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On Additive Maps of Prime Rings Satisfying
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Abstract
Let A be a prime ring with nonzero right ideal R and f:R—> Aan
additive map. Next, let k,n1,n2,...,nx be natural numbers. Suppose

that [...[[f(z),z™],8™],...,2™] = 0 for al. z € R. Then it is proved
in Theorem 1.1 that [f(2),2] = 0 provided that either char(A) = 0 or
char(4) > ni+nz+...+nk. Theorem 1.1 is a simultaneous generalization
of a number of results proved earlier.

1991 Mathematics Subject Classification, Primery 16N60, Secondary 16R50

1 Introduction

We refer the reader to the book of Beidar, Martindale and Mikhalev [3] for the
basic terminology and results of Rings with Geieralized Polynomial Identities
Theory (i.e., Rings with GPI).

Let A be aring, z,y € A, k > 1 a natural number and 7 = (ni,na, ..., ng)

a k-tuple of natural numbers. Setting [z, y] = zy — yz, we define [z, y"]« induc-
tively as follows:

2,9 = =,
(2,471 = 2y -y,
&,y i1 = [[x,yﬁ]t,y"‘“], t:=1,2,...k=1.
If ny = na = ... = ng = 1, then we shall write [z,y]x in place of [z,y"]x.
Note that [z,y"]x = [z,4"]x if n; = ny = ... == ny = n. Next, we set [A] =
ni+ng+...+ng. Given 1 <7< k, we set Ay = (nig1, ..., nk). For simplicity




we shall write [z,y™#],_; in place of [z,y"® 4_;. Let [ be a subgroup of
(A, +). An additive map f : L — 4 is called k-commuting {k-centralizing) on L
if [f(z), 2]k = 0 (respectively, [f(z),z]x € Z(A) the center of A) for all z € L.

/From now on we assume that A is a prime ring with extended centroid C
and Martindale right ring of quotients @, S = AC C Q is a C-subalgebra of @
generated by A, k is a natural number, and 7 -- (ny,ma,...,nk) is a k-tuple of
natural numbers. Recall that A is called centrally closed if A = S.

The study of commuting and centralizing maps goes back to 1957 when
Posner [25] showed that the existence of a nonzero 1-centralizing derivation in a
prime ring A implies that 4 is commutative. M ayne (23] proved the analogous
result for centralizing automorphisms. A variety of results on commuting and
centralizing maps have since been obtained by a number of authors (see [2],
[4-20], [23-25]) Many of these isolated results were simultaneously generalized
by Bredar [6] and [8] which proved that if f : A -+ A is an additive 2-commuting
mapping and char(A4) # 2, then there exists A € C' and an additive map u: A —
C such that f(z) = Az + p(z) for all z € A. Further, on the one hand Lanski
(16] studied k-commuting derivations and Bresar [10] described k-commuting
additive maps, on the other hand Bresar and Hala [11] considered a condition
[f(z),z*] = 0 for all z € A where f is an additive mapping (see also [4]). Also
a number of papers were devoted to the study of commuting and centralizing
maps f: L — A where L is either right ideal of R or some other subgroups [9],
[12], [15], [18], [19], and [20] (for further referencss see [8] and [19]). Our goal is
to prove the following results which are generalizations of many of the results
mentioned above. Note that our approach is diTerent from that in [10] and is
based on the technique developed in [2].

Theorem 1.1 Let A be a prime ring with right ideal R and additive map f :

R — 5 such that [f(z).2"|x = 0 for all z € R. Suppose that either char(4) =0
or char(A) > |A]. Then [f(z),z] =0 for allz € R.

Corollary 1.2 Let A be a prime ring with nonzero right ideal R and additive
map f: R — S such that [f(z),z"]x = 0 forall z € R. Suppose that [R,RIR#0
and either char(A4) = 0 orchar(4) > [7|. Then there exist A € C and an additive
map p: R — C such that f(z) = Az + p(z) for il z € R.

2 Preliminary Results

Let ¢ be a natural number and y € A, we define maps Jiy : A - A and
ad(y) : A — A by the rules J, yz = Yoo ¥zy ™t and ad(y)z = [z,y] for all
z € A. Given a natural number s one can easily show that

Jt,st,y = Js,th,y:
ad(y’)Jey = Jryad(y’),




ad(y’) = J,_1ad(y),

a‘d(y’t) = Js—l,y‘ad(yt):
[z, = ad(y"*)ad(y™ 1) ...ad(y")z and
[x’yn]k = Jnk—l,y‘]nk—l—lyy' 'Jnl—l,ya‘d(y)kx (1)

forall z,y € A.

In what follows we shall assume that A is a prime ring such that either
char(4) = 0 or char(4) > [n], R is an additive subgroup of A and f:R—=Sis
an additive map. We consider the following cor ditions:

IfgcQand[q,z"x =0forallz€ R, thenge C (2)

[f(2), 2"}k = 0 (3)
[FW) e+ D[ (2), 8 Ty <109 2™ kmer =0 (4)

where z,y € R. We shall assume that f satisfies '3) forallz € R. If char(A) = 2,
then [7i] = 1, k = 1 and so [f(z),z] = 0 for all z € R. Therefore we may assume
without loss of generality that char(A4) # 2. Now our goal is to prove the
following result.

Theorem 2.1 Let A be a prime ring with a nonzero additive subgroup R, er-
tended centroid C, central closure S and additive map f: R — S. Suppose that
the condition (2) holds in A and f satisfies (3) for all z € R. Denote by W the
C-subspace of S generated by R. Next, let m = lem(ny, na, ... ng) be the least
common multiple of ny,ny, ..., ng, F an infinit: extension of C, D=85®c¢cF,
and G = W ®c F. Then D is a prime ring. i‘urther, there exists a C-linear
map h: G — D such that f(z) — h(z) € C for cll z € R and

[h(2), 2™ = 0 ()

k-1
[h(y)a zm]k + Z[[[h(x)¢ xm]tv Jm—l,ry]r Zka—t—l =0 (6)
=0
forallz,y € G. Finally, assume that there exists a natural number s such that
z* € R for allz € R and set Jy = Jf_l,xm, J1=Jmo1z, J2 = Jm-1,z:. Then

k-1
> AR, 2™, Tag), & ™iecr = Jo[[A(2), 2™, 1y, " k—t-1} =0 (7)

t=0
forallz,yeG.

The proof of the theorem rests on the following lemmas.

Lemma 2.2 The map f satisfies (4) for all z,y € R.




Proof. Let Z be the ring of integers. We se;

‘- 00 if char(4) =0,
~ | char(A) if char(A4) > 0.

By assumption we can choose distinct elemenss ry, 7o, ..., Tz € Z such that
O<r<tforalli=1,2,..,[n|. Cleatly f(nz) =nf(z) foralln e Z. Now we
substitute z + r;y for ¢ in (3), 1 = 1,2,...,|5]. Using equalities [flz), 2"k =

0 = [f(y),y"]x and a van der Monde determinant argument we complete the
proof.

Let B be an algebra over a field F, X an infinite set, F(X) the free F-algebra
on X, and B(X) the free product of F-algebra; B and F(X).

Lemma 2.3 Let K be a subring of F, glzy, 2, ... 2,) € B(X) and U a sub-
module of the K-module B. Denote by V the F-subspace of B generated by
U. Nest, let h; : V — B be an F-linear mayp, i = 1,2,...,n. Suppose that
g(hi(u1), ..., ha(un)) = 0 for all uy, us, ..., u, € U and deg,.(9) < |K]| for all
t=1,2,...,n. Then g(hy(v1),..., ha(vs)) =0 for all vy, va,...,v, € V. Next,
let f:V — B be an F-linear map satisfying (3'and ({) for all ¢,y € U. Then
[ satisfies (3) and (4) forallz,y € V.

Proof. Choose an F-basis {v, | s € S} C .7 of V and extend it to an F-
basis {v; |t € T} of B (i.e., S C T). Let M be any nonempty finite subset of
S. It is enough to show that g(hi(y1),.. Sha(m)) =0forall y,ys,... y, €
ZmEM Fuy,. Clearly there exist a finite subset L C T and polynomials

Pi(zim [1<i<n, meM) € Flaim |1 <i<n, meM], l€L,
such that

g(hi(y1), - ha(yn)) = D Pi(him | - <i<n, m € M)y,
leL

forall i = 37 car dimUm, i = 1,2,...,n. Sinze deg,.(9) < |K| for all i, we
conclude that deg, (P) < |K| for all i, m as vell. If all A;;n’s are in K, then
yi’s are in U and so g(hy(w1), .. s hn(ya)) = 0 vrhich implies that Pi(Aim) = 0.
Recalling that deg, (P) < |K]|, we infer that P(zim) = 0 for all | and hence
g(h1(1), .- ha(ya)) = 0 for all y1,ya,...,yn € V. The last statement follows
from the first one. The proof is complete.

Proof of Theorem 2.1. It follows directly fromn [3, Theorem 2.3.5] that D is
a prime ring. By Lemma 2.2 the map f satisfics both conditions (3) and (4).
Choose a C-subspace V' of S such that S+ C = V @ C. Let x be the canonical
projection of S onto V. Setting g = 7o f, we ncte that flz) —g(z) € C for all
¢ € R. Therefore g satisfies (3) and (4) for all z,y € R.
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Every element z € W is representable in the form z = Z Aiz; where \;’s
are in C and z;’s are in R. We set

z) = Z/\ig(z )
i=1

We show that h is well-defined. We have that

k-1
[ zg Zz k + ) ts n¢+1 lx(/\tzi)]vrﬁ#]k—t—l =0
t:O
foralli=1,2,...,n, 2 € R. Therefore
h(2), 2™ + Y [[l9(2), 2™, Jnpim102), 2™ kg =
t=0

n k-1 _

Z ([A g Z’l 71“ k+Z ) ty n¢ 1= 1.7,‘(/\ Zl)] xn#]k—t—l> = O

i=1 t=

for all z € W, z € R. Suppose that z = 3©, Aiz; = 0. Then [A(z),27]x = 0
for all z € R. According to (2), Y7, Aig(zi) = h(z) € C. On the other hand
g(zi)’s are in V and so h(z) € V. Therefore h(2) = 0. Thus & is a well-defined
C-linear map W — S. Clearly h(z) = g(z) and so f(z) — h(z) € C for all
r€R.

Denote by K the subring of C generated by 1. Since either char(4) = 0
or char(A4) > |@], we have that |K| > [@|. Cleurly R is a K-submodule of A.
Applying Lemma 2.3 (with U = R) we conclude: that h(z) satisfies (3) and (4)
for all z,y € W. Again applying Lemma 2.3 (with U = W) we infer that h(z)
satisfies (3) and (4) for all z,y € G.

Write m = lin;, i = 1,2,..., k. It follows from (1) that

[R(z), 2™k = iy —1,0m Jiy— 1,272 o dicten [A(2), 27 = 0

for all z € G. Since |F| = oo, substitutions of z 4+ Ay for z with A € F yield
that (6) holds for all z,y € G.
Finally, substituting z° for z in (6) and using (1), we obtain that

k-1

Jo([h(y), 2™ k) + Z[[[h(x’), e, Jayl, 2 k1 =0 (8)

t=0

for all z,y € R. Applying Jo to (6) and subtracting the result from (8), we see
that

Z{ ) t) J2y} ]k—t—l - JO[[[h(x)) xm]h le])xm]k—t—l} =0

o e e TP
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for all z,y € G, which completes the proof.

As there is no convenient reference known :o us, we include a proof of the
following simple lemma for the sake of complet :ness.

Lemma 2.4 Let D be a ring, z,e € D and r a natural number. Suppose % = e.

Proof. (i) We have
[2,e]s = ze® — 3eze? + 3e2ze — ez = ze ~ ere + Jeze — ex = [z, €]

(ii) The second statement follows from the ‘irst one by easy induction.
(iii) If k is odd, then there is nothing to prove. If k is even, then [z,¢] =
[, elk+1 = [z, e]x, €] = 0.

Corollary 2.5 Suppose that f satisfies (3) for all z € R. Then (f(e),e] =0
foralle* =e € R.

Corollary 2.6 Let y,e € R. Suppose that e* = ¢, [y,e] = 0 and f satisfies (3)
forallz € R. Then [f(y),e] = 0.

Proof. By Lemma 2.2 the map f satisfies (4) for all z,y € R. Substituting
e for z in (4), we get

FO) el + ST eles Imeas o]yl er = 0.

0

-

i

Since [y,e] =0, [Jn,41-1,e¥, €] = 0 and so

[[[f(6)7 e]t) Jn¢+1—1,ey]) e]k—t—l = [[f(e), e]k—h ‘]ﬂ¢+1—1,€y] =0

for all ¢ because ¥ —1 > 1 and [f(e),e] = ( by Corollary 2.5. Therefore
[f(¥), €]k = 0 and thus [f(y),e] = 0 by Lemma 5 4.

Let n > 2 be a natural number. We set

In (T, Y0, Y1y, Yn—1) = Z sgn(a)x"(()yox"(l)yl...yn_lx"(").
065n+1

Lemma 2.7 ([3, Corollary 2.3.8]) Leta € A Then the following conditions
are equivalent:

(1) a is an algebraic element over C of degre: <n;

(ii) gnla, 0,71, ..., Pa1) =0 forall r; € A i=0,1,...,n~1.




Lemma 2.8 ([3, Corollary 6.5.16]) Let A te a primitive algebra with iden-
tity over an infinite field C' having a nonzero ide npotent w such that wAw is a fi-
nite dimensional division C-algebra with center wC. Further let f h € Ac<X>
and let 2 € X be a variable which s not invslved in f and h. Suppose that
frrh is a GPI on A. Then either f or b is a GPI on A.

Lemma 2.9 Let A be a centrally closed prime ring with infinite extended cen-
troid C. Suppose that A is not algebraic of bounded degree < n over C'. Choose
A € C\{0,1}. Then for every z € A there exists y € A such that neither y, nor
z+y, nor x + Ay s algebraic of degree < n over C.

Proof. 1f not, then

h= gn(yyyoa ey yﬂ—l)ugn(l‘ + Y, Yo, -, yn—-l)vgn(l. + /\y) Yo, - . -;yn—-l)

1s a generalized polynomial identity in y,y0,... yn_1,u,v on A by Lemma 2.7.
According to [3, Theorem 6.4.4] every GPT or A is a GPI on Q. Therefore
his a GPI on Q. By (22, Theorem 3], Q is a primitive ring with nonzero
idempotent e such that eQe is a division algebra finite dimensional over its
center eC’ (see also [3, Theorem 6.1.6]). Since |('] = co, we conclude that either
90 (¥, 90, -, Yn=1) OF gn(T+Y, Yo, .- -, Yn_1) oL sn(2+AY, 90, ..., yn—1) is a GPI
on @ (see Lemma 2.8). In all cases A is algebruic of bounded degree < n over
C by Lemma 2.7, a contradiction.

The following result is a corollary to the proof of Lemma 2.9 which will be
used in the forthcoming paper.

Corollary 2.10 Let A be a prime ring with additive subgroup R and let n be a
natural number. Suppose that R does not satisfies GPI. Choose A € C'\ {0,1}.
Then for every x € R there erists y € R such that neither Yy, nor & +y, nor
z + Ay is algebraic of degree < n over C.

Given a subset S C A we set
l(A;S)={a€ A|aS =0}.

Lemma 2.11 Let A be a centrally closed prime ring. Next, let R be a nonzero
right ideal of the C-algebra A. Then RJI(R; R) is a centrally closed prime C-
algebra.

Proof. Clearly I(R; R) is an ideal of R and B = R/I(R; R) is a prime C-
algebra. We shall write @ for a +/(R; R) € R, a € R. Denote by F the extended
centroid of R. Obviously F D C. Choose any a € F'. Next, choose 0 #a@ € R
such that b = o@ € R. Finally, choose ¥ € .3 such that a7 # 0. Clearly
azb = bza for ¢ € R. Therefore azbh — bza € I(R;R) for all z € R and so
arybr — bryar = 0 for all y € A. It follows from [22, Theorem 1] that br = Aar
for some A € C' (see also [3, Theorem 2.3.4]). Therefore a@7 = \@7 and so
a = A. Thus F = C and the proof is complete.
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Corollary 2.12 Let A be a centrally closed prime ring with infinite extended
centroid C and R a nonzero right ideal of the C-algebra A. Suppose that R is
not algebraic of bounded degree < n over C. Choose A € C'\ {0,1}. Then for
every r € R there exists y € R such that neither y, nor x + y, nor z + \y is
algebraic of degree n — 1 over C.

Proof. Set R = R/I(R;R). If S P AT =0 for some 7€ R and A’s in C,
then Z?;ol Air**! = 0. Therefore R is not algeoraic of bounded degree < n —1
over C. Applying Lemma 2.11 and Lemma 2.9, we complete the proof.

Lemma 2.13 Let A be a prime ring with nonzero right ideal R and q € Q.

Suppose that [q,2")x =0 forallz € R. Thenq € C.

Proof. Let X be an infinite set and Q(X) the free product of C-algebras @
and C(X). Suppose that ¢ ¢ C. Fix any norzero r € R and choose y € X.
Clearly B B

(9, (r9)" ]k = (g, ry)ry + (--1)F (ry)™lg

for some polynomial p(u,v) in noncommuting variables u, v with integral co-
efficients. Since ¢ & C, [g, (ry)"}x is a nonzero element of Q(X). Therefore
[, (ry)™]x is a nonzero generalized polynomial identity in y on A. According to
[1, Theorem 2] it is also a generalized polynoniial identity in y on @ (see also
(3, Theorem 6.4.4]). By [3, Corollary 6.1.7], Q s a primitive ring with nonzero
socle Soc(Q)) and nonzero idempotent e such tiat eQe is a division algebra fi-
nite dimensional over its center eC (see also [¢, Theorem 6.1.6]). If |C] < oo,
then eQe = eC by Wedderburn’s theorem on f nite division rings [3, Theorem
4.2.3]. Suppose now that |C| = co. Let C be t.1e algebraic closure of C. Then
Q = Q®c¢ C is a prime algebra by [3, Theorera 2.3.5]. Clearly Q contains an
idempotent & such that Qe = 2C. Since |C| =: o0, [g, (ry)™]k is a generalized
polynomial identity on @ by Lemma 2.3. Thus, without loss of generality we
can assume that eQe = eC and [¢,2")y = 0 fcrall z € rQ. As Q is a prime
ring, 7@ N Soc(Q) # 0. Choose any idempoteat ¢/ € rQ N Soc(Q) such that
e'Qe’ = e'C. Since ¢/Q C rQ N Soc(Q), we conclude that [g,2™s = 0 for all
z € ¢/Q. Let w € ¢Q be any idempotent. Then [¢,w] = 0 by Lemma 2.4. Since
e'Qe’ = €'C, ¢'Q is a C-linear span of idempoter ts w € ¢’ Q¥ Therefore lg,z] =0
for all z € ¢/Q. Tt follows that e’y ':';é’yq for al.y € Q! Since the centralizer of
a nonzero right ideal of a prime ring is just the senter, we conclude that ¢ € C,
a contradiction. .

Let A be a prime ring with a nonzero right ideal R and fF:R—> San
additive map satisfying (3). It follows from Lemma 2.13 that (2) holds in A.
By Theorem 2.1 we may assume without loss of generality that A is a centrally
closed prime ring with infinite centroid, R is a r.onzero right ideal of C-algebra
A, f 1s a C-linear map satisfying (5), (6), and (7) for all z,y € R.

R’/Q = Q’ng" + %'Q(r-\e/) = %"Q\f'—v— z Q‘IQQ\;_ f-€’ = -e'iﬁ[\'@ f_ « D¢ [/~ ¢a:1¢)]




3 The Case of Matrix Algebras

In this section F is a field, r a natural number, M. (F) the F-algebra of r x r
matrices over F, and f : M, (F) — M, (F) is an F-linear map satisfying (3) and
(4) for all z,y € M, (F). We fix a set {e;; | - < i,j < r} of matrix units of
M, (F) and identify ' with Fe where e = e1; 4 €29 + ... + e,

Lemma 3.1 For each i = 1,2,...,r there erist Nii, i € I such that f(ey) =
Aii€ii + flij.

Proof. By Corollary 2.6, [f(e;i),e;j;] = 0 for all j. Hence f(ei;) 1s a diagonal
matrix. Write f(e;;) = Z:Il aieqy where ay’s ere in F. For j,s £ 1, j # 5, we
have [f(ei;), ej; + ej,] = 0 since e;; + €js 1s an idempotent commuting with e;;
(see Corollary 2.6). Therefore [f(e;;),e;,] = 0 which yields a; = o,. Setting
#ii = aj and \j; = a; — pi; we complete the proof.

Lemma 3.2 If1 <i# j <7, then[f(e),ei;] =0, (f(ei), eij]+[feis), ei] = 0
and [f(ej;), eij] + [ f(eij), e5;] = 0.

Proof. Since ey;+e;; is an idempotent, we have that (fleis+eij), eiitei;] =0
by Corollary 2.5. Expanding and using [f(e;;), 2] = 0, we get

[f(eii), eiz] + [fleij), ei] + [flei;), eqs] = 0.
Similarly, it follows from [f(ei; — €;;), e;; — e;;] = 0 that
[F(eii), eii] + [Flei), eis] = [fless), 5] = 0.

Therefore, [f(e;), ei;] = 0 and [f(ei), ei5] + [fleij), ess] = 0. The last identity
is proved analogously.

Lemma 3.3 Let 1 < ¢ # j < r. Then there exist Aij, ij € F such that
fleij) = Mijeis + pij.

Proof. Write f(e;;) = Zt,s atsess where oy, ’s are in F. By Corollary 2.6,
[f(eij),epp] = 0 for p # 4, j. Hence asp = ) = ap, for s # p. That is,
fleij) = 32, assess + aijeij + ajieji. According to Lemma 3.2, [fleij), ei5] =0
and so @i = aj; and aj; = 0. As [f(ey;), €5, + €55] = O for s # 1,7 by
Corollary 2.6, [f(ei;), eis] = 0 and hence o, = ¥ii. Thus f(ei;) = \ijei; + Hhij
where A;; = a;; and Mi; 1s the common value fo-: a,,.

Lemma 3.4 There erists A € F such that f(2i) — Xeij € F forall 4,5 =
1,2,...,r.

Proof. In view of Lemmas 3.1 and 3.3, we write fleis) = Nijei; + pij for
all 4, j where A;j, ui; € F. By Lemma 3.2, [f(eii), ei;] + [f(eiz), eii] = 0 which
yields Aij = Aj; for all ¢ # j. Similarly, \;; = Aj; follows from [f(e;;), ei;] +




[f(eij), ej;] = 0. Let A be the common value o the \;;’s. Then fleij) — Aeij is
a scalar for all 7, j.

Since f is an F-linear map and {e;; | 1 < i j < r} forms a basis of M, (F),
Lemma 3.4 implies the following main result oi' this section.

Proposition 3.5 Let F be a field, v a natural number and f : M, (F) — M, (F)
an F-linear map satisfying (3) and (4) for all z,y € M.(F). Then there ezist
A€ F and an F-linear map i : M, (F) — F such that f(z) = Az + u(z) for all
z € M;(F). In particular, [f(z),z] =0 for all t € M, (F).

4 Proof of Theorem 1.1

Lemma 4.1 Suppose that r € R is not algebraic of degree < 2km — 1. Then

[f(r),r]=0.

Proof. Since z? € R for all z € R, we infer {rom (7) that

DAl @), 2™, Tyl 2% ™eems = Jol[[f (21, 2™, Syl 2" kel =0 (9)

for all z,y € R. Clearly J;(z2) = zJ;z for all ¢ =0,1,2,z€ R, 2¢€ A and

(%), 2™, Jo(e2)], 2™ femems = [[[f(22), 2%™), 2l Taz, 2%y
(z

+z[[[f(z?), z* ]tyJ2Z] S P
[Lf(z), 2™, Jr(z2)], 2™ kmecr = [[[F(2), 2™, 21z, 2™ ko1
+z{[[f(z),z™], J1Z], koot
Substituting zz for y in (9), we obtain that
k-1
Z{[[[f(zz), 22, e)Jaz, @ ke ~ Jo[[[f (), 2™, 2] 1 2, ™k_t_1} =0
t=0

(10)
for all z € R and z € A. By Leibnitz formula w: have that

[LF(22), 2™, 2] Jaz, 2¥™_,_, =

}: ( *t_l) [1F(22), 22™;, 2], 22™i[Jaz, 2™k —e—i 1,
[[f(), 2™, 2)J12, 2™|k—toy =

bl (k e 1) [[LF(2), 2™, 2], 2" [z, e ™o omi

i
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Since
ad(z)ad(z’™)" = ad(z”™)*ad(z) and ad(z)ad(z™)" = ad(z™)*ad(z)
for all t > 0, we can rewrite (10) as follows

f(2%),2][Jaz, 2%kt = Jo([f(2), 2][ 12, 2™ -1)
k-1
+ N[[f(2*), 2], 2™ [ oz, 2™ _1 s

t=1

k-1
- J (ZN,[[f(x),x],xm]t[le,xm]k_l_;}))

t=1

= 0 (11)

2km-—1 i

=0 pi(x)zz’ = 0, we see
that pakm—1(z) = —[f(z), 2]. Substituting r for z, we get Zfign_lpi(r)zri =0
for all z € A. Since r is not algebraic of degree < 2km — 1 over C, we conclude
that 1,7,...,7%*™=1 are linearly independent over C and so [f(r),r] = 0 by [22,

Theorem 2].

for some natural numbers N;’s. Writing (11) ¢s 3

o
g

Lemma 4.2 Suppose that R is not algebraic 4 /gebrd o/f degree < 2km over C.
Then [f(z),z] =0 for all z € R.

Proof. Let z € R and A € C'\ {0,1}. By Corollary 2.12 there exists y € R
such that neither y nor z + y nor z + Ay is an algebraic element of degree
< 2km — 1 over C. Then by Lemma 4.1

Wyl =[fle+y), 2+ =[f(z + Ay),z + Ay] = 0.
Therefore

= [fle+y,e+yl=[f(z), 2]+ [/ (=), u) + [f (), 2],
= [fle+ ),z + Ay) = [f(2), 2] 4 A[f(2), ] + N[ f(v), 2]

and so [f(z),z] =0 for all z € R.

Proof of Theorem 1.1. If R is not algebraic of degree < 2km over C, then
[f(z),z] = 0 for all z € R by Lemma 4.2. Suppose now that R is algebraic
of degree < 2km over C. Then, R is a_PLAing. According to [3, Theorem
6.3.20], A is GPI. Since A is centrally closed, A contains a nonzero idempotent
p such that pAp is a finite dimensional central division algebra over C (see [3,
Theorem 6.1.6]). It follows from [21, Theorem 1] that R = eSoc(A) for some
idempotent ¢ € Soc(4). As e € Soc(A), R = eA. We obtain from Litoff’s
Theorem [3, Theorem 4.3.11] that eAe is a finite dimensional central simple C-
algebra. Tensoring by the algebraic closure F of (7, we reduce the problem to the

11
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case when eAe is a matrix ring over C and |C] := co. Let now 0 # w? = w € eA.
Then wAw is a matrix ring over C'. Given any z € wAw, write

f@)=wflz)w+wfle)(l-w)+(1-wj(z)w+ (1 -wflz)l-w).
As [f(z), w] = 0 by Corollary 2.6, we conclude that
fl@) =wf(z)w + (1 —w)f(z)(1 — w) for all z € wAw (12)

Applying Proposition 3.5 to ¢ : wAw — wAw g(z) = wf(z)w, z € wAw, we
infer that [wf(z)w,z] = 0 for all z € wAw. It ‘ollows from (12) that

[f(z),z)=0forall z = wAw (13)

Let now y € eA. Clearly yA = vA for some v? = v € eA. Note that vy = Y.
Since |C| = oo, there exists an infinite subset ' C C such that rv + yv is an
invertible element of the matrix ring vAv for all 7 € 7. Fix any 7 € T and set
z=171v+y € vA. Then there exists € vAv such that zvz = v. As z2 = zvz,
we conclude that zz = v. Consider w = v+z2(. —v) € vA. As vz = z, w? = w.
Next, wz = z and

w=zv+ (2z)z(l-v) = zvtvz(l —v) = 2v 4+ 2(1—-v) = 2

and so z € wAw. According to (13), [f(z), z] = ). That s to say [f(rv+y), Tv+
yl=0foralTeT. As |T| = oo, [f(y),y) = 0 for all y € eA and the proof is
completed.

Finally we note that Corollary 1.2 follows from Theorem 1.1 and [9, Theorem
5.2] (see also {20, Theorem 1]).
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