- 24. J. H. Mayne, Centralizing automorphisms of Lie ideals in prime rings, Canad. Math. Bull. **35** (1992), 510–514.
- 25. E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.
- L. H. Rowen, "Polynomial identities in ring theory", Academic Press, New York, 1980.

REFERENCES

- 1. K, I. Beidar, Y. Fong, W.F. Ke and C. H. Lee, Posner's theorem for generalized (σ, τ) -derivations, preprint.
- M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156
 (1993), 385–394.
- 3. M. Brešar, On certain pairs of functions of semiprime rings, Proc. Amer. Math. Soc. 120 (1994), 709-713.
- 4. M. Brešar and C. R. Miers, Commuting rnaps on Lie ideals, Comm. Algebra 23(14) (1995), 5539-5553.
- 5. M. Brešar, W. S. Martindale III and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993), 342–357.
- C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723-728.
- 7. I. N. Herstein, "Noncommutative rings", Carus mathematics monograph 15, 1968.
- 8. I. N. Herstein, "Topics in ring theory", University of Chicago Press, Chicago, 1969.
- 9. I. N. Herstein, A condition that a derivation be inner, Rend. Cir. Mat. Palermo Ser. II, 37 (1988), 5-7.
- 10. M. Hongan, A generalization of a theorem of Posner, Math. J. Okayama Univ. 33 (1991), 97-101.
- N. Jacobson, "PI-algebras: an introduction", Lecture Notes in Math. 441,
 Springer-Verlag, Berlin and New York, 1975.

- 12. W. F. Ke, On derivations of prime rings of characteristic 2, Chinese J. Math. 13 (1985), 273-290.
- C. Lanski, Differential identities of prime rings, Kharchenko's theorem, and applications, Contemporary Math. 124 (1992), 111-128.
- 14. C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math. 42 (1972), 117–136.
- P. H. Lee and T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Academia Sinica 11 (1983), 75-80.
- 16. T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), 27–38.
- 17. T. K. Lee, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc. 347 (1995), 3159-3165.
- 18. T. K. Lee, Differential identities of Lie ideals or large right ideals in prime rings, Comm. Algebra 27(2) (1999), 793-810.
- 19. T. K. Lee and T. C. Lee, Commuting mappings in semiprime rings, Bull. Inst. Math. Acad. Sinica 24 (1996), 259–268.
- 20. T. K. Lee and W. K. Shiue, *Linear identities and derivations*, Comm. Algebra 28 (2000), to appear.
- 21. W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
- 22. J. H. Mayne, Centralizing automorphisms of vrime rings, Canad. Math. Bull. 19 (1976), 113–115.
- 23. J. H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull. 27 (1984), 122-126.

 $\Delta(x,y)[\sigma(u),\sigma(v)]$ for all $x,y,u,v \in S$.

Proof. Since Δ is a (σ, σ) -derivation in each argument, we can prove the lemma by computing $\Delta(xu, yv)$ for $x, y, u, v \in S$ in two different ways as the argument given in the proof of [5, Lemma 3.1].

Theorem 1. Let R be a semiprime ring, I an ideal of R and σ a ring endomorphism of R such that $\sigma(I)$ contains a large right ideal of R. Then every σ -commuting map $f: I \to Q$, which is additive modulo C, must be of the form $f(x) = \lambda \sigma(x) + \zeta(x)$ for all $x \in I$, where $\lambda \in C$ and $\zeta: I \to C$.

Proof. Since $f: I \to Q$ is additive modulo C, linearizing $[f(x), \sigma(x)] = 0$ we see that $[f(x), \sigma(y)] = -[f(y), \sigma(x)]$ for all $x, y \in I$. Then $\Delta: I \times I \to Q$, defined by $\Delta(x, y) = [f(x), \sigma(y)]$ for all $x, y \in I$, is a (σ, σ) -bicerivation. In view of Lemma 1, we have $[\sigma(x), \sigma(y)]\Delta(u, v) = \Delta(x, y)[\sigma(u), \sigma(v)]$ for all $x, y, u, v \in I$. That is,

$$[\sigma(x), \sigma(y)][f(u), \sigma(v)] = [f(x), \sigma(y)][\sigma(u), \sigma(v)]$$

for all $x, y, u, v \in I$. By assumption, let ρ be a large right ideal of R such that $\rho \subseteq \sigma(I)$. Thus, by (1), we see that

(2)
$$[\sigma(x), y][f(u), v] = [f(x), y][\sigma(u), v]$$

for all $x, u \in I$ and all $y, v \in \rho$. Replacing y with yz in (2), where $y, z \in \rho$, we have

$$[\sigma(x), y]z[f(u), v] = [f(x), y]z[\sigma(u), v]$$

for all $x, u \in I$ and all $y, z \in \rho$. In view of [17, Theorem 1], ρ and Q satisfy the same GPIs with coefficients in Q. This implies that (3) holds for all $x, u \in I$ and all $y, z \in Q$. Note that C is the extended centroid of Q. In view of [3, Theorem 3.1], there exist

As an immediate consequence of Theorem 2 we have the following

Corollary 1. Let R be a semiprime ring with σ an epimorphism of R. Then every σ -commuting map $f: R \to U$, which is additive modulo C, must be of the form $f(x) = \lambda \sigma(x) + \zeta(x)$ for all $x \in R$, where $\lambda \in C$ and $\zeta: R \to C$.

Let σ and τ be endomorphisms of the ring R. A map $d: R \to R$ is called a (σ, τ) -derivation if d(x + y) = d(x) + d(y) and $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ for all $x, y \in R$. The following result gives the semiprime case of Posner's theorem [25] for (σ, τ) -derivations.

Theorem 3. Let R be a semiprime ring with d a (σ, τ) -derivation of R. Suppose that I is a nonzero ideal of R such that both $\sigma(I)$ and $\tau(I)$ contain some large right ideals of R. If $[d(x), \sigma(x)] = 0$ for all $x \in I$, then $d(R) \subseteq Z(R)$ and [R, R]d(R) = 0. In addition, if $d \neq 0$, then R contains a nonzero central ideal.

Proof. In view of Theorem 1, there exist $\lambda \in C$ and a map $\zeta: I \to C$ such that $d(x) = \lambda \sigma(x) + \zeta(x)$ for all $x \in I$. Let $x, y \in I$. Then

(6)
$$d(xy) = d(x)\sigma(y) + \tau(x)d(y) = \lambda\sigma(xy) + \zeta(z)\sigma(y) + \lambda\tau(x)\sigma(y) + \zeta(y)\tau(x).$$

On the other hand, $d(xy) = \lambda \sigma(xy) + \zeta(xy)$. Comparing this with (6) we see that

(7)
$$(\lambda \tau(x) + \zeta(x))\sigma(y) + \zeta(y)\tau(x) \in C.$$

Commuting (7) with $\tau(x)$ gives

(8)
$$(\lambda \tau(x) + \zeta(x))[\sigma(y), \tau(x)] = 0$$

for all $x, y \in I$. Let ρ be a large right ideal of R contained in $\sigma(I)$. Therefore, by (8), we have

(9)
$$(\lambda \tau(x) + \zeta(x))[y, \tau(x)] = 0$$

idempotents $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in C$ and an invertible element $\mu \in C$ such that $\varepsilon_i \varepsilon_j = 0$ for $i \neq j$, $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 1$, and

(4)
$$\varepsilon_1[f(x), y] = \mu \varepsilon_1[\sigma(x), y], \quad [\varepsilon_2 f(x), y] = 0, \quad [\varepsilon_3 \sigma(x), y] = 0$$

for all $x \in I$ and all $y \in Q$. This implies that

(5)
$$\varepsilon_1 f(x) - \mu \varepsilon_1 \sigma(x) \in C, \quad \varepsilon_2 f(x) \in C, \quad \varepsilon_3 \sigma(x) \in C$$

for all $x \in I$. Since, by (5), $\varepsilon_3 \sigma(I) \subseteq C$ and $\rho \subseteq \sigma(I)$, we have $\varepsilon_3 Q \subseteq C$ [17, Theorem 1]. In particular, $\varepsilon_3 f(x) \in C$ for all $x \in I$. This fact together with (5) implies that $f(x) - \mu \varepsilon_1 \sigma(x) \in C$ for all $x \in I$. Set $\lambda = \mu \varepsilon_1 \in C$ and $\zeta(x) = f(x) - \lambda \sigma(x) \in C$ for $x \in I$. The theorem is thus proved.

We note that R and each large ideal of R satisfy the same GPIs with coefficients in U (see, for instance, [17, Main Theorem] or [16, Theorem 3]). Applying this fact together with the same argument given in Theorem 1, we have the following result.

Theorem 2. Let R be a semiprime ring, I an ideal of R and σ an endomorphism of the ring R such that $\sigma(I)$ contains a large ideal of R. Then every σ -commuting map $f: I \to U$, which is additive modulo C, must be of the form $f(x) = \lambda \sigma(x) + \zeta(x)$ for all $x \in I$, where $\lambda \in C$ and $\zeta: I \to C$.

Remark. In Theorems 1 and 2, the conclusions do not remain true if $\sigma(I)$ does not contain some large right ideal of R. For instance let $R = \mathrm{M}_n(C) \oplus \mathrm{M}_n(C)$, where n > and $\mathrm{M}_n(C)$ is the $n \times n$ matrix ring over a field C. Let $I = \{(x,0) \mid x \in \mathrm{M}_n(C)\}$ and σ be an automorphism of R defined by $\sigma((x,y)) = (y,x)$ for $(x,y) \in R$. Let $f: I \to R$ be defined by f((x,0)) = (0,x) for $x \in \mathrm{M}_n(C)$. Then it is clear that f is an additive σ -commuting map but is not of the form concluded in Theorem 1 or Theorem 2. Of course, in this case $\sigma(I)$ contains no large right ideals.

for all $x \in I$ and all $y \in \rho$. In view of [17, Theorem 1], (9) holds for all $x \in I$ and all $y \in Q$. By the semiprimeness of Q, a direct computation proves that $\lambda \tau(x) + \zeta(x) \in C$ and hence $\lambda \tau(x) \in C$ for all $x \in I$. Thus $\lambda \rho_0 \subseteq C$, where ρ_0 is a large right ideal of R contained in $\tau(I)$. In view of [17, Theorem 1] again, $\lambda Q \subseteq C$ follows. For $x \in I$ we have $d(x) = \lambda \sigma(x) + \zeta(x) \in C$. This proves that $d(I) \subseteq Z(R)$.

Let $x \in I, y \in R$; then $xy \in I$. Thus $d(xy) = d(x)\sigma(y) + \tau(x)d(y) \in Z(R)$, implying that $[\sigma(y), \tau(I)d(y)] = 0$. Since $\tau(I)$ contains a large right ideal of R, it follows from [17, Theorem 1] that $[\sigma(y), Qd(y)] = 0$. In particular, $[\sigma(y), d(y)] = 0$ for all $y \in R$. Applying the case above with I = R, we see that $d(R) \subseteq Z(R)$.

From the last paragraph, $[\sigma(y),R]d(y)=0$ for all $y\in R$. Let P be a prime ideal of R. Passing to the prime ring R/P, we have that either $[\sigma(y),R]\subseteq P$ or $d(y)\in P$ for each $y\in R$. Thus R is the union of its two additive subgroups: $\{y\in R\mid [\sigma(y),R]\subseteq P\}$ and $\{y\in R\mid d(y)\in P\}$. Thus either $[\sigma(R),R]\subseteq P$ or $d(R)\subseteq P$, implying that $[\sigma(R),R]d(R)\subseteq P$. The semiprimeness of R implies that $[\sigma(R),R]d(R)=0$. Since $\sigma(R)$ contains a large right ideal of R, in view of [17, Theorem 1] we have [R,R]d(R)=0, as desired. We remark that $\ell_R([R,R])=r_R([R,R])$ and that an ideal I of I is central if and only if I is contained in I in I in the unique largest central ideal of I. Thus, if I is I then I is the largest nonzero central ideal of I. This proves the theorem.

As a special case of Theorem 3, we have the following

Corollary 2. Let R be a semiprime ring with d a (σ, τ) -derivation of R, where σ and τ are epimorphisms of R. Suppose that $[d(x), \sigma(x)] = 0$ for all $x \in R$, then $d(R) \subseteq Z(R)$ and [R, R]d(R) = 0.

 $\lambda \in C$ and $\zeta: I \to C$ unless char R = 2 and $\dim_C RC = 4$.

Proof. Suppose that either char $R \neq 2$ or $\dim_C RC > 4$. The key step to the proof is implicit in the proof of [5, Lemma 6.3]. Let $x, a \in L$. Note that $[f(x), \sigma(a)] + [f(a), \sigma(x)] \in C$. Repeating an analogous argument as that of [5, Lemma 6.3] or [19, Theorem 4] to compute $[f([x, a]), \sigma([x, a])] \in C$, we have

$$C \ni [f([x, a]), \sigma([x, a])]$$

$$= [[f([x, a]), \sigma(x)], \sigma(a)] + [\sigma(x), [f([x, a]), \sigma(a)]]$$

$$= [[\sigma([x, a]), f(x)], \sigma(a)] + [\sigma(x), [\sigma([x, a]), f(a)]]$$

$$= [[\sigma(x), [\sigma(a), f(x)]], \sigma(a)] + [\sigma(x), [\sigma([x, a]), f(a)]]$$

$$= [[\sigma(x), \sigma(a)], [f(a), \sigma(x)]] + [\sigma(x), [[f(a), \sigma(x)], \sigma(a)]]$$

$$+ [\sigma(x), [[\sigma(x), \sigma(a)], f(a)]]$$

$$= [[\sigma(x), \sigma(a)], [f(a), \sigma(x)]] + [\sigma(x), [[f(a), \sigma(x)], \sigma(a)]]$$

$$+ [\sigma(x), [[\sigma(x), f(a)], \sigma(a)]]$$

$$= [[\sigma(x), \sigma(a)], [f(a), \sigma(x)]]$$

for all $a, x \in L$. Since $\sigma(L)$ is a noncentral Lie ideal of R, applying [13, Theorem 4] to (10) we see that $1, \sigma(a)$ and f(a) are C-dependent for each $a \in L$. Thus either $\sigma(a) \in Z(R)$ or $f(a) - \lambda_a \sigma(a) \in Z(R)$ for each $a \in L$.

We can replace u, v, L with $\sigma(u), \sigma(v), \sigma(L)$, respectively, in the second paragraph of [19, p.265] to proceed the proof. We omit its details.

For L = R in Theorem 4 we have the following:

Corollary 5. Let R be a prime ring with σ an epimorphism of R. Then every σ centralizing map $f: R \to U$, which is additive modulo C, must be of the form $f(x) = \lambda \sigma(x) + \zeta(x)$ for all $x \in R$, where $\lambda \in C$ and $\zeta: R \to C$, unless char R = 2 and

For the prime case we have the following two results.

Corollary 3. Let R be a prime ring and I an ideal of R. Suppose that σ is an epimorphism of R such that $\sigma(I) \neq 0$. Then every σ -commuting map $f: I \to U$, which is additive modulo C, must be of the form $f(x) = \lambda \sigma(x) + \zeta(x)$ for all $x \in I$, where $\lambda \in C$ and $\zeta: I \to C$.

Proof. Since σ is an epimorphism of R, we have $0 \neq R\sigma(I)R = \sigma(RIR) \subseteq \sigma(I)$. Therefore, $\sigma(I)$ contains a nonzero ideal of R. Note that, by the primeness of R, each nonzero ideal of R is large. In view of Theorem 2, the corollary is proved.

The following result gives a slight generalization of [10, Lemma 2(3)].

Corollary 4. Let R be a prime ring and I a nonzero ideal of R. Let $d: R \to R$ be a nonzero (σ, τ) -derivation of R such that both $\sigma(I)$ and $\tau(I)$ contain some large right ideals of R. If $[d(x), \sigma(x)] = 0$ for all $x \in I$, then R is commutative.

Proof. In view of Theorem 3, we have [R, R]d(R) = 0. Since $d \neq 0$, the primeness of R implies that [R, R] = 0. Thus R is commutative, proving the corollary.

§3. σ -Centralizing Maps

In this section R always denotes a prime ring. A Lie ideal L of R is called noncommutative if $[L, L] \neq 0$ and is called noncontral if $L \not\subseteq Z(R)$. By [14, Theorem 4], L is noncentral if and only if it is noncommutative unless char R=2 and $\dim_C RC=4$. The following theorem gives a generalization of [19, Theorem 4].

Theorem 4. Let R be a prime ring, L a noncentral Lie ideal of R and σ an epimorphism of R with $\sigma(L) \not\subseteq Z(R)$. Then every σ -centralizing map $f: L \to U$, which is additive modulo C, must be of the form $f(x) = \lambda \sigma(x) + \zeta(x)$ for all $x \in I$, where

 $\dim_C RC = 4$.

The following result is a generalization of [13, Theorem 5]. Since its proof is analogous to that of [19, Theorem 5] by replacing [19, Theorem 4] with Theorem 4, we only give its statement.

Theorem 5. Let R be a prime ring with an epirorphism σ and L be a noncentral Lie ideal of R such that $\sigma(L) \not\subseteq Z(R)$. If T is an endomorphism of R which is σ -centralizing on L, then either $T(L) \subseteq Z(R)$ or $T = \sigma$ unless char R = 2 and $\dim_C RC = 4$.

$\S 4.$ Posner's Theorem for (σ, τ) -Derivations on Lie Ideals

We end this paper by generalizing [1, Theorem 2] to the Lie ideal case. The following result gives Posner's theorem for (σ, τ) -derivations on Lie ideals. See §5. for generalized (σ, τ) -derivations.

Theorem 6. Let R be a prime ring, L a noncentral Lie ideal of R and d a (σ, τ) -derivation. Suppose that σ and τ are epimorphisms such that $\sigma(L) \not\subseteq Z(R)$, $\tau(L) \not\subseteq Z(R)$ and $d(L) \not\subseteq Z(R)$. If $[d(x), \sigma(x)] \in Z(R)$ for all $x \in L$, then char R = 2 and $\dim_C RC = 4$.

To show the theorem we need some preliminary lemmas. The first useful lemma is due to Martindale [21] and is given in the following form by applying [6, Theorem 2].

Lemma 2. Let R be a prime ring and $a_i, b_i \in U$ for $1 \le i \le n$. If $\sum_{i=1}^n a_i x b_i = 0$ for all $x \in R$ and $b_i \ne 0$ for some i, then a_1, \dots, a_n are C-dependent.

Lemma 3. Let R be noncommutative prime ring and $a, b \in R$. If [a, [R, R]b] = 0,

then either $a \in Z(R)$ or b = 0.

Proof. Since R is not commutative, [R, R] is a noncommutative Lie ideal of R. If R is not a PI-ring, then [R, R] and R satisfy the same GPIs [18, Lemma 2]. Thus, by assumption, we have [a, Rb] = 0, implying that either $a \in Z(R)$ or b = 0, as desired.

Suppose next that R is a PI-ring. Denote by F the algebraic closure of C and set $S = RC \otimes_C F$. Then $S \cong \mathrm{M}_n(F)$, where n > 1. Moreover, [a, [S, S]b] = 0. In particular, [a, [S, S]b[S, S]b] = 0 and, hence, [a, ([S, S] + [S, S]b[S, S])b] = 0. If $[S, S]b[S, S] \not\subseteq [S, S]$, then [S, S] + [S, S]b[S, S] = S as $\dim_F S = 1 + \dim_F [S, S]$. Thus [a, Sb] = 0, implying that either $a \in Z(R)$ or b = 0. Suppose that $[S, S]b[S, S] \subseteq [S, S]$. In view of $[S, S] \subseteq [S, S] \subseteq [S, S]$. In view of $[S, S] \subseteq [S, S] \subseteq [S, S]$.

Lemma 4. Let R be a prime ring and $a, b \in R$. If there exist $u, v \in R$, not both zero, such that u[a, x] + v[b, x] = 0 for all $x \in R$, then 1, a and b are C-dependent.

Proof. Let $x \in R$. By assumption, u[a, x] + v[b, x] = 0, implying that (ua + vb)x - uxa - vxb = 0. Since either $a \neq 0$ or $b \neq 0$, Lemma 2 implies that 1, a and b are C-dependent, as desired.

Lemma 5. Let R be a prime ring and $a, b \in R$. If a[a, [b, x]] = 0 for all $x \in R$ and 1, a, b are C-independent, then there exist $\alpha, \beta \in C$ such that $a^2 = \alpha a$, $a(b - \beta) = 0$ and $(b - \beta)(a - \alpha) = 0$.

Proof. Define $\delta(x) = [a, x]$ and d(x) = [b, x] for $x \in R$. Then, by assumption, we have $a\delta d(x) = 0$ for all $x \in R$. Let $x, y \in R$. Expanding $a\delta d(xy) = 0$, we have

(11)
$$a\delta(x)d(y) + ad(x)\delta(y) + ax\delta d(y) = 0.$$

Replacing x by xa in (11), we see that $a\delta(xa)d(y) + ad(xa)\delta(y) = 0$. By Lemma 4, $a\delta(xa) = 0$ and ad(xa) = 0 for all $x \in R$. That is, $Ra\delta(Ra) = 0$ and Rad(Ra) = 0.

In view of Herstein's theorem [9], there exist $\alpha, \beta \in C$ such that $Ra(a - \alpha) = 0$ and $Ra(b - \beta) = 0$, implying that $a^2 = \alpha a$ and $a(b - \beta) = 0$. Using the two relations to expand $a[a, [b - \beta, x]] = 0$, we have $(b - \beta)(a - \alpha) = 0$, as desired.

Using these lemmas, we are ready to deal with Theorem 6 for $(1, \tau)$ -derivations.

Lemma 6. Let R be a prime ring, L a noncentral Lie ideal of R and τ an endomorphism of R such that $\tau(L) \not\subseteq Z(R)$. If d is a $(1,\tau)$ -derivation of R such that $[d(x),x] \in Z(R)$ for all $x \in L$, then $d(L) \subseteq Z(R)$ unless char R=2 and $\dim_C RC=4$. Proof. Suppose that either char $R \neq 2$ or $\dim_C F:C>4$. The aim is to prove that $d(L) \subseteq Z(R)$. Suppose not. By Theorem 4, there exist $\lambda \in C$ and a map $\zeta:L\to C$ such that $d(u)=\lambda u+\zeta(u)$ for all $u\in L$. Since $d(L) \not\subseteq Z(R)$, we have $\lambda \neq 0$. Note that $\lambda^{-1}d$ is still a $(1,\tau)$ -derivation of R. Replacing d by $\lambda^{-1}d$, we may assume that $\lambda=1$. Let $u\in L$ and $x\in R$; then $u[u,x]=[u,ux]\in L$. Thus $d(u[u,x])=u[u,x]+\zeta(u[u,x])$. On the other hand,

$$d(u[u, x]) = d(u)[u, x] + \tau(u)d([u, x])$$

$$= (u + \zeta(u))[u, x] + \tau(u)([u, x] + \zeta([u, x]))$$

$$= u[u, x] + (\tau(u) + \zeta(u))[u, x] + \zeta([u, x])\tau(u)$$

Comparing the two expressions, we see that

(12)
$$(\tau(u) + \zeta(u))[u, x] + \zeta([u, x])\tau(u) \in C.$$

Commuting (12) with $\tau(u)$ gives that $[\tau(u), (\tau(u) + \zeta(u))[u, x]] = 0$, implying that

(13)
$$(\tau(u) + \zeta(u))[\tau(u) + \zeta(u), [u, x]] = 0$$

for all $u \in L$ and all $x \in R$.

Suppose for the moment that $\ker(\tau) \neq 0$. Let $x \in \ker(\tau)$ and $y \in R$. Then $d(xy) = d(x)y + \tau(x)d(y) = d(x)y$. Thus there exists $a \in U$ such that d(x) = ax

for all $x \in \ker(\tau)$. For $r \in R$ and $x \in \ker(\tau)$ we have d(rx) = arx. On the other hand, $d(rx) = d(r)x + \tau(r)ax$, implying that $(a(r) - ar + \tau(r)a)x = 0$. By the primeness of R, $d(r) = ar - \tau(r)a$ for all $r \in R$. Let $u \in L$ and $x \in \ker(\tau)$. Then $d([u, x]) = [u, x] + \zeta([u, x])$. On the other hand, d([u, x]) = a[u, x] as $[u, x] \in \ker(\tau)$. Thus we have $(a - 1)[L, \ker(\tau)] \subseteq C$, implying that a = 1 as $[L, \ker(\tau)]$ is a noncentral Lie ideal of R. Now, for $u \in L$, we have $d(u) = u + \zeta(u) = u - \tau(u)$ and, hence, $\tau(u) \in C$. That is, $\tau(L) \subseteq C$, contrary to the fact that $\tau(L)$ is a noncentral Lie ideal of R. Thus $\ker(\tau) = 0$ and so τ is an automorphism of R. It is well-known that τ can be uniquely extended to an automorphism of U.

We claim that R is a PI-ring. Let $u \in L$. Applying Lemma 5 to (13) gives that either $\tau(u) \in Cu + C$ or $\tau(u)^2 \in C\tau(u) + C$. The latter case proves that u is algebraic over C of degree ≤ 2 . Consider next the first case. Write $\tau(u) = \alpha u + \beta$, where $\alpha, \beta \in C$. If $\alpha = 0$, then $u \in C$. Suppose that $\alpha \neq 0$. Commuting u with (12), we have $(\alpha u + \beta + \zeta(u))[u, [u, x]] = 0$ for all $x \in R$. Lemma 2 implies that u is algebraic over C of degree ≤ 3 . Up to now, we have proved that u is algebraic over C of degree ≤ 3 for each $u \in L$. In particular, L satisfies a PI with coefficients ± 1 . Since L is a noncetral Lie ideal of R, R is also a PI-ring, as desired. So U = RC follows from Posner's theorem [11, Theorem p.57] for prime PI-rings.

In view of [26, Theorem 1.5.33], $Z(R) \neq 0$. We claim that d(Z(R)) = 0 and $\tau(\beta) = \beta$ for all $\beta \in Z(R)$. Let I = R[L, L]R. Then I is a nonzero ideal of R and $[I, R] \subseteq L$ (see the proof of [8, Lemma 1.3]). Let $\beta \in Z(R)$ and $\beta \in I$ and $\beta \in I$. Therefore, we have $d(\beta u) = \beta u + \zeta(\beta u)$. On the other hand, $d(\beta u) = d(\beta u)$

Next, we compute $d(\beta u) = d(\beta)u + \tau(\beta)(u + \zeta(u)) = \tau(\beta)(u + \zeta(u))$, implying that $(\tau(\beta) - \beta)u \in C$. That is, $(\tau(\beta) - \beta)[I, R] \subseteq Z(R)$ and so $\tau(\beta) = \beta$ follows.

Since $\tau(\beta) = \beta$ for all $\beta \in Z(R)$, we have $\tau(\beta) = \beta$ for all $\beta \in C$. In view of [7, Corollary p.100], τ is an inner derivation of U. There exists an invertible element $b \in U$ such that $\tau(x) = bxb^{-1}$ for all $x \in U$. In this case, $b^{-1}d$ is an ordinary derivation from R into U. It is well-known that $b^{-1}d$ is uniquely extended to a derivation of U [16, Lemma 2]. Since $b^{-1}d(Z(R)) = 0$ and C is the quotient field of Z(R), $b^{-1}d(C) = 0$ follows. So $b^{-1}d$ is inner [7, Proposition p.100]. Thus there exists $a \in U$ such that $b^{-1}d(x) = ax - xa$ for all $x \in U$. That is, d(x) = bx - bx a for all $x \in R$.

Let $u \in L$. Then $u + \zeta(u) = d(u) = bau - bua$, implying that $(ba - 1)u - bua \in C$. Since $[I,R] \subseteq L$, it follows from [6, Theorem 2] that $(ba - 1)x - bxa \in C$ for all $x \in [RC,RC]$. Denote by F the algebraic closure of C. Then $(ba - 1)x - bxa \in F$ for all $x \in [RC \otimes_C F, RC \otimes_C F]$. Note that $RC \otimes_C F \cong M_n(F)$, where n > 1. Hence, we may assume that $R \cong M_n(C)$ and that $(ba - 1)x - bxa \in C$ for all $x \in [R,R]$. Suppose for the moment that (ba - 1)x = bxa for all $x \in [R,R]$. Then, for $r,s \in R$, we have $b^{-1}(ba - 1)[r,s] = [r,s]a$ and so $[r,s]as = b^{-1}(ba - 1)[r,s]s = b^{-1}(ba - 1)[rs,s] = [rs,s]a = [r,s]sa$, implying that [r,s][a,s] = 0. That is, [R,s][a,s] = 0 and so either $s \in Z(R)$ or [a,s] = 0. In either case, we have [a,s] = 0 for all $s \in R$, implying $a \in Z(R)$. This implies d = 0, a contradiction. Hence, $(ba - 1)x - bxa \neq 0$ for some $x \in [R,R]$. Since [R,R] is generated over C by all elements of rank 1, there exists $u \in [R,R]$ of rank 1 such that $0 \neq (ba - 1)u - bua \in C$, implying n = 2. If char $R \neq 2$, then [R,R] + C = R and, hence, $(ba - 1)x - bxa \in C$ for all $x \in R$. Let $x, y \in R$. Then $(ba - 1)(xy) - b(xy)a \in C$ and $(ba - 1)xy - bxay \in Cy$, implying that $bx[a,y] \in Cy + C$. Since b is invertible in R, we have $x[a,y] \in Cy + C$. Commuting

with y gives [y, R[a, y]] = 0, implying that either $y \in Z(R)$ or [a, y] = 0 for each $y \in R$. But R is not commutative; so $a \in Z(R)$ and, hence, d = 0 follows, a contradiction. This completes the proof.

We are now ready to give the proof of Theorem 6.

Proof of Theorem 6. By Theorem 4, there exist $\lambda \in C$ and a map $\zeta: L \to C$ such that $d(u) = \lambda \sigma(u) + \zeta(u)$ for all $u \in L$. Since $d(L) \not\subseteq Z(R)$, we have $\lambda \neq 0$. Replacing d by $\lambda^{-1}d$, we may assume that $\lambda = 1$.

Suppose on the contrary that either char $R \neq 2$ or $\dim_C RC > 4$. We will reduce d to a nonzero $(1,\theta)$ -derivation centralizing on L and, hence, give a contradiction by Lemma 6. If σ is an automorphism, then $\sigma^{-1}d$ is a nonzero $(1,\sigma^{-1}\tau)$ -derivation centralizing on L. So we are done in this case. Therefore we may assume that $\ker(\sigma) \neq 0$.

We claim that $d(\ker(\sigma))=0$ and $\tau(\ker(\sigma))=0$. Let $x,y\in\ker(\sigma)$ and $u\in L$. Then we have $d([x,[y,u]])=\sigma([x,[y,u]])+\zeta([x,[y,u]])=\zeta([x,[y,u]])\in C$. Thus we have

(14)
$$d([x, [y, u]]) = d(x[y, u]) - d([y, u]x)$$
$$= \tau(x)d([y, u]) - \tau([y, u])d(x)$$
$$= \tau(x)\zeta([y, u]) - \tau([y, u])d(x) \in C.$$

Commuting (14) with $\tau(x)$ gives that $[\tau(x), \tau([y, u])d(x)] = 0$. That is,

$$[\tau(x), [\tau(\ker(\sigma)), \tau(L)]d(x)] = 0$$
 for all $x \in \ker(\sigma)$.

Note that $[\tau(\ker(\sigma)), \tau(L)]$ is a noncentral Lie ideal of R. Set $N = [\tau(\ker(\sigma)), \tau(L)]$. Then $0 \neq [R[N, N]R, R] \subseteq N$ and so $[[\tau(x), [R, R]\ell(x)] = 0$ for all $x \in \ker(\sigma)$) (see [6, Theorem 2]). By Lemma 3, either $\tau(x) \in Z(R)$ or $\ell(x) = 0$ for each $\ell(x) \in \ker(\sigma)$. Thus we have either $\ell(\ker(\sigma)) \subseteq Z(R)$ or $\ell(\ker(\sigma)) = 0$. If $\tau(\ker(\sigma)) \subseteq Z(R)$, then $\tau(\ker(\sigma)) = 0$ as E is not commutative. Suppose the latter case that $d(\ker(\sigma)) = 0$. For $x \in \ker(\sigma)$ and $u \in L$, $d([x, u]) = d(x)\sigma(u) + \tau(x)d(u) - d(u)\sigma(x) - \tau(u)d(x) = \tau(x)d(u) \in C$, implying that $\tau(\ker(\sigma))d(L) \subseteq C$. But $d(L) \neq 0$, we have $\tau(\ker(\sigma)) = 0$. Therefore, in either case, we $\tau(\ker(\sigma)) = 0$.

Next, we want to prove $d(\ker(\sigma)) = 0$. Let $u, v \in L$ and $x \in \ker(\sigma)$. Then $d([v, x]) \in C$ and $d([u, [v, x]]) \in C$. Thus we have

$$d([u,[v,x]]) = d(u[v,x]) - d([v,x]u) = d([v,x])(\tau(u) - \sigma(u)) \in C,$$

implying that

(15)
$$d([\ker(\sigma), L])(\tau(u) - \sigma(u)) \subseteq C.$$

If $d([\ker(\sigma), L]) \neq 0$, then (15) implies that $\tau(u) = \sigma(u)$ for all $u \in L$. It is easy to prove that $\sigma = \tau$. Then, for $x \in \ker(\sigma)$ and $u \in L$, we have $d([u, x]) = [\sigma(u), d(x)] \in C$. That is, $[d(\ker(\sigma)), \sigma(L)] \subseteq C$. As $\sigma(L)$ is a noncentral Lie ideal of R, we have $d(\ker(\sigma)) \subseteq C$. So d([u, x]) = [d(u), d(x)] = 0, implying that $d([\ker(\sigma), L]) = 0$, a contradiction. This proves that $d([\ker(\sigma), L]) = 0$.

Let $x \in \ker(\sigma)$, $u \in L$ and $y \in R$. Then $0 = d([u, x] = \tau(u)d(x) - d(x)\sigma(u)$. That is,

(16)
$$d(x)\sigma(u) = \tau(u)d(x).$$

Since $yx \in \ker(\sigma)$, by (16) we have $d(xy)\sigma(u) = \tau(u)d(xy)$, implying $\tau(y)d(x)\sigma(u) = \tau(u)\tau(y)d(x)$, and so, by (16) again, $[\tau(y),\tau(u)]d(x) = 0$. But τ is surjective, we have $[R,\tau(L)]d(\ker(\sigma)) = 0$. Then $d(\ker(\sigma)) = 0$ follows from the fact that $[R,\tau(L)]$ is a noncentral Lie ideal of R.