行政院國家科學委員會專題研究計畫成果報告

計畫類別:□個別型計畫 □整合型計畫

計畫編號: NSC 好 --- 21/5---- MC(2--- (C)

執行期間: 87 年 8 月 1 日至 99 年 7 月 3/日

個別型計畫:計畫主持人: 李 白 飛

共同主持人:

整合型計畫:總計畫主持人:

子計畫主持人:

註:整合型計畫總報告與子計畫成果報告請分開編印各成一册

, 彙整一起繳送國科會。

處理方式:☑可立即對外提供參考

(請打∨)□一年後可對外提供參考

□兩年後可對外提供參考

(必要時,本會得展延發表時限)

執行單位:國立台灣大學數學系

中華民國 引年 /2 月 /3 日

ABSTRACT

Let A be a prime ring with nonzero right ideal R and
f: R - A an additive map. Next, let & n. n no be
reatural numbers. Suppose that [[[fix), x"] x"] x"], x" = 0
for all x & R. Then it is proved that [fix), x] = 0 provided
that either charA = 0 or charA > n, + n2 + + ng. This result
is a simultaneous generalization of a number of results
proved earlier

Key words: prime ring, additive map, Engel condition

摘 要

設A為一質環 R為A中一非聚右理想, $f: R \to A$
為一可加性映射、又設克, ni, ni, ni, hi, 皆為自然数.
假設對限中任一文恆有[…1[fin], x"], x"], x"], x"], x"], x"], x"], x"
則當 char A = c 或 char A > M, + Mz+ ·· + Mz 時, [fu), x]=c
對不中任一义恒成立,這個定理同時报度了先前已
整遇的許多相關结果.

關鍵詞:質環、可加性映射, Engel 條件

On Additive Maps of Prime Rings Satisfying Engel Condition

K.I. BEIDAR, Y. FONG

Department of Mathematics,

National Cheng-Kung University, Tainan, Taiwan

P.-H. LEE AND T.-L. WONG

Department of Mathematics, National Taiwan University,

Taipei, Taiwan

Abstract

Let A be a prime ring with nonzero right ideal R and $f: R \to A$ an additive map. Next, let k, n_1, n_2, \ldots, n_k be natural numbers. Suppose that $[\ldots[[f(x), x^{n_1}], x^{n_2}], \ldots, x^{n_k}] = 0$ for all $x \in R$. Then it is proved in Theorem 1.1 that [f(x), x] = 0 provided that either $\operatorname{char}(A) = 0$ or $\operatorname{char}(A) > n_1 + n_2 + \ldots + n_k$. Theorem 1.1 is a simultaneous generalization of a number of results proved earlier.

1991 Mathematics Subject Classification, Primary 16N60, Secondary 16R50

1 Introduction

We refer the reader to the book of Beidar, Martindale and Mikhalev [3] for the basic terminology and results of Rings with Generalized Polynomial Identities Theory (i.e., Rings with GPI).

Let A be a ring, $x, y \in A$, k > 1 a natural number and $\overline{n} = (n_1, n_2, \dots, n_k)$ a k-tuple of natural numbers. Setting [x, y] = xy - yx, we define $[x, y^{\overline{n}}]_k$ inductively as follows:

$$\begin{array}{rcl} [x,y^{\overline{n}}]_0 & = & x, \\ [x,y^{\overline{n}}]_1 & = & xy^{n_1}-y^{n_1}x, \\ [x,y^{\overline{n}}]_{t+1} & = & [[x,y^{\overline{n}}]_t,y^{n_{t+1}}], \ t \coloneqq 1,2,\ldots,k-1. \end{array}$$

If $n_1 = n_2 = \ldots = n_k = 1$, then we shall write $[x,y]_k$ in place of $[x,y^{\overline{n}}]_k$. Note that $[x,y^n]_k = [x,y^{\overline{n}}]_k$ if $n_1 = n_2 = \ldots = n_k = n$. Next, we set $|\overline{n}| = n_1 + n_2 + \ldots + n_k$. Given $1 \le i < k$, we set $\overline{n}_{(i)} = (n_{i+1},\ldots,n_k)$. For simplicity

we shall write $[x, y^{\overline{n}\#}]_{k-i}$ in place of $[x, y^{\overline{n}(i)}]_{k-i}$. Let L be a subgroup of (A, +). An additive map $f: L \to A$ is called k-commuting (k-centralizing) on L if $[f(x), x]_k = 0$ (respectively, $[f(x), x]_k \in Z(A)$ the center of A) for all $x \in L$.

From now on we assume that A is a prime ring with extended centroid C and Martindale right ring of quotients Q, $S = AC \subseteq Q$ is a C-subalgebra of Q generated by A, k is a natural number, and $\overline{n} = (n_1, n_2, \ldots, n_k)$ is a k-tuple of natural numbers. Recall that A is called centrally closed if A = S.

The study of commuting and centralizing maps goes back to 1957 when Posner [25] showed that the existence of a nonzero 1-centralizing derivation in a prime ring A implies that A is commutative. Mayne [23] proved the analogous result for centralizing automorphisms. A variety of results on commuting and centralizing maps have since been obtained by a number of authors (see [2], [4-20], [23-25]) Many of these isolated results were simultaneously generalized by Brešar [6] and [8] which proved that if $f: A \rightarrow A$ is an additive 2-commuting mapping and $\operatorname{char}(A) \neq 2$, then there exists $\lambda \in C$ and an additive map $\mu : A \to A$ C such that $f(x) = \lambda x + \mu(x)$ for all $x \in A$. Further, on the one hand Lanski [16] studied k-commuting derivations and Brešar [10] described k-commuting additive maps, on the other hand Brešar and Hvala [11] considered a condition $[f(x), x^2] = 0$ for all $x \in A$ where f is an additive mapping (see also [4]). Also a number of papers were devoted to the study of commuting and centralizing maps $f: L \to A$ where L is either right ideal of R or some other subgroups [9], [12], [15], [18], [19], and [20] (for further references see [8] and [19]). Our goal is to prove the following results which are generalizations of many of the results mentioned above. Note that our approach is different from that in [10] and is based on the technique developed in [2].

Theorem 1.1 Let A be a prime ring with right ideal R and additive map $f: R \to S$ such that $[f(x), x^{\overline{n}}]_k = 0$ for all $x \in R$. Suppose that either $\operatorname{char}(A) = 0$ or $\operatorname{char}(A) > |\overline{n}|$. Then [f(x), x] = 0 for all $x \in R$.

Corollary 1.2 Let A be a prime ring with nonzero right ideal R and additive map $f: R \to S$ such that $[f(x), x^{\overline{n}}]_k = 0$ for all $x \in R$. Suppose that $[R, R]R \neq 0$ and either $\operatorname{char}(A) = 0$ or $\operatorname{char}(A) > |\overline{n}|$. Then there exist $\lambda \in C$ and an additive map $\mu: R \to C$ such that $f(x) = \lambda x + \mu(x)$ for all $x \in R$.

2 Preliminary Results

Let t be a natural number and $y \in A$, we define maps $J_{t,y}: A \to A$ and $ad(y): A \to A$ by the rules $J_{t,y}x = \sum_{i=0}^t y^i x y^{-i}$ and ad(y)x = [x,y] for all $x \in A$. Given a natural number s one can easily show that

$$\begin{array}{rcl} J_{t,y}J_{s,y} & = & J_{s,y}J_{t,y}, \\ \operatorname{ad}(y^s)J_{t,y} & = & J_{t,y}\operatorname{ad}(y^s), \end{array}$$

$$ad(y^{s}) = J_{s-1,y}ad(y),$$

$$ad(y^{st}) = J_{s-1,y}ad(y^{t}),$$

$$[x, y^{\overline{n}}]_{k} = ad(y^{n_{k}})ad(y^{n_{k-1}}) \dots ad(y^{n_{1}})x \text{ and}$$

$$[x, y^{\overline{n}}]_{k} = J_{n_{k-1},y}J_{n_{k-1}-1,y} \dots J_{n_{1}-1,y}ad(y)^{k}x$$
(1)

for all $x, y \in A$.

In what follows we shall assume that A is a prime ring such that either $\operatorname{char}(A)=0$ or $\operatorname{char}(A)>|\overline{n}|, R$ is an additive subgroup of A and $f:R\to S$ is an additive map. We consider the following conditions:

If
$$q \in Q$$
 and $[q, z^{\overline{n}}]_k = 0$ for all $z \in R$, then $q \in C$ (2)

$$[f(x), x^{\overline{n}}]_k = 0 (3)$$

$$[f(y), x^{\overline{n}}]_k + \sum_{t=0}^{k-1} [[[f(x), x^{\overline{n}}]_t, J_{n_{t+}-1, x}y], x^{\overline{n}\#}]_{k-t-1} = 0$$
(4)

where $x, y \in R$. We shall assume that f satisfies 3) for all $x \in R$. If $\operatorname{char}(A) = 2$, then $|\overline{n}| = 1$, k = 1 and so [f(x), x] = 0 for all $x \in R$. Therefore we may assume without loss of generality that $\operatorname{char}(A) \neq 2$. Now our goal is to prove the following result.

Theorem 2.1 Let A be a prime ring with a nonzero additive subgroup R, extended centroid C, central closure S and additive map $f: R \to S$. Suppose that the condition (2) holds in A and f satisfies (3) for all $x \in R$. Denote by W the C-subspace of S generated by R. Next, let $m = lcm(n_1, n_2, \ldots, n_k)$ be the least common multiple of n_1, n_2, \ldots, n_k , F an infinite extension of C, $D = S \otimes_C F$, and $G = W \otimes_C F$. Then D is a prime ring. Further, there exists a C-linear map $h: G \to D$ such that $f(x) - h(x) \in C$ for all $x \in R$ and

$$[h(x), x^m]_k = 0 (5)$$

$$[h(y), x^m]_k + \sum_{t=0}^{k-1} [[[h(x), x^m]_t, J_{m-1,x}y], x^m]_{k-t-1} = 0$$
 (6)

for all $x, y \in G$. Finally, assume that there exists a natural number s such that $x^s \in R$ for all $x \in R$ and set $J_0 = J_{s-1,x^m}^k$, $J_1 = J_{m-1,x}$, $J_2 = J_{m-1,x^s}$. Then

$$\sum_{t=0}^{k-1} \{ [[[h(x^s), x^{sm}]_t, J_2 y], x^{sm}]_{k-t-1} - J_0[[[h(x), x^m]_t, J_1 y], x^m]_{k-t-1} \} = 0 \quad (7)$$

for all $x, y \in G$.

The proof of the theorem rests on the following lemmas.

Lemma 2.2 The map f satisfies (4) for all $x, y \in R$.

Proof. Let \mathcal{Z} be the ring of integers. We set

$$t = \left\{ \begin{array}{ccc} \infty & \text{if} & \text{char}(A) = 0, \\ \text{char}(A) & \text{if} & \text{char}(A) > 0. \end{array} \right.$$

By assumption we can choose distinct elements $r_1, r_2, \ldots, r_{|\overline{n}|} \in \mathcal{Z}$ such that $0 < r_i < t$ for all $i = 1, 2, \ldots, |\overline{n}|$. Clearly f(nx) = nf(x) for all $n \in \mathcal{Z}$. Now we substitute $x + r_i y$ for x in (3), $i = 1, 2, \ldots, |\overline{n}|$. Using equalities $[f(x), x^{\overline{n}}]_k = 0 = [f(y), y^{\overline{n}}]_k$ and a van der Monde determinant argument we complete the proof.

Let B be an algebra over a field F, X an infinite set, $F\langle X \rangle$ the free F-algebra on X, and $B\langle X \rangle$ the free product of F-algebra; B and $F\langle X \rangle$.

Lemma 2.3 Let K be a subring of F, $g(x_1, x_2, \ldots, x_n) \in B\langle X \rangle$ and U a submodule of the K-module B. Denote by V the F-subspace of B generated by U. Next, let $h_i: V \to B$ be an F-linear map, $i=1,2,\ldots,n$. Suppose that $g(h_1(u_1),\ldots,h_n(u_n))=0$ for all $u_1,u_2,\ldots,u_n\in U$ and $\deg_{x_i}(g)<|K|$ for all $i=1,2,\ldots,n$. Then $g(h_1(v_1),\ldots,h_n(v_n))=0$ for all $v_1,v_2,\ldots,v_n\in V$. Next, let $f:V\to B$ be an F-linear map satisfying (3) and (4) for all $x,y\in U$. Then f satisfies (3) and (4) for all $x,y\in V$.

Proof. Choose an F-basis $\{v_s \mid s \in S\} \subseteq U$ of V and extend it to an F-basis $\{v_t \mid t \in T\}$ of B (i.e., $S \subseteq T$). Let M be any nonempty finite subset of S. It is enough to show that $g(h_1(y_1), \ldots, h_n(y_n)) = 0$ for all $y_1, y_2, \ldots, y_n \in \sum_{m \in M} Fv_m$. Clearly there exist a finite subset $L \subseteq T$ and polynomials

$$P_l(z_{im} \mid 1 \le i \le n, \ m \in M) \in F[z_{im} \mid 1 \le i \le n, \ m \in M], \ l \in L,$$

such that

$$g(h_1(y_1),...,h_n(y_n)) = \sum_{l \in L} P_l(\lambda_{im} \mid 1 \le i \le n, m \in M) v_l$$

for all $y_i = \sum_{m \in M} \lambda_{im} v_m$, $i = 1, 2, \ldots, n$. Since $\deg_{x_i}(g) < |K|$ for all i, we conclude that $\deg_{z_{im}}(P_l) < |K|$ for all i, m as yiell. If all λ_{im} 's are in K, then y_i 's are in U and so $g(h_1(y_1), \ldots, h_n(y_n)) = 0$ which implies that $P_l(\lambda_{im}) = 0$. Recalling that $\deg_{z_{im}}(P_l) < |K|$, we infer that $P_l(z_{im}) = 0$ for all l and hence $g(h_1(y_1), \ldots, h_n(y_n)) = 0$ for all $y_1, y_2, \ldots, y_n \in V$. The last statement follows from the first one. The proof is complete.

Proof of Theorem 2.1. It follows directly from [3, Theorem 2.3.5] that D is a prime ring. By Lemma 2.2 the map f satisfies both conditions (3) and (4). Choose a C-subspace V of S such that $S+C=V\oplus C$. Let π be the canonical projection of S onto V. Setting $g=\pi\circ f$, we note that $f(x)-g(x)\in C$ for all $x\in R$. Therefore g satisfies (3) and (4) for all $x,y\in R$.

Every element $z \in W$ is representable in the form $z = \sum_{i=1}^{n} \lambda_i z_i$ where λ_i 's are in C and z_i 's are in R. We set

$$h(z) = \sum_{i=1}^{n} \lambda_i g(z_i).$$

We show that h is well-defined. We have that

$$[\lambda_i g(z_i), x^{\overline{n}}]_k + \sum_{t=0}^{k-1} [[[g(x), x^{\overline{n}}]_t, J_{n_{t+1}-1} x(\lambda_i z_i)], x^{\overline{n}\#}]_{k-t-1} = 0$$

for all $i = 1, 2, ..., n, x \in R$. Therefore

$$\begin{split} [h(z), x^{\overline{n}}]_k + \sum_{t=0}^{k-1} \left[\left[\left[g(x), x^{\overline{n}} \right]_t, J_{n_{t+1}-1, x} z \right], x^{\overline{n}\#} \right]_{k-t-1} = \\ \sum_{i=1}^n \left(\left[\lambda_i g(z_i), x^{\overline{n}} \right]_k + \sum_{t=0}^{k-1} \left[\left[\left[g(x), x^{\overline{n}} \right]_t, J_{n_{t-1}-1, x} (\lambda_i z_i) \right], x^{\overline{n}\#} \right]_{k-t-1} \right) = 0 \end{split}$$

for all $z \in W$, $x \in R$. Suppose that $z = \sum_{i=1}^{n} \lambda_i z_i = 0$. Then $[h(z), x^{\overline{n}}]_k = 0$ for all $x \in R$. According to (2), $\sum_{i=1}^{n} \lambda_i g(z_i) = h(z) \in C$. On the other hand $g(z_i)$'s are in V and so $h(z) \in V$. Therefore h(z) = 0. Thus h is a well-defined C-linear map $W \to S$. Clearly h(x) = g(x) and so $f(x) - h(x) \in C$ for all $x \in R$.

Denote by K the subring of C generated by 1. Since either $\operatorname{char}(A)=0$ or $\operatorname{char}(A)>|\overline{n}|$, we have that $|K|>|\overline{n}|$. Clearly R is a K-submodule of A. Applying Lemma 2.3 (with U=R) we conclude that h(x) satisfies (3) and (4) for all $x,y\in W$. Again applying Lemma 2.3 (with U=W) we infer that h(x) satisfies (3) and (4) for all $x,y\in G$.

Write $m = l_i n_i$, i = 1, 2, ..., k. It follows from (1) that

$$[h(x), x^m]_k = J_{l_1-1, x^{n_1}} J_{l_2-1, x^{n_2}} \dots J_{l_k-1, x^{n_k}} [h(x), x^{\overline{n}}]_k = 0$$

for all $x \in G$. Since $|F| = \infty$, substitutions of $x + \lambda y$ for x with $\lambda \in F$ yield that (6) holds for all $x, y \in G$.

Finally, substituting x^s for x in (6) and using (1), we obtain that

$$J_0([h(y), x^m]_k) + \sum_{t=0}^{k-1} [[[h(x^s), x^{sm}]_t, {}^{t_2}y], x^{sm}]_{k-t-1} = 0$$
 (8)

for all $x, y \in R$. Applying J_0 to (6) and subtracting the result from (8), we see that

$$\sum_{t=0}^{k-1} \{ [[[h(x^s), x^{sm}]_t, J_2 y], x^{sm}]_{k-t-1} - J_0 [[[h(x), x^m]_t, J_1 y], x^m]_{k-t-1} \} = 0$$

for all $x, y \in G$, which completes the proof.

As there is no convenient reference known to us, we include a proof of the following simple lemma for the sake of completeness.

Lemma 2.4 Let D be a ring, $x, e \in D$ and r a natural number. Suppose $e^2 = e$. Then:

- (i) $[x, e]_3 = [x, e];$
- (ii) $[x, e]_{2r+1} = [x, e];$
- (iii) if $[x, e]_k = 0$, then [x, e] = 0.

Proof. (i) We have

$$[x, e]_3 = xe^3 - 3exe^2 + 3e^2xe - e^3x = xe - 3exe + 3exe - ex = [x, e].$$

- (ii) The second statement follows from the irst one by easy induction.
- (iii) If k is odd, then there is nothing to prove. If k is even, then $[x, e] = [x, e]_{k+1} = [[x, e]_k, e] = 0$.

Corollary 2.5 Suppose that f satisfies (3) for all $x \in R$. Then [f(e), e] = 0 for all $e^2 = e \in R$.

Corollary 2.6 Let $y, e \in R$. Suppose that $e^2 = e$, [y, e] = 0 and f satisfies (3) for all $x \in R$. Then [f(y), e] = 0.

Proof. By Lemma 2.2 the map f satisfies (4) for all $x, y \in R$. Substituting e for x in (4), we get

$$[f(y), e]_k + \sum_{t=0}^{k-1} [[[f(e), e]_t, J_{n_{t+1}-1} ey], e]_{k-t-1} = 0.$$

Since [y, e] = 0, $[J_{n_{t+1}-1, e}y, e] = 0$ and so

$$[[[f(e),e]_t,J_{n_{t+1}-1,e}y],e]_{k-t-1}=[[f(e),e]_{k-1},J_{n_{t+1}-1,e}y]=0$$

for all t because $k-1 \ge 1$ and [f(e),e] = 0 by Corollary 2.5. Therefore $[f(y),e]_k = 0$ and thus [f(y),e] = 0 by Lemma 2.4.

Let $n \geq 2$ be a natural number. We set

$$g_n(x, y_0, y_1, \dots, y_{n-1}) = \sum_{\sigma \in S_{n+1}} \operatorname{sgn}(\sigma) x^{\sigma(\ell)} y_0 x^{\sigma(1)} y_1 \dots y_{n-1} x^{\sigma(n)}.$$

Lemma 2.7 ([3, Corollary 2.3.8]) Let $a \in A$. Then the following conditions are equivalent:

- (i) a is an algebraic element over C of degree < n;
- (ii) $g_n(a, r_0, r_1, \ldots, r_{n-1}) = 0$ for all $r_i \in A$, $i = 0, 1, \ldots, n-1$.

Lemma 2.8 ([3, Corollary 6.5.16]) Let A be a primitive algebra with identity over an infinite field C having a nonzero idenpotent w such that wAw is a finite dimensional division C-algebra with center wC. Further let $f, h \in A_C < X >$ and let $x_k \in X$ be a variable which is not involved in f and h. Suppose that $fx_k h$ is a GPI on A. Then either f or h is a GPI on A.

Lemma 2.9 Let A be a centrally closed prime ring with infinite extended centroid C. Suppose that A is not algebraic of bounded degree $\leq n$ over C. Choose $\lambda \in C \setminus \{0,1\}$. Then for every $x \in A$ there exists $y \in A$ such that neither y, nor x + y, nor $x + \lambda y$ is algebraic of degree $\leq n$ over C.

Proof. If not, then

$$h = g_n(y, y_0, \dots, y_{n-1})ug_n(x + y, y_0, \dots, y_{n-1})vg_n(x + \lambda y, y_0, \dots, y_{n-1})$$

is a generalized polynomial identity in $y, y_0, \ldots, y_{n-1}, u, v$ on A by Lemma 2.7. According to [3, Theorem 6.4.4] every GPI or A is a GPI on Q. Therefore h is a GPI on Q. By [22, Theorem 3], Q is a primitive ring with nonzero idempotent e such that eQe is a division algebra finite dimensional over its center eC (see also [3, Theorem 6.1.6]). Since $|C'| = \infty$, we conclude that either $g_n(y, y_0, \ldots, y_{n-1})$ or $g_n(x+y, y_0, \ldots, y_{n-1})$ or $g_n(x+y, y_0, \ldots, y_{n-1})$ is a GPI on Q (see Lemma 2.8). In all cases A is algebraic of bounded degree $\leq n$ over C by Lemma 2.7, a contradiction.

The following result is a corollary to the proof of Lemma 2.9 which will be used in the forthcoming paper.

Corollary 2.10 Let A be a prime ring with additive subgroup R and let n be a natural number. Suppose that R does not satisfies GPI. Choose $\lambda \in C \setminus \{0,1\}$. Then for every $x \in R$ there exists $y \in R$ such that neither y, nor $x + \lambda y$ is algebraic of degree $\leq n$ over C.

Given a subset $S \subseteq A$ we set

$$l(A; S) = \{ a \in A \mid aS = 0 \}.$$

Lemma 2.11 Let A be a centrally closed prime ring. Next, let R be a nonzero right ideal of the C-algebra A. Then R/l(R;R) is a centrally closed prime C-algebra.

Proof. Clearly l(R;R) is an ideal of R and $\overline{R}=R/l(R;R)$ is a prime C-algebra. We shall write \overline{a} for $a+l(R;R)\in\overline{R}, a\in R$. Denote by F the extended centroid of \overline{R} . Obviously $F\supseteq C$. Choose any $\alpha\in F$. Next, choose $0\neq \overline{a}\in\overline{R}$ such that $\overline{b}=\alpha\overline{a}\in\overline{R}$. Finally, choose $\overline{r}\in\overline{A}$ such that $\overline{a}\overline{r}\neq 0$. Clearly $\overline{axb}=\overline{bxa}$ for $x\in\overline{R}$. Therefore $axb-bxa\in l(R;R)$ for all $x\in R$ and so arybr-bryar=0 for all $y\in A$. It follows from [22, Theorem 1] that $br=\lambda ar$ for some $\lambda\in C$ (see also [3, Theorem 2.3.4]). Therefore $\alpha\overline{a}\overline{r}=\lambda\overline{a}\overline{r}$ and so $\alpha=\lambda$. Thus F=C and the proof is complete.

Corollary 2.12 Let A be a centrally closed prime ring with infinite extended centroid C and R a nonzero right ideal of the C-algebra A. Suppose that R is not algebraic of bounded degree $\leq n$ over C. Choose $\lambda \in C \setminus \{0,1\}$. Then for every $x \in R$ there exists $y \in R$ such that neither y, nor x + y, nor $x + \lambda y$ is algebraic of degree n - 1 over C.

Proof. Set $\overline{R} = R/l(R;R)$. If $\sum_{i=0}^{n-1} \lambda_i \overline{r}^i = 0$ for some $\overline{r} \in \overline{R}$ and λ_i 's in C, then $\sum_{i=0}^{n-1} \lambda_i r^{i+1} = 0$. Therefore \overline{R} is not algebraic of bounded degree $\leq n-1$ over C. Applying Lemma 2.11 and Lemma 2.9, we complete the proof.

Lemma 2.13 Let A be a prime ring with nonzero right ideal R and $q \in Q$. Suppose that $[q, x^{\overline{n}}]_k = 0$ for all $x \in R$. Then $q \in C$.

Proof. Let X be an infinite set and Q(X) the free product of C-algebras Q and C(X). Suppose that $q \notin C$. Fix any norzero $r \in R$ and choose $y \in X$. Clearly

 $[q,(ry)^{\overline{n}}]_k = p(q,ry)ry + (-1)^k (ry)^{|\overline{n}|} q$

for some polynomial p(u, v) in noncommuting variables u, v with integral coefficients. Since $q \notin C$, $[q, (ry)^{\overline{n}}]_k$ is a nonzero element of Q(X). Therefore $[q,(ry)^{\overline{n}}]_k$ is a nonzero generalized polynomial identity in y on A. According to [1, Theorem 2] it is also a generalized polynomial identity in y on Q (see also [3, Theorem 6.4.4]). By [3, Corollary 6.1.7], Q is a primitive ring with nonzero socle Soc(Q) and nonzero idempotent e such that eQe is a division algebra finite dimensional over its center eC (see also [ξ , Theorem 6.1.6]). If $|C| < \infty$, then eQe = eC by Wedderburn's theorem on finite division rings [3, Theorem 4.2.3]. Suppose now that $|C| = \infty$. Let \overline{C} be the algebraic closure of C. Then $\overline{Q} = Q \otimes_C \overline{C}$ is a prime algebra by [3, Theorem 2.3.5]. Clearly \overline{Q} contains an idempotent \overline{e} such that $\overline{e}\overline{Q}\overline{e} = \overline{e}\overline{C}$. Since $|C| = \infty$, $[q, (ry)^{\overline{n}}]_k$ is a generalized polynomial identity on \overline{Q} by Lemma 2.3. Thus, without loss of generality we can assume that eQe = eC and $[q, x^{\overline{n}}]_k = 0$ for all $x \in rQ$. As Q is a prime ring, $rQ \cap \operatorname{Soc}(Q) \neq 0$. Choose any idempotent $e' \in rQ \cap \operatorname{Soc}(Q)$ such that e'Qe'=e'C. Since $e'Q\subseteq rQ\cap\operatorname{Soc}(Q)$, we conclude that $[q,x^{\overline{n}}]_k=0$ for all $x \in e'Q$. Let $w \in e'Q$ be any idempotent. Then [q, w] = 0 by Lemma 2.4. Since e'Qe'=e'C, e'Q is a C-linear span of idempoter to $w\in e'Q^X$. Therefore [q,x]=0for all $x \in e'Q$. It follows that qe'y = e'yq for all $y \in Q$, Since the centralizer of a nonzero right ideal of a prime ring is just the center, we conclude that $q \in C$, a contradiction.

Let A be a prime ring with a nonzero right ideal R and $f: R \to S$ an additive map satisfying (3). It follows from Lemma 2.13 that (2) holds in A. By Theorem 2.1 we may assume without loss of generality that A is a centrally closed prime ring with infinite centroid, R is a ronzero right ideal of C-algebra A, f is a C-linear map satisfying (5), (6), and (7) for all $x, y \in R$.

8

* 4'Q = 4'Q4' + 4'Q(1-4') = 4'Q4' + \(\bar{Z}\) 4'Q4' \(\bar{Z}\)

3 The Case of Matrix Algebras

In this section F is a field, r a natural number, $M_r(F)$ the F-algebra of $r \times r$ matrices over F, and $f: M_r(F) \to M_r(F)$ is an F-linear map satisfying (3) and (4) for all $x, y \in M_r(F)$. We fix a set $\{e_{ij} \mid 1 \le i, j \le r\}$ of matrix units of $M_r(F)$ and identify F with Fe where $e = e_{11} + e_{22} + \ldots + e_{rr}$.

Lemma 3.1 For each i = 1, 2, ..., r there exist $\lambda_{ii}, \mu_{ii} \in F$ such that $f(e_{ii}) = \lambda_{ii}e_{ii} + \mu_{ii}$.

Proof. By Corollary 2.6, $[f(e_{ii}), e_{jj}] = 0$ for all j. Hence $f(e_{ii})$ is a diagonal matrix. Write $f(e_{ii}) = \sum_{t=1}^{r} \alpha_t e_{tt}$ where α_t 's are in F. For $j, s \neq i$, $j \neq s$, we have $[f(e_{ii}), e_{jj} + e_{js}] = 0$ since $e_{jj} + e_{js}$ is an idempotent commuting with e_{ii} (see Corollary 2.6). Therefore $[f(e_{ii}), e_{js}] = 0$ which yields $\alpha_j = \alpha_s$. Setting $\mu_{ii} = \alpha_j$ and $\lambda_{ii} = \alpha_i - \mu_{ii}$ we complete the proof.

Lemma 3.2 If $1 \le i \ne j \le r$, then $[f(e_{ij}), e_{ij}] := 0$, $[f(e_{ii}), e_{ij}] + [f(e_{ij}), e_{ii}] = 0$ and $[f(e_{jj}), e_{ij}] + [f(e_{ij}), e_{jj}] = 0$.

Proof. Since $e_{ii} + e_{ij}$ is an idempotent, we have that $[f(e_{ii} + e_{ij}), e_{ii} + e_{ij}] = 0$ by Corollary 2.5. Expanding and using $[f(e_{ii}), e_{ii}] = 0$, we get

$$[f(e_{ii}), e_{ij}] + [f(e_{ij}), e_{ii}] + [f(e_{ij}), e_{ij}] = 0.$$

Similarly, it follows from $[f(e_{ii} - e_{ij}), e_{ii} - e_{ij}] = 0$ that

$$[f(e_{ii}), e_{ij}] + [f(e_{ij}), e_{ii}] - [f(e_{ij}), e_{ij}] = 0.$$

Therefore, $[f(e_{ij}), e_{ij}] = 0$ and $[f(e_{ii}), e_{ij}] + [f(e_{ij}), e_{ii}] = 0$. The last identity is proved analogously.

Lemma 3.3 Let $1 \leq i \neq j \leq r$. Then there exist $\lambda_{ij}, \mu_{ij} \in F$ such that $f(e_{ij}) = \lambda_{ij}e_{ij} + \mu_{ij}$.

Proof. Write $f(e_{ij}) = \sum_{t,s} \alpha_{ts} e_{ts}$ where α_{ti} 's are in F. By Corollary 2.6, $[f(e_{ij}), e_{pp}] = 0$ for $p \neq i, j$. Hence $\alpha_{sp} = 0 = \alpha_{ps}$ for $s \neq p$. That is, $f(e_{ij}) = \sum_{s} \alpha_{ss} e_{ss} + \alpha_{ij} e_{ij} + \alpha_{ji} e_{ji}$. According to Lemma 3.2, $[f(e_{ij}), e_{ij}] = 0$ and so $\alpha_{ii} = \alpha_{jj}$ and $\alpha_{ji} = 0$. As $[f(e_{ij}), e_{is} + e_{ss}] = 0$ for $s \neq i, j$ by Corollary 2.6, $[f(e_{ij}), e_{is}] = 0$ and hence $\alpha_{ss} = \alpha_{ii}$. Thus $f(e_{ij}) = \lambda_{ij} e_{ij} + \mu_{ij}$ where $\lambda_{ij} = \alpha_{ij}$ and μ_{ij} is the common value for α_{ss} .

Lemma 3.4 There exists $\lambda \in F$ such that $f(z_{ij}) - \lambda e_{ij} \in F$ for all i, j = 1, 2, ..., r.

Proof. In view of Lemmas 3.1 and 3.3, we write $f(e_{ij}) = \lambda_{ij}e_{ij} + \mu_{ij}$ for all i, j where $\lambda_{ij}, \mu_{ij} \in F$. By Lemma 3.2, $[f(e_{ii}), e_{ij}] + [f(e_{ij}), e_{ii}] = 0$ which yields $\lambda_{ij} = \lambda_{ii}$ for all $i \neq j$. Similarly, $\lambda_{ij} = \lambda_{jj}$ follows from $[f(e_{jj}), e_{ij}] +$

 $[f(e_{ij}), e_{jj}] = 0$. Let λ be the common value of the λ_{ij} 's. Then $f(e_{ij}) - \lambda e_{ij}$ is a scalar for all i, j.

Since f is an F-linear map and $\{e_{ij} \mid 1 \leq i \ j \leq r\}$ forms a basis of $M_r(F)$, Lemma 3.4 implies the following main result of this section.

Proposition 3.5 Let F be a field, r a natural number and $f: M_r(F) \to M_r(F)$ an F-linear map satisfying (3) and (4) for all $x, y \in M_r(F)$. Then there exist $\lambda \in F$ and an F-linear map $\mu: M_r(F) \to F$ such that $f(x) = \lambda x + \mu(x)$ for all $x \in M_r(F)$. In particular, [f(x), x] = 0 for all $x \in M_r(F)$.

4 Proof of Theorem 1.1

Lemma 4.1 Suppose that $r \in R$ is not algebraic of degree $\leq 2km - 1$. Then [f(r), r] = 0.

Proof. Since $x^2 \in R$ for all $x \in R$, we infer from (7) that

$$\sum_{t=0}^{k-1} \{ [[[f(x^2), x^{2m}]_t, J_2 y], x^{2m}]_{k-t-1} - J_0[[[f(x_1, x^m]_t, J_1 y], x^m]_{k-t-1} \} = 0 \quad (9)$$

for all $x, y \in R$. Clearly $J_i(xz) = xJ_iz$ for all $i = 0, 1, 2, x \in R, z \in A$ and

$$\begin{aligned} [[[f(x^2), x^{2m}]_t, J_2(xz)], x^{2m}]_{k-t-1} &= & [[[f(x^2), x^{2m}]_t, x] J_2 z, x^{2m}]_{k-t-1} \\ &+ x [[[f(x^2), x^{2m}]_t, J_2 z], x^{2m}]_{k-t-1}, \\ [[[f(x), x^m]_t, J_1(xz)], x^m]_{k-t-1} &= & [[[f(x), x^m]_t, x] J_1 z, x^m]_{k-t-1} \\ &+ x [[[f(x), x^m]_t, J_1 z], x^m]_{k-t-1} \end{aligned}$$

Substituting xz for y in (9), we obtain that

$$\sum_{t=0}^{k-1} \{ [[[f(x^2), x^{2m}]_t, x] J_2 z, x^{2m}]_{k-t-1} - J_0 [[[f(z), x^m]_t, x] J_1 z, x^m]_{k-t-1} \} = 0$$
(10)

for all $x \in R$ and $z \in A$. By Leibnitz formula we have that

$$\begin{split} & [[[f(x^{2}), x^{2m}]_{t}, x]J_{2}z, x^{2m}]_{k-t-1} = \\ & \sum_{i=0}^{k-t-1} \binom{k-t-1}{i} [[[f(x^{2}), x^{2m}]_{t}, x], x^{2m}]_{i} [J_{2}z, x^{2m}]_{k-t-i-1}, \\ & [[[f(x), x^{m}]_{t}, x]J_{1}z, x^{m}]_{k-t-1} = \\ & \sum_{i=0}^{k-t-1} \binom{k-t-1}{i} [[[f(x), x^{m}]_{t}, x], x^{r_{1}}]_{i} [J_{1}z, x^{m}]_{k-t-i-1} \end{split}$$

Since

$$\operatorname{ad}(x)\operatorname{ad}(x^{2m})^t = \operatorname{ad}(x^{2m})^t\operatorname{ad}(x) \quad \text{and} \quad \operatorname{ad}(x)\operatorname{ad}(x^m)^t = \operatorname{ad}(x^m)^t\operatorname{ad}(x)$$

for all $t \ge 0$, we can rewrite (10) as follows

$$[f(x^{2}), x][J_{2}z, x^{2m}]_{k-1} - J_{0}([f(x), x][J_{1}z, x^{m}]_{k-1})$$

$$+ \sum_{t=1}^{k-1} N_{t}[[f(x^{2}), x], x^{2m}]_{t}[J_{2}z, x^{2m}]_{k-1-t}$$

$$- J_{0}\left(\sum_{t=1}^{k-1} N_{t}[[f(x), x], x^{m}]_{t}[J_{1}z, x^{m}]_{k-1-t}\right)$$

$$= 0$$

$$(11)$$

for some natural numbers N_t 's. Writing (11) as $\sum_{i=0}^{2km-1} p_i(x)zx^i = 0$, we see that $p_{2km-1}(x) = -[f(x), x]$. Substituting r for x, we get $\sum_{i=0}^{2km-1} p_i(r)zr^i = 0$ for all $z \in A$. Since r is not algebraic of degree $\leq 2km-1$ over C, we conclude that $1, r, \ldots, r^{2km-1}$ are linearly independent over C and so [f(r), r] = 0 by [22, Theorem 2].

Lemma 4.2 Suppose that R is not algebraic a gebra of degree $\leq 2km$ over C. Then [f(x), x] = 0 for all $x \in R$.

Proof. Let $x \in R$ and $\lambda \in C \setminus \{0,1\}$. By Corollary 2.12 there exists $y \in R$ such that neither y nor x+y nor $x+\lambda y$ is an algebraic element of degree $\leq 2km-1$ over C. Then by Lemma 4.1

$$[f(y), y] = [f(x + y), x + y] = [f(x + \lambda y), x + \lambda y] = 0.$$

Therefore

$$\begin{array}{ll} 0 & = & [f(x+y), x+y] = [f(x), x] + [f(x), y] + [f(y), x], \\ 0 & = & [f(x+\lambda y), x+\lambda y] = [f(x), x] + \lambda [f(x), y] + \lambda [f(y), x] \end{array}$$

and so [f(x), x] = 0 for all $x \in R$.

Proof of Theorem 1.1. If R is not algebraic of degree $\leq 2km$ over C, then [f(x),x]=0 for all $x\in R$ by Lemma 4.2. Suppose now that R is algebraic of degree $\leq 2km$ over C. Then, R is a PL ring. According to [3, Theorem 6.3.20], A is GPI. Since A is centrally closed, A contains a nonzero idempotent p such that pAp is a finite dimensional central division algebra over C (see [3, Theorem 6.1.6]). It follows from [21, Theorem 1] that $R = e\operatorname{Soc}(A)$ for some idempotent $e \in \operatorname{Soc}(A)$. As $e \in \operatorname{Soc}(A)$, R = eA. We obtain from Litoff's Theorem [3, Theorem 4.3.11] that eAe is a finite dimensional central simple C-algebra. Tensoring by the algebraic closure F of C, we reduce the problem to the

not italic

case when eAe is a matrix ring over C and $|C| := \infty$. Let now $0 \neq w^2 = w \in eA$. Then wAw is a matrix ring over C. Given any $x \in wAw$, write

$$f(x) = wf(x)w + wf(x)(1-w) + (1-w)f(x)w + (1-w)f(x)(1-w).$$

As [f(x), w] = 0 by Corollary 2.6, we conclude that

$$f(x) = wf(x)w + (1-w)f(x)(1-w) \text{ for all } x \in wAw$$
 (12)

Applying Proposition 3.5 to $g: wAw \to wAw \ g(x) = wf(x)w, \ x \in wAw$, we infer that [wf(x)w, x] = 0 for all $x \in wAw$. It follows from (12) that

$$[f(x), x] = 0 \text{ for all } x \in wAw$$
 (13)

Let now $y \in eA$. Clearly yA = vA for some $v^2 = v \in eA$. Note that vy = y. Since $|C| = \infty$, there exists an infinite subset $T \subseteq C$ such that $\tau v + yv$ is an invertible element of the matrix ring vAv for all $\tau \in T$. Fix any $\tau \in T$ and set $z = \tau v + y \in vA$. Then there exists $x \in vAv$ such that zvx = v. As zx = zvx, we conclude that zx = v. Consider $w = v + xz(1 - v) \in vA$. As vx = x, $w^2 = w$. Next, wz = z and

$$zw = zv + (zx)z(1-v) = zv + vz(1-v) = zv + z(1-v) = z$$

and so $z \in wAw$. According to (13), [f(z), z] = 0. That is to say $[f(\tau v + y), \tau v + y] = 0$ for all $\tau \in T$. As $|T| = \infty$, [f(y), y] = 0 for all $y \in eA$ and the proof is completed.

Finally we note that Corollary 1.2 follows from Theorem 1.1 and [9, Theorem 5.2] (see also [20, Theorem 1]).

References

- [1] K. I. Beidar, Rings with generalized identities, III, Moscow Univ. Math. Bull., 33(4) (1978), 53-58.
- [2] K. I. Beidar, W. S. Martindale 3rd, and A. V. Mikhalev, Lie isomorphisms in prime rings with involution. J. Algebra 169 (1994), 304-327.
- [3] K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.
- [4] H. E. Bell and Q. Deng, On derivations and commutativity in semiprime rings, Comm. Algebra, 23 (1995), 3705-3713.
- [5] H. E. Bell and W. S. Martindale 3rd, Centralizing mappings of semiprime rings. Canad. Math. Bull. 30 (1987), 92-101.

- [6] M. Brešar, On a generalization of the notion of centralizing mappings. Proc. Amer. Math. Soc. 114 (1992), 641-649.
- [7] M. Brešar, On skew-commuting mappings of rings. Bull. Austral. Math. Soc. 47 (1993), 291-296.
- [8] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra, 156 (1993), 385-394.
- [9] M. Brešar, On generalized biderivations and related maps. J. Algebra 172 (1995), 764-786.
- [10] M. Brešar, Applying the theorem on functional identities, Nova J. Math., Game Theory, and Algebra, 4 (1995), N 1, 43-54.
- [11] M. Brešar and B. Hvala, On additive maps of prime rings, Bull. Austral. Math. Soc., 51 (1995), 377-381.
- [12] M. Brešar, W. S. Martindale 3rd, and C. R. Miers, Centralizing maps in prime rings with involution. J. Algebra 161 (1993), 342-357.
- [13] C. L. Chuang, Hypercentral derivations, J. Algebra 166 (1994), 34-71.
- [14] C. Lanski, Differential identities, Lie ideals, and Posner's theorems. Pacific J. Math. 134 (1988), 275-297.
- [15] C. Lanski, Lie ideals and central polynomials with derivations. Canad. J. Math. 44 (1992), 553-560.
- [16] C. Lanski, An Engel condition with derivation. Proc. Amer. Math. Soc. 118 (1993), 731-734.
- [17] P. H. Lee and T. K. Lee, On derivations of prime rings. Chinese J. Math. 9 (1981), 107-110.
- [18] P. H. Lee and T. K. Lee, Lie ideals of prime rings with derivations. Bull. Inst. Math. Acad. Sinica 11 (1983), 75-80.
- [19] T. K. Lee, Semiprime rings with hypercentral derivations. Canad. Math. Bull. 38 (1995), 445-449.
- [20] T. K. Lee, Commuting additive mappings in semiprime rings. Bull. Inst. Math. Acad. Sinica, to appear.
- [21] T. K. Lee, A characterization of left ideals satisfying polynomial identities. Chinese J. Math., to appear.
- [22] W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.

- [23] J. H. Mayne, Centralizing automorphisms of prime rings. Canad. Math. Bull. 19 (1976), 113-115.
- [24] J. H. Mayne, Centralizing automorphisms of Lie ideals in prime rings. Canad. Math. Bull. 35 (1992), 510-514.
- [25] E. Posner, Derivations in prime rings. Ploc. Amer. Math. Soc. 8 (1957), 79-92.