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Az, y)[o(u),o(v)] for all z,y,u,v € S.

Proof. Since A is a (o, 0)—derivation in each argument, we can prove the lemma by
computing A(zu,yv) for z,y,u,v € S in two different ways as the argument given in

the proof of [5, Lemma 3.1].

Theorem 1. Let R be a semiprime ring, I an idecl of R and o a ring endomorphism
of R such that o(I) contains a large right ideal of R. Then every o-commuting map
f:1 — Q, which 1s additwe modulo C, must be of the form f(z) = Ao (z) + ((z) for

allz eI, where xe C and (: 1 — C.

Proof. Since f:I — Q is additive modulo C, linearizing [f(z),0(x)] = 0 we see
that [f(z),0(y)] = —[f(y),o(z)] for all z,y € I. Then A:1 x I — Q, defined by
Az,y) = [f(z),0(y)] for all z,y € I, is a (0, 0)-bicerivation. In view of Lemma 1, we

have [o(z),0(y)]A(u,v) = Az, y)[o(u),o(v)] for all z,y,u,v € I. That is,

(1) [o(2), e[ (), o ()] = [f(2), e (W)][o(u), o (v)]

for all z,y,u,v € I. By assumption, let p be a large right ideal of R such that p C o(I).

Thus, by (1), we see that

(2) [o(2), 9l(f (), v] = [f (<), ullo(w), V]

(3) [0(z), ylz[f (w), v] = [f(2), ul2[o(u), v]

for all z,u € I and all y,z € p. In view of [17, Theorem 1], p and @ satisfy the same
GPIs with coefficients in Q. This implies that (3) holds for all z,u € I and all y, z € Q.

Note that C' is the extended centroid of Q. In view of [3, Theorem 3.1], there exist

3




As an immediate consequence of Theorem 2 we have the following

Corollary 1. Let R be a semiprime ring with o an epimorphism of R. Then every
o-commuting map f: R — U, which is additive modulo C, must be of the form f(z) =

Ao (z) + ((z) for allz € R, where A\ € C and (: R -~ C.

Let o and 7 be endomorphisms of the ring . A map d: R — R is called a
(o, T)-deriwation if d(z + y) = d(z) + d(y) and d(zy) = d(z)o(y) + T(z)d(y) for all
z,y € R. The following result gives the semiprim: case of Posner’s theorem [25] for

(o, 7)—derivations.

Theorem 3. Let R be a semiprime ring with d a (o, 7)-derivation of R. Suppose
that I 1is a nonzero ideal of R such that both o(I) and 7(I) contain some large right
ideals of R. If [d(z),0(z)] = 0 for all z € I, then d(R) C Z(R) and (R, R]d(R) = 0.

In addition, if d # 0, then R contains a nonzero central ideal.

Proof. In view of Theorem 1, there exist A € ' and a map (:I — C such that

d(z) = Ao(z) + ¢(z) for all z € I. Let z,y € I. Then

(6)  d(zy) = d(z)a(y) + 7(z)d(y) = Ao(zy) + ((=)o(y) + Ar(z)a(y) + {(y)7(x).
On the other hand, d(zy) = Ao (zy) + (zy). Comparing this with (6) we see that
(7) (Ar(z) + ((@))o(y) + ((y)r(z) € C

Commuting (7) with 7(z) gives

(8) (A7 (z) +¢(2))lo(y), (z)] = 0

for all z,y € I. Let p be a large right ideal of R contained in o(I). Therefore, by (8),

we have

9) (A7(2) + C(2))[y, T(z)] = 0



idempotents €1,e2,e3 € C and an invertible slement u € C such that €:€5 = 0 for

1#J,61+€e2+e3=1, and

(4) eilf(z),y] = perlo(z), g, [e2f(2),y] =0, [eso(z),y] =0

for all z € I and all y € Q. This implies that
(5) e1f(z) — pero(z) € C, e2f(z) €C, ez0(z) e C

for all z € I. Since, by (5), £30(I) € C and p C o(I), we have e3Q C C [17, Theorem
1]. In particular, e3f(z) € C for all z € I. Tais fact together with (5) implies that
f(z) —pero(z) e Cforallz € I. Set A = per € Cand ((z) = f(z) - Ao(z) € C for

T € I. The theorem is thus proved.

We note that R and each large ideal of R satisfy the same GPIs with coefficients
in U (see, for instance, [17, Main Theorem] or [16, Theorem 3)). Applying this fact

together with the same argument given in Thecrem 1, we have the following result.

Theorem 2. Let R be g semiprime ring, I an ideal of R and o an endomorphism of
the ring R such that o(I) contains q large ideai of R. Then every o-commuting map
f+I = U, which is additive modulo C, must be of the form (@) = do(z) + ¢(z) for

allz € I, where A € C and (: I — C.

Remark. In Theorems 1 and 2, the conclusions do not remain true if o(I) does not
contain some large right ideal of R. For instance let R =M, (C)®M,(C), where n >
and M, (C) is the n x n matrix ring over a field C. Let [ = {(z,0) |z ¢ M, (C)} and
o be an automorphism of R defined by o((z,y)) = (y,z) for (z,y) € R. Let ffI—-R
be defined by f((z,0)) = (0,z) for z € M, (C). Then it is clear that f is an additive
o-commuting map but is not of the form concluded in Theorem 1 or Theorem 2. Of

course, in this case o(I) contains no large right ideals.
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for all z € I and all y € p. In view of [17, Theoren 1], (9) holds for all z € I and all
y € Q. By the semiprimeness of Q, a direct computation proves that Ar(z)+((z) € C
and hence Ar(z) € C for all z € I. Thus Apo & C, where pg is a large right ideal of
R contained in 7(I). In view of [17, Theorem 1] again, AQ C C follows. For z € I we

have d(z) = Ao(z) + ((z) € C. This proves that d T) C Z(R).

Let z € I,y € R; then 2y € I. Thus d(zy) = d(z)o(y) + T(z)d(y) € Z(R),
implying that [o(y), 7(I)d(y)] = 0. Since 7(I) contains a large right ideal of R, it
follows from [17, Theorem 1] that [o(y), Qd(y)] = 0. In particular, [o(y), d(y)] = 0 for

all y € R. Applying the case above with I = R, we see that d(R) C Z(R).

From the last paragraph, [o(y), Rld(y) = 0 fer all y € R. Let P be a prime ideal
of R. Passing to the prime ring R/P, we have that either [o(y), R] C Pord(y) € P for
each y € R. Thus R is the union of its two additive subgroups: {y € R | [o(y), R] C
P} and {y € R | d(y) € P}. Thus either [(R),R] C P or d(R) C P, implying
that [0(R), R]d(R) C P. The semiprimeness of It implies that [o(R), Rld(R) = 0.
Since o(R) contains a large right ideal of R, in view of [17, Theorem 1] we have
[R, RJd(R) =0, as desired. We remark that ¢r([R, R]) = rr([R, R]) and that an ideal
J of R is central if and only if J is contained in £g([R, R]). Hence, {r([R, R)) is the
unique largest central ideal of R. Thus, if d # 0, then 0 + d(R) C ¢r([R,R]) € Z(R).

So £r([R, R]) is the largest nonzero central ideal of R. This proves the theorem.
As a special case of Theorem 3, we have the following

Corollary 2. Let R be a semiprime ring with d a (o, 7)-derivation of R, where o
and T are epimorphisms of R. Suppose that [i(z),o(z)] = 0 for all z € R, then

d(R) C Z(R) and [R, RJd(R) = 0.



A€ C and (: I — C unless char R = 2 and dimg RC = 4.

Proof. Suppose that either char R # 2 or dimg RZ' > 4. The key step to the proof
is implicit in the proof of [5, Lemma 6.3]. Let z,a € L. Note that [f(z),o(a)] +
[f(a),o(z)] € C. Repeating an analogous argument as that of [5, Lemma 6.3] or {19,
Theorem 4] to compute [f([z,a]), o([z,a])] € C, w: have
C 3[f([z.a]),0(z,q])]

=([f([z.a)),0(x)], 0 (a)] + [o(2), [J ([z, a]), o (a)]

=(lo([z,a]), f(@),0(@)] + [0(2), [¢ ([, a]), ()]

=lo(2),[0(a), f (@), 0(a)] + [o(z), [0 ([, a]), £(a)]]
(10) =llo(),0(a)], (f(a), 0 (@)]] + [0(z), [[ (), 0 ()], o(a)]]

for all a,z € L. Since o(L) is a noncentral Lie ideal of R, applying [13, Theorem 4]
to (10) we see that 1,0(a) and f(a) are C—depenient for each a € L. Thus either
o(a) € Z(R) or f(a)— As0(a) € Z(R) for each a € L.

We can replace u, v, L with o(u), 0(v), 0(L), respectively, in the second paragraph

of [19, p.265] to proceed the proof. We omit its details.
For L = R in Theorem 4 we have the following;

Corollary 5. Let R be a prime ring with o an epimorphism of R. Then every o-
centralizing map f: R — U, which is additive modulo C, must be of the form f(z) =

Ao(z) + ((z) for all z € R, where A\ € C and (: R — C, unless charR = 2 and

8



For the prime case we have the following two results.

Corollary 3. Let R be a prime ring and I an ideal of R. Suppose that o is an
epimorphism of R such that o(I) # 0. Then every o-commuting map f: I — U, which
is additive modulo C', must be of the form f(x) = Ao(z) + ((z) for all z € I, where

AeCand (1 —C.

Proof. Since ¢ is an epimorphism of R, we have 0 # Ro(I)R = o(RIR) C o(I).
Therefore, o(I) contains a nonzero ideal of R. Note that, by the primeness of R, each

nonzero ideal of R is large. In view of Theorera 2, the corollary is proved.
The following result gives a slight generalization of [10, Lemma 2(3)].

Corollary 4. Let R be a prime ring and I a nonzero ideal of R. Let d:R — R be a
nonzero (o, 7)-derivation of R such that both s(I) and 7(I) contain some large right

ideals of R. If [d(z),0(z)] =0 for all z € I, then R is commutative.

Proof. In view of Theorem 3, we have [R, RJd'R) = 0. Since d # 0, the primeness of

R implies that [R, R] = 0. Thus R is commutative, proving the corollary.

§3. o—Centralizing Maps

In this section R always denotes a prim: ring. A Lie ideal L of R is called
noncommutative if [L, L] # 0 and is called noncentral if L ¢ Z(R). By [14, Theorem 4],
L is noncentral if and only if it is noncommutative unless char R = 2 and dimg RC = 4.

The following theorem gives a generalization of (19, Theorem 4].

Theorem 4. Let R be a prime ring, L a noncentral Lie ideal of R and o an epi-
morphism of R with o(L) ¢ Z(R). Then every o-centralizing map f: L — U, which

is additive modulo C, must be of the form f(z) = Xo(z) + ((z) for all z € I, where



dim¢ RC = 4.

The following result is a generalization of {13, Theorem 5]. Since its proof is
analogous to that of [19, Theorem 5] by replacing [19, Theorem 4] with Theorem 4,

we only give its statement.

Theorem 5. Let R be a prime ring with an epiriorphism o and L be a noncentral
Lie ideal of R such that o(L) € Z(R). If T is an endomorphism of R which is
o-centralizing on L, then either T(L) C Z(R) ¢r T = o unless charR = 2 and

dimc RC =4.

§4. Posner’s Theorem for (o, 7)—Derivations on Lie Ideals

We end this paper by generalizing [1, Theorsm 2] to the Lie ideal case. The
following result gives Posner’s theorem for (o, 7)-derivations on Lie ideals. See §5. for

generalized (o, 7)-derivations.

Theorem 6. Let R be a prime ring, L a noncentral Lie ideal of R and d a (o,7)-
derivation. Suppose that o and T are epimorphism.s such that o(L) € Z(R), 7(L) €
Z(R) and d(L) € Z(R). If [d(z),0(z)] € Z(R) fcr all z € L, then char R = 2 and
dime RC = 4.

To show the theorem we need some preliminary lemmas. The first useful lemma
is due to Martindale [21] and is given in the following form by applying [6, Theorem

2.

Lemma 2. Let R be a prime ring and a;,b; € U for 1 <i<n. If S a;zb; =0 for

all z € R and b; # 0 for some i, then ay,---,a, ar: C-dependent.

Lemma 3. Let R be noncommutative prime ring and a,b € R. If [a,[R, R]b] = 0,



then either a € Z(R) or b= 0.

Proof. Since R is not commutative, [R, R] is a noicommutative Lie ideal of R. If R
is not a PI-ring, then [R, R| and R satisfy the saine GPIs [18, Lemma 2|. Thus, by

assumption, we have [a, Rb] = 0, implying that either a € Z(R) or b = 0, as desired.

Suppose next that R is a PI-ring. Denote by F' the algebraic closure of C and
set S = RC®c F. Then S = M,(F), where n > 1. Moreover, |[a,[S, S]b] = 0.
In particular, [a,[S, S16[S,S]b] = 0 and, hence, [u,([S,S] + [S, S]b[S, S])b] = 0. If
(S, S1b[S,S] £ [S,S], then [S,S]+ [S, SJb[S,S] = S as dimp S = 1 + dimp[S, S]. Thus
[a, Sb] = 0, implying that either a € Z(R) or b = 0. Suppose that [S, S]5[S, S] C [S, S].
In view of [20, Lemma 1], 8[S, S] C F, implying that b = 0. This proves the lemma.
Lemma 4. Let R be a prime ring and a,b € R. If there exist u,v € R, not both zero,
such that ula, z] + v[b,z] = 0 for all x € R, then 1,a and b are C-dependent.
Proof. Let z € R. By assumption, u[a,z] + v[b,z] = 0, implying that (ua + vb)z —
uza — vzb = 0. Since either a # 0 or b # 0, Leinma 2 implies that 1,a and b are

C-dependent, as desired.

Lemma 5. Let R be a prime ring and a,b € R. Ifafa,[b,z]] =0 for all z € R and
1,a,b are C'-independent, then there exist o, € C such that a* = aa, a(b~ B) =0
and (b — B)(a —a) = 0.

Proof. Define §(z) = [a,z] and d(z) = [b, z] for z € R. Then, by assumption, we have

add(z) =0 for all z € R. Let z,y € R. Expanding add(zy) = 0, we have
(11) ad(z)d(y) + ad(z)d(y) + aadd(y) = 0.

Replacing z by za in (11), we see that ad(za)d(y + ad(za)d(y) = 0. By Lemma 4,
ad(za) = 0 and ad(za) = 0 for all z € R. That is, Radé(Ra) = 0 and Rad(Ra) = 0.
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In view of Herstein’s theorem [9], there exist &, 8 € C such that Ra(a — @) = 0 and
Ra(b— B) = 0, implying that a® = aa and a(b - 3) = 0. Using the two relations to
expand afa, [b — B,z]] =0, we have (b — 8)(a — @) =0, as desired.

Using these lemmas, we are ready to deal with Theorem 6 for (1, 7)-derivations.

Lemma 6. Let R be a prime ring, L a noncentral Lie ideal of R and 7 an en-
domorphism of R such that T(L) € Z(R). If d is a (1,7)-derivation of R such that

[d(z),z] € Z(R) for allz € L, then d(L) C Z(R) unless char R = 2 and dimg RC = 4.

Proof. Suppose that either char R # 2 or dim¢ FIC > 4. The aim is to prove that
d(L) € Z(R). Suppose not. By Theorem 4, there exist A € C and a map :L — C
such that d(u) = Au+((u) for all u € L. Since d(L)  Z(R), we have A # 0. Note that
A~'d is still a (1, 7)-derivation of R. Replacing d b A™!d, we may assume that A = 1.
Let u € L and = € R; then u[u, 2] = [u,uz] € L. Thus d(ufu, z]) = uly, z] + ¢(u[u, z]).
On the other hand,
d(ulu, 2]) = d(u)[u, 2] + T(v)d([u, z))

= (u+ ¢(uw)[w, z] + 7(u)([u, 2] + ¢([u, z]))

= ulu, 2]+ (7(u) + ((u))[4, 2] + (([u, z]) 7 (u)
Comparing the two expressions, we see that
(12) (7(w) + {(u)w, ] + C([w, 2[)7(u) € C.

Commuting (12) with 7(u) gives that [r(u), (7(u) + ¢(u))[u, z]] = 0, implying that

(13) (m(w) + C(w) [ (u) + ((u), [w,z]] = 0

forallwu € L and all z € R.

Suppose for the moment that ker(r) # 0. Let z € ker(r) and y € R. Then
d(zy) = d(z)y + 7(z)d(y) = d(z)y. Thus there exists a € U such that d(z) = az
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for all z € ker(r). For r € R and z € ker(r) we have d(rz) = arz. On the other
hand,/d(m) = d(r)z + 7(r)az, implying that (a(r) — ar + 7(r)a)z = 0. By the
primeness of R, d(r) = ar — 7(r)a for all 7 € R. Let u € L and = € ker(7). Then
d([u,z]) = [u,z] + {([u,z]). On the other hand, d([u,z]) = a[u,z] as [u,z] € ker(7).
Thus we have (a —1)[L, ker(7)] C C, implying that a = 1 as [L, ker(7)] is a noncentral
Lie ideal of R. Now, for v € L, we have d(u) = u + ((u) = u — 7(u) and, hence,
7(u) € C. That is, 7(L) C C, contrary to the fact that 7(L) is a noncentral Lie ideal

of R. Thus ker(7) = 0 and so 7 is an automorphisra of R. It is well-known that 7 can

be uniquely extended to an automorphism of U.

We claim that R is a PI-ring. Let u € L. Applying Lemma 5 to (13) gives that
either 7(u) € Cu+C or 7(u)? € Cr(u) + C. The latter case proves that u is algebraic
over C of degree < 2. Consider next the first case. Write 7(u) = au + 8, where
a,f€C. I =0, then u € C. Suppose that a # 0. Commuting u with (12), we
have (au+ 8 + ¢(u))[u, [u,z]] =0 for all z € R. Lemma 2 implies that v is algebraic
over C' of degree < 3. Up to now, we have proved that u is algebraic over C of degree
< 3 for each v € L. In particular, L satisfies a PI with coefficients +1. Since L is
a noncetral Lie ideal of R, R is also a Pl-ring, as desired. So U = RC follows from

Posner’s theorem [11, Theorem p.57] for prime PI-rings.

In view of [26, Theorem 1.5.33], Z(R) # 0. We claim that d(Z(R)) = 0 and
7(8) = B for all B € Z(R). Let I = R[L,L]R. Then I is a nonzero ideal of R and
[I,R] C L (see the proof of [8, Lemma 1.3]). Let § € Z(R) and w € [I,R]; then
Bu € L. Therefore, we have d(Bu) = fu + ((B4). On the other hand, d(fu) =
d(uB) = d(u)B + 7(u)d(8) = Bu + B¢(u) + T(u)diB). Thus 7(u)d(8) € C. That is,

[r(I), Rld(B) € C. As [r(I),R] is a noncentral Lie ideal of R, we have d(8) = 0.
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Next, we compute d(Bu) = d(B)u + 7(8) (v + {(u) = 7(B8) (v + ¢(u)), implying that

(7(8) = B)u e C. That is, (7(8) — B)[, R] € Z(R) and so 7(8) = 3 follows.

Since 7(8) = B for all 3 € Z(R), we have 718) = B for all 8 € C. In view of
(7, Corollary p.100], 7 is an inner derivation of U. There exists an invertible element
b € U such that 7(z) = brb™! for all z € U. In this case, b'd is an ordinary derivation
from R into U. It is well-known that b~1d is uniquely extended to a derivation of U
16, Lemma 2]. Since b~'d(Z(R)) = 0 and C is the juotient field of Z(R), b=1d(C) = 0
follows. So b~'d is inner [7, Proposition p.100]. 'Thus there exists a € U such that

b=td(z) = az — za for all z € U. That is, d(z) = bz — bza for all z € R.

Let w € L. Then u+((u) = d(u) = bau — bua, implying that (ba — 1)u — bua € C.
Since [I,R] C L, it follows from [6, Theorem 2] that (ba — 1)z — bza € C for all
z € [RC, RC]. Denote by F' the algebraic closure cf C. Then (ba — 1)z — bza € F for
all z € [RC ®c F, RC ®¢ F]. Note that RC ®¢ .= = M, (F), where n > 1. Hence,
we may assume that B = M,(C) and that (ba — 1)z — bza € C for all = € [R, R).
Suppose for the moment that (ba — 1)z = bza for al z € [R, R]. Then, for r,s € R, we
have b~1(ba — 1)[r, 5] = [r, s]a and so [r, slas = b=} (ba — 1)[r, s|s = b=1(ba — 1)[rs, 5] =
[rs, sla = [r, s]sa, implying that [r, s][a,s] = 0. Ttat is, [R, s][a,s] = 0 and so either
s € Z(R) or [a,s] = 0. In either case, we have a,s] = 0 for all s € R, implying
a € Z(R). This implies d = 0, a contradiction. Hence, (ba — 1)z — bza # 0 for
some z € [R, R|. Since [R, R] is generated over (' by all elements of rank 1, there
exists u € [R, R] of rank 1 such that 0 # (ba — 1'u — bua € C, implying n = 2. If
char R # 2, then [R, R] + C = R and, hence, (ba - 1)z — bza € C for all z € R. Let
z,y € R. Then (ba — 1)(zy) — b(zy)a € C and (ba -- 1)zy — bzay € Cy, implying that

bzla,y] € Cy + C. Since b is invertible in R, we have z[a,y] € Cy + C. Commuting
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with y gives [y, R[a,y]] = 0, implying that either y = Z(R) or [a,y] = 0 for each y € R.
But R is not commutative; so a € Z(R) and, hence, d = 0 follows, a contradiction.

This completes the proof.
We are now ready to give the proof of Theoren 6.

Proof of Theorem 6. By Theorem 4, there exist A € C and a map (: L — C such
that d(u) = Ao{u) + ((u) for all u € L. Since d(L) € Z(R), we have X # 0. Replacing

d by A~ 'd, we may assume that A = 1.

Suppose on the contrary that either char R # 2 or dimg RC > 4. We will reduce
d to a nonzero (1,6)-derivation centralizing on I, and, hence, give a contradiction
by Lemma 6. If o is an automorphism, then o~'d is a nonzero (1,0~ 1r)-derivation
centralizing on L. So we are done in this case. Therefore we may assume that ker(c) #

0.

We claim that d(ker(c)) = 0 and r(ker(o)) == 0. Let z,y € ker(c) and u € L.

Then we have d([z, [y, ul]) = o((z, [y, u]]) + {([=,[3, ull) = {([z, [y, u]]) € C. Thus we

have
d([l‘, [yv u]]) = d(x[y’ UD - d([ya U’]x)

(14) = 7(2)d([y, ul) - 7([y, ul)d(z)

= 7(z)¢([y, u]) — 7([y, u])d(z) € C.
Commuting (14) with 7(z) gives that [T(:I:),T([y,u])d(a:)] = 0. That is,

[7(z), [ (ker(c)), 7(L)]d(z)] = 0 for all 7 € ker(o).
Note that [r(ker(c)), 7(L)] is a noncentral Lie ideal of R. Set N = [r(ker(c)), 7(L)].
Then 0 # [R[N, N]R, R] C N and so [[r(z), [R, R]d(z)] = 0 for all z € ker(c)) (see [6,

Theorem 2]). By Lemma 3, either 7(z) € Z(R) or 1(z) = 0 for each z € ker(c). Thus

we have either 7(ker(¢)) C Z(R) or d(ker(c)) = 0.
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If 7(ker(c)) € Z(R), then 7(ker(c)) = 0 as F. is not commutative. Suppose the
latter case that d(ker(c)) = 0. For z € ker(c) end u € L, d([z,u]) = d(z)o(u) +
7(z)d(u) — d(u)o(z) — 7(u)d(z) = 7(z)d(uv) € C, implying that 7(ker(c))d(L) C C.

But d(L) # 0, we have 7(ker(c)) = 0. Therefore, in either case, we 7(ker(c)) = 0.

Next, we want to prove d(ker(c)) = 0. Let u,v € L and z € ker(c). Then

d([v,z]) € C and d([u, [v,z]]) € C. Thus we have
A([w, [v, 7]]) = d(ulv, z]) - d([v, z]u) = d([v,z])(7(u) — o (u)) € C,
implying that

(15) d([ker(c), L])(r(u) — () C C.

If d([ker(0), L]) # O, then (15) implies that 7(u) = o (u) for all u € L. It is easy to
prove that o = 7. Then, for z € ker(o) and u € L, we have d([u, z]) = [o(u),d(z)] € C.
That is, [d(ker(c)),o(L)] € C. As o(L) is a noncentral Lie ideal of R, we have
d(ker(o)) C C. So d([u,z]) = [d(u),d(z)] = 0, implying that d([ker(c),L]) = 0, a

contradiction. This proves that d([ker(s), L]) = 0.

Let z € ker(o), u € L and y € R. Then 0 = d([u,z] = 7(u)d(z) — d(z)o(u). That

(16) d(z)o(u) = 7(u)d(r).

Since yz € ker(c), by (16) we have d(zy)o(u) = 7'u)d(zy), implying 7(y)d(z)o(u) =
7(u)7(y)d(x), and so, by (16) again, [7(y), 7(u)]d(2) = 0. But 7 is surjective, we have
[R, 7(L)]d(ker(c)) = 0. Then d(ker(c)) = 0 follows from the fact that [R,7(L)] is a

noncentral Lie ideal of R.
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