫

r−sφ2
s(|Lλ1 ṽ1|2 + |Lλ2 ṽ2|2)dx).

In deriving (2.42), we also use the obvious inequality r−s > 1 for any 0 < r < 1
and s > 0. Taking γ � 1, we can absorb the last term of (2.42) and get

(2.43) H ≤ c(K + J).

From now on we fix the parameter γ.
Next repeatedly using σ = s in (2.18) for Lλ1 , Lλ2 and σ = 0 in (2.18) for Lλ3 ,

Lλ4 , we find that

(2.44)
s2

∫
r−2s−2φ2

s(|ṽ1|2 + |ṽ2|2)dx + s2
∫

r−s−2φ2
s(|ṽ3|2 + |ṽ4|2)dx

≤ c
( ∫

r−sφ2
s(|Lλ1 ṽ1|2 + |Lλ2 ṽ2|2)dx +

∫
φ2

s(|Lλ3 ṽ3|2 + |Lλ4 ṽ4|2)dx
)

≤ cH ≤ c(K + J).

In view of the inequalities 1 < r−s < r−s−2 < r−2s−2 for 0 < r < 1, by taking
s � 1, we get from (2.44) that

s2
∫

r−s−2φ2
s|Ṽ |2dx

≤ s2
∫

r−2s−2φ2
s(|ṽ1|2 + |ṽ2|2)dx + s2

∫
r−s−2φ2

s(|ṽ3|2 + |ṽ4|2)dx
≤ c

( ∫
r−sφ2

s(|ṽ1|2 + |ṽ2|2)dx +
∫

φ2
s(|ṽ3|2 + |ṽ4|2)dx

)
+c

( ∫
r−sφ2

s(|g1|2 + |g2|2)dx +
∫

φ2
s(|g3|2 + |g4|2)dx

)
≤ c

∫
r−s−2φ2

s|Ṽ |2dx + c
∫

r−s−2φ2
s|G|2dx

≤ c̃
∫

r−s−2φ2
s|G|2dx,

which leads to

(2.45) s2

∫
Br0/2

r−s−2φ2
s|Ṽ |2dx ≤ c

∫
Br0\Br0/2

r−s−2φ2
s|G|2dx.

Since r−s−2φ2
s is a strictly decreasing function, (2.45) implies that

s2

∫
Br0/2

Ṽ dx ≤ c

∫
Br0\Br0/2

|G|2dx < ∞
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and thus Ṽ = V = 0, i.e. u = 0, on Br0/2 if we choose s sufficiently large. Now the
standard arguments imply that the set {x ∈ Ω : u = 0} is open and closed in Ω.
Since Ω is connected, we must have u ≡ 0 in Ω. �

In view of Example 2, we know that the assumption of Proposition 2.1 holds
automatically for the isotropic elastic tensor. So from Theorem 2.4 we immedi-
ately conclude that the UCP is valid for the isotropic elasticity system with locally
Lipschitz Lamé coefficients.

Corollary 2.5. Let C(x) be isotropic, i.e.

Cijkl(x) = λ(x)δijδkl + µ(x)(δikδjl + δilδjk).

Assume that λ, µ are locally Lipschitz in Ω and λ + 2µ > 0, µ > 0 for all x ∈ Ω.
Then (1.2) possesses the UCP.

3. Applications to inverse problems

As mentioned in the Introduction, we would like to investigate some applications
of the UCP proved in the previous section to the object identification problem.
Another application of the UCP to the limiting absorption principle for the same
system was considered by the authors in [19]. To study our inverse problems here,
the Runge approximation property with Dirichlet constraints for (1.2) is a key
ingredient. It has been known that this Runge property is an easy consequence of
the UCP. Its proof can be found, for example, in [11] or [12].

Theorem 3.1. Let O and Ω be two open bounded domains with Lipschitz bound-
aries such that Ō ⊂ Ω. Assume that all components of C are uniformly Lipschitz
functions in Ω. Moreover, suppose that the quadratic pencil Λ11p

2 +Λ12p+Λ22 has
at least one eigenpair (θ(x), z(x)) which is uniformly Lipschitz in Ω and [z, z̄] is
nonsingular for all x ∈ Ω̄. Denote Γ0 a subset of the boundary ∂Ω. Let u ∈ H1(O)
satisfy

LCu = 0 in O.

Then for any compact subset K ⊂ O such that Ω \ K is connected and any ε > 0,
there exists w ∈ H1(Ω) satisfying

LCw = 0 in Ω

with supp (w|∂Ω) ⊂ Γ0 such that

‖w − u‖H1(K) < ε.

Remark. Under the assumptions of Theorem 3.1, we can extend C, denoted by Ĉ,
to a slightly larger domain Ω̂ such that the same assumptions are satisfied for Ĉ in
Ω̂. Therefore, the UCP holds for (1.2) with Ĉ in Ω̂.

In this section we consider the inverse problem of identifying inclusions or cavities
embedded in an anisotropic elastic plane region by boundary measurements. To
begin, assume that D is an open subset of Ω with Lipschitz boundary such that
Ω \ D̄ is connected. The domain D stands for the region of the inclusion or cavity
embedded in Ω. In the degenerate case where the domain D represents the crack,
the inverse problem of identifying D by near-field measurements was consider in
[16] and [17]. To simply our presentation, we will not discuss this matter here.
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Let the reference elastic tensor C(x) satisfy the conditions given in Theorem 3.1.
Here we require that the elastic tensor C(x) satisfies the strong convexity condition,
namely, there exists κ > 0 such that for any symmetric matrix E we have

(3.1) C(x)E · E ≥ κ
∑
i,j

EijEij = κ|E|2 ∀ x ∈ Ω.

It is obvious that (3.1) implies the strong ellipticity condition (2.1). Next we as-
sume that C̃(x) is some fourth-rank symmetric tensor with L∞ components such
that C + χDC̃ satisfies the strong convexity condition (3.1), where χD denotes the
characteristic function of D. Then it is easy to show that there exists a unique
solution u ∈ H1(Ω) to {

∇ · ((C + χDC̃)∇u) = 0 in Ω,

u = f on ∂Ω

for any f ∈ H1/2(∂Ω). So we can define the Dirichlet-to-Neumann (displacement-
to-traction) map Λinc : H1/2(∂Ω) → H−1/2(∂Ω) by

Λinc(f) = (C∇u)ν|∂Ω,

where ν stands for the unit outer normal of ∂Ω (or ∂D). Equivalently, Λinc can be
defined by the formula

〈Λinc(f), g〉 =
∫

Ω

(C + χDC̃)∇u · ∇vdx,

where v ∈ H1(Ω) with v|∂Ω = g. The region D is called an inclusion if the medium
in D is different from the reference medium. To describe it more precisely, we
assume that C̃ satisfies the following jump condition:
(3.2)
∀ x ∈ ∂D, ∃ Cx > 0, ∃ δx > 0 such that C̃(y)E·E ≥ Cx|E|2 or C̃(y)E·E ≤ −Cx|E|2

for almost all y ∈ Bδx
(x) ∩ D and any symmetric matrix E. We are interested in

the following inverse problem

IP.I Reconstruct the inclusion D from the knowledge of Λinc(f)|Γ0 for infinitely
many f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ0, where Γ0 is a nonempty subset of ∂Ω.

Likewise, in the extreme case, if the tensor C̃ becomes −C, then the domain D
corresponds to a cavity. In the same way, we can prove that there exists a unique
solution u ∈ H1(Ω \ D̄) to the following boundary value problem:{

∇ · (C∇u) = 0 in Ω \ D̄,

(C∇u)ν = 0 on ∂D, (C∇u)ν = g on ∂Ω

for any g ∈ H1/2(∂Ω). Therefore, we can define the Dirichlet-to-Neumann map
Λcav : H1/2(∂Ω) → H−1/2(∂Ω) by

Λcav(g) = (C∇u)ν|∂Ω.

Similarly, we will consider the inverse problem
IP.C Reconstruct the cavity D from the knowledge of Λcav(g)|Γ0 for infinitely

many g with supp (g) ⊂ Γ0.
Note that uniqueness theorems of determining the inclusion or cavity embedded

in an elastic body have been established in [11] and [12], where the reference medium
is assumed to be either inhomogeneous isotropic or anisotropic with homogeneous
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or analytic elasticity tensors. Besides, a reconstruction algorithm for recovering the
cavity is given in [12]. A similar algorithm can be developed for the inclusion case.

Having the Runge approximation property Theorem 3.1 at hand, we can now
apply the methods in [11] and [12] to solve IP.I and IP.C. For IP.I, we prove that
(see [11])

Theorem 3.2 (Identification of inclusion). Let (D1, C̃1) and (D2, C̃2) be two sets
of inclusion data satisfying all conditions stated in this section. If

Λinc1(f) = Λinc2(f) on Γ0

for all f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ0, then

D1 = D2.

The proof of Theorem 3.2 is based on integral inequalities

(3.3)
∫

D

{C−1−(C +C̃)−1}C∇w ·C∇wdx ≤ 〈(Λinc−Λ∅)f, f〉 ≤
∫

D

C̃∇w ·∇wdx,

where w ∈ H1(Ω) solves

(3.4)

{
∇ · (C∇w) = 0 in Ω,

w|∂Ω = f

and Λ∅ is the Dirichlet-to-Neumann map when D is absent, namely, Λ∅ is the
map associated with (3.4). Here C−1 (also (C + C̃)−1) is called the compliance
tensor (see, e.g., [6]). Note that we do not assume C̃1 = C̃2 in Theorem 3.2.
Also, the regularity of the medium inside of the inclusions is only assumed to be
essentially bounded. Theorem 3.2 provides the uniqueness result in determining
the inclusion embedded in an inhomogeneous anisotropic elastic plane region by
the localized Dirichlet to Neumann map. For the sake of completeness, we want to
briefly describe a reconstruction algorithm for identifying the inclusion. Let y ∈ Ω
and G0(·; y) be the fundamental solution for the operator ∇ ·C(y)∇. One can find
e(·; y) such that

∇ · (C(x)∇e(·; y)) = 0 in Ω \ {y}
and

(e(·; y) − G0(· − y; y)b)y∈Ω is bounded in H1(Ω),
where b is a nonzero constant vector. The proof for the existence of e(·; y) is
elementary and therefore we leave it to the reader. It has been proved in [11] that
if y ∈ ∂D, then

(3.5)
∫

D∩Br(y)

|Sym∇{G0(x − y; y)b}|2dx = ∞

for any ball Br(y) centered at y with radius r and nonzero vector b, where Sym(·)
denotes the symmetric part of a matrix.

A continuous map c : [0, 1] → Ω̄ is called a needle if it satisfies (i) c(0), c(1) ∈ ∂Ω;
(ii) c(t) ∈ Ω for 0 < t < 1. In view of Theorem 3.1, we can see that for each
needle and t ∈ (0, 1), there exists a sequence {fj} = {fj(·; c(t))} in H1/2(∂Ω) with
supp (fj) ⊂ Γ0 such that the solution wj of (3.4) with f = fj satisfies wj → e(·; c(t))
in H1

loc(Ω \ {c(t′) : 0 < t′ ≤ t}) as j → ∞. We call {fj} a fundamental sequence
with respect to Γ0. For each needle c, define

t(c) = sup{0 < s < 1 : C(t) ∈ Ω \ D̄ (0 < t < s)}.
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It should be noted that 0 < t(c) ≤ 1, and if t(c) = 1, then c never touches ∂D. On
the other hand, if t(c) < 1, then c touches ∂D at t = t(c) at the first time. Since
Ω \ D̄ is connected, we have that

(3.6) ∂D = {c(t(c)) : c is a needle and t(c) < 1}.
Denote

Iinc(t, c) = lim
j→∞

〈(Λinc − Λ∅)fj(·; c(t)), fj(·; c(t))〉

and

Tinc(c) = {0 < s < 1 : Iinc exists for all 0 < t < s and sup
0<t<s

|Iinc(t, c)| < ∞}.

Using (3.2), (3.3), (3.5) and pursuing the arguments in [11], we can show that
Tinc(c) = (0, t(c)) and therefore t(c) = sup Tinc(c) (see similar arguments in [12]).
In summary, we have a reconstruction algorithm for determining the inclusion as
follows.

Reconstruction algorithm for IP.I.

(i) For each needle c and each t∈(0, 1), find the fundamental sequence {fj(·; c(t))}
with respect to Γ0.

(ii) Compute Tinc(c) and set t(c) = sup Tinc(c).
(iii) Use the formula (3.6) to reconstruct ∂D.

Now for IP.C, we show that (see [12])

Theorem 3.3 (Identification of cavity). Assume that D1 and D2 are two cavities
and Ω \ D̄1 and Ω \ D̄2 are connected. Let

Λcav1(f) = Λcav2(f) on Γ0

for all f ∈ H1/2(∂Ω) with supp (f) ⊂ Γ0; then D1 = D2.

As for reconstructing the cavity, we follow the lines of the above algorithm and
define

Icav(t, c) = lim
j→∞

〈(Λ∅ − Λcav)fj(·; c(t)), fj(·; c(t))〉

and

Tcav(c) = {0 < s < 1 : Icav exists for all 0 < t < s and sup
0<t<s

Icav(t, c) < ∞}.

Note that 〈(Λ∅ − Λcav)f, f〉 ≥ 0 for all f ∈ H1/2(∂Ω). Now using (3.5) and the
inequalities

1
M

∫
D

|∇e(x; c(t))|2dx ≤ Icav(t, c) ≤ M

∫
D

|∇e(x; c(t))|2dx

for some constant M > 0, one can prove that Tcav(c) = (0, t(c)) and thus t(c) =
sup Tcav(c) (see the arguments in [12]). So a reconstruction algorithm for identifying
the cavity is described as follows.

Reconstruction algorithm for IP.C.

(i) For each needle c and each t∈(0, 1), find the fundamental sequence {fj(·; c(t))}
with respect to Γ0.

(ii) Compute Tcav(c) and set t(c) = sup Tcav(c).
(iii) Use the formula (3.6) to reconstruct ∂D.
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