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ALGEBRAIC DERIVATIONS WITH CONSTANTS
SATISFYING A POLYNCMIAL IDENTITY

Chen-Lian Chuang and Tsiu-Kwen Lee

§1. Introduction

Rings considered here are always associativs. Given a ring R and b € R, we define
the centralizer of b in R to be Cg(b) = {r € R | br = rb}. If b is algebraic, then Cr(b)
is considered to be large in the sense that nics properties of Cr(b) can be usually
extended to the whole ring R. In [9], Herstein and Neumann initiated this line of
research by proving the theorem: Let R be semiprime and let b € R be algebraic over
the center Z of R. If Cg(b) is simple, then R mus: also be simple. Let R be a semiprime
algebra over a fleld F and let b € R be algebraic over F. Cohen [5] proved that if
Cr(b) is semiprime Artinian (Goldie resp.), then so is R. As polynomial identities
are powerful tools, we naturally ask whether 1 is PI if Cr(b) is PI. Montgomery
(15] proved the result under the assumption that R is a simple ring with unit and b
Is power central. Smith [18] improved the result by assuming that R is prime and
b € R is integral over the centroid of R. Rowen [17] also proved the result under
the different assumption that R is prime, that t € R is algebraic over the extended
centroid of R and that the minimum polynomial 1(X) of b over C satisfies that ©'(b)
~ is invertible. Although Smith’s result Seems more general, neither actually implies the
other. This shows that the last word on this prcblem has not yet been uttered even
In the prime case. This type of results are very useful and have many applications.
See, for instance, (8, Chapter 1]. Smith [18, p.149] also raised the question whether

her result can be extended to semiprime rings. Our result answers Smith’s problem




affirmatively and generalizes all known results :n the prime case. We actually work in
a more general setting: Assume throughout thzt R is a semiprime ring with extended
centroid C. By a derivation of R, we mean a1 additive map ¢ : R — R such that
6(zy) = d(z)y + zd(y) for all 2,y € R. A derivation 6 of R is said to be integral over
C'if there exist a1,..., om_1 € C such that 0™iz) + ard™ )+ Am—10(z) =0
for all z € R. The minimal such integer m is called the integral degree of § over C and
is denoted by degc 9. We define R = {z ¢ R | 6(z) = 0}, the subring of constants of
0. Assume that ¢ is a derivation of R integral over C. Our main result is as follows: If
R is a Pl-ring, then R is a Pl-ring. Furthermore, if R®) satisfies a nonzero PI with
coefficients +1 of degree ¢, then R satisfies Sst(-X1,--+, X4¢), the standard identity of

degree st, where s is the integral degree of § over C' (see Theorem 6).

For b € R, the rri;ap ad(d):z € R~ [b, z] = bic — zb defines a derivation of R, called
the inner derivation induced by 5. If § = ad(b). then R is just Cg (). Moreover,
ad(b) is integral over C if and only if the elemert b is integral over C. In this sense,

our main theorem generalizes all previously known results.

§2. The Prime Case

We refer the reader to [3] and (10] for th: basic terminology and results of
the theory of generalized polynomial identities (GPIs) or polynomial identities (PIs).
Throughout this section, R always denotes a prim: ring with extended centroid C and
two-sided Martindale quotient ring Q. In this cas3, C is a field. Let 4 be a derivation

of R algebraic over C. In view of (11, Corollary 2] and [11, Corollary 3], there exists
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b € @, which is algebraic over C, such that

either § = ad(b) if char R = 0, or
(1) py i +a16pm—l _+_+C!m6=ad(b),
where ¢; € C, and m 2 0 is minimal possible if char R = p> 0.

The element b is unique up to within the addition of a central element and the algebraic
degree of b over C' is thus uniquely determined. For brevity, refer b above as the element
associated with § and the algebraic degree of b as the reduced degree of §. For the case

that charR =p > 0, we always define

HX) = """ HX) + oy 'Y (X) 4t x
(1) UX)=XP" Lo XxP™ 7 p .. o amX and
di =67 for 0 <i<m—1.

)

Note that £(6)(z) = §(H(z)) for z ¢ Q, since 6(c;) = 0 for each i and 5(b) e
C. We see that d,, di, -+, dm_y are C-indepenient modulo @-inner derivations by
the minimality of m. Fix the linear order dy < d; < ... < dm-1. Then every
67 (1 < j < p™) can be written as a regular vord of the form g’ ceedit e dee
with each 0 < 5; < p. Therefore, these §, R e distinct regular words in

do,dy, -+, dm_1. We will retain these notations taroughout this section.

Recall that a derivation d of R is said to be X~inner if d = ad(b) for some b & Q and
X-outer, otherwise. For convenience we give the statement of Kharchenko’s theorem

here. We remark that Kharchenko’s theorem ho'ds for nonzero ideals (see [11] and

[12]).

Kharchenko’s Theorem. [et R be a prime ring. If (Ai(X;)) is a differential
identity for a nonzero ideal of R, where A; are distinct regular words and X; are

distinct indeterminates, then, #(Zi;) is a GPI for 3.

Our first main result is the following




Theorem 1. Let R be a prime ring with ertended centroid C. Suppose that § is a

derivation of R algebraic over C such that RO 454 PI-ring. Then R is a PI-ring.

To prove Theorem 1 we need a result on the theory of prime rings with GPIs. We
denote by soc(R) the socle of R. By a centrally closed prime C-algebra we mean a

prime ring R with extended centroid C such thzt R — RC.

Theorem 2. Let R be a centrally closed prime C'-algebra with soc(R) # 0. Suppose
that f(X1,...,Xt) is a multilinear GPI for R with coefficients in Q. If (X1, ., Xy)
assumes the following form ST 0 X19i(Xa, -+, Xe) + f1(Xy, - - -y Xt), where a; € Q
are C—independent modulo soc(R) and where each monomial b1 X5, 02X, - b X3, bsy1
occurring in f1(X1,---, X;) is either b, € soc(R) or iy # 1, then each 9i(Xa, -+, Xy)

is a GPI for R for1 <i<m.

Since Theorem 2 plays an Important role in ;he proof of Theorem 1, we first give
its proof. To prove Theorem 2 we need two preliminary lemmas. The first is a useful
lemma due to Martindale (14]. Applying [4, Theorem 2] we give its statement in the

following form.

Lemma 1. Let R be a prime ring. Suppose that E?:l a;zh; = 0 for all z € R, where
ai,b; € Q. If the elements 1,82, ", an are C-independent, then b, = 0 for each

1=1,---,n.
Lemma 2. Let R be a prime GPI-ring. Then so:(RC) = soc(Q) # 0.

Proof. Since R is a prime GPlI-ring, it follows from Martindale’s theorem [14] that RC
is a primitive ring with nonzero socle. It Is easy to caeck that Q is contained in the two-

sided Martindale quotient ring of RC. Thus, by (3, Theorem 4.3.6], s0c(RC) = soc(@).




This proves the lemma.
We are now ready to give the

Proof of Theorem 2. We remark that R and @ satisfy the same GPIs with coef-

ficients in @ [4, Theorem 2]. For t = 1, we can ‘arite
m n
FX) =) aXib+ > eiXid;,
=1 J=1

where a;, b;,¢;,d; € Q, ¢; € soc(R) and the q; are C-independent modulo soc(R).
Choose a basis {u1,---,u,} for the C-subspace of @ generated by ¢1,--+,cn. Since
@i, ", am are C-independent modulo soc(R), tae elements a1,y Qm,y Uy, * -+, Ug are
C-independent. Rewrite f(Xy) = Do ai X1b; o+ Z;=1 u; X1v; for some v; € Q. By

assumption, f(X1) is a GPI for R. In view of Lemma 1, b; = 0 for each i, as desired.

Suppose next that ¢ > 1. Let z,, - - ", Tt € soc(R). Then
m
f(l-glax% Tt ',.’L't) = Zaingi($2> v '7$t) +f1(X1,.’L'2, v '1xt)
i=1

is a GPI for R. Write fi(X1, @0, 2y) = Z?:n ¢jX1d; for some cj,d; € Q. Let
b1 X, 02 X;, -+ b X;, by 1 be a monomial occurring in f1(Xy,---, X;). By assumption,
either b, € soc(R) or 1; # 1. Since, by Lemraa 2, @soc(R) C soc(R), we have
each c; € soc(R). In view of the case that ¢t = 1, we see that 9i(z2, -, z) = 0 for

1<i<m. Thus 9i(Xa, -+, X,) is a GPI for soc(.2) # 0 and hence for R [4, Theorem

2] for 1 < i < m. This proves the theorem.

For any integer n > 1, we define $n(b, X) = 51X 4 pn-2xp 1 ... +bXb"2 1
X" for b € Q, where X is a noncommuting variable. Note that $1(b, X) = X.
A direct computation proves that [b, ¢, (b, X)] = (o™, X]. More generally, if g(X) =
X"+ /X4 48, X+ Bn where B; € 2, we define (X)) = ¢n(b, X) +
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,31¢n_1(b, X) + -+ ,@n_1¢l(b,X). We have zlso [b,gb(y)] = [g(b),y] for Yy € Q In

particular, if g(b) = 0, then g, (y) € Cq(b) for y € Q.

Lemma 3. Let R be a prime ring and let § be a derivation of R algebraic over C. If

R©) is o Pl-ring, then R itself is a GPI-ring.

Proof. Note that R®) = R if § = . Thus we may assume that ¢ # 0. Since R() is a
Pl-ring, R(®) satisfies a nonzero multilinear PI F(Xy,- .., X;) with coefficients =1 (see

(1]). Suppose that b € Q is an associated elemert of § as explained in (1).

Suppose first that § is X~inner. Then § = ac.(b) with b ¢ C. Thus, by assumption,
ad(b) is an algebraic derivation of Q over C. S5 b is algebraic over C. Let h(X) =
X™+ a1 XM 4+ a, where o; € C be the rinimal polynomial of b over C. Note
that m > 2. Choose an nonzero ideal I of R such that %,(y) € R for y € I. Thus
we see that fzbtiy) € CrR(b)(=RO) fory € I. In particular, f(fzb(Xl), . ~-,fzb(X¢)) is
a GPI for I and hence for R [4, Theorem 2]. Sirce 1,b,--+ bm=1 gr¢ C-independent,

over C, f(izb(X'l), cee ﬁb(Xt)) is nontrivial. This proves R to be & GPI-ring.

Suppose next that ¢ is X-outer. In this case, we have char R = p > 0. We keep
the notations explained in (1) for §. Let MX) = X8+ Xs-1 £ ... 4 n, Where
t; € C, be the minimal polynomial of b over C. Choose an nonzero ideal J of R such
that 4(z) € R and H(hs(2)) € Rfor z € J. Lot z € J. Then hs(z) € Cr(b) and
hence £(4) (iLb(z:)) = ad(b)(hs(2)) = [5, hs(2)] = (£(0),2] = 0. But £(6)(z) = 6(H(z))
for all z € Q and this implies that & (h(2)) € R, Thus

(2) F(H (hy(X2)),- - H (R (X))

is a differential identity for J. Since iLb(Xi) = ¢4 (b, Xi)+p1¢s—1(b, Xi)+ps-161(0, X;),
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we see that

(3) H(ho(X3)) = hy (87"~ (X)) + -,

where the dots denote a sum of terms g7 (Xi)cin which j < p™—1 and a,c € Q. Recall
that d; = 6pi, 0<i<m—1, are C-independent modulo @-inner derivations. These
6,62,---,6P" =1 are distinct regular words in dg, d;, - “*3dm—1. Use (3) to transform
the differential identity (2) into its reduced form . Applying Kharchenko’s theorem to
its reduced form by substitﬁting 6Pm"1(Xi) by X and §7(X;) by 0 for j < ™ —1, we
see that f(hs(Xy), -, ﬁb(Xt)) is a GPI for R. T; is nontrivial, since 1,5, - - - ,6°1 are

C-independent. Thus R is a GPI-ring, proving the lemma.

Lemma 4. Let R be a centrally closed prime C'-algebra, § o derivation of R and I
an ideal of R invariant under §. Suppose that v € Q s algebraic over C modulo T
such that 5(b) € C. If g(X) is the minimal polymomial of b over C' modulo I, then

(5(@;,(2)) = Qb(é(z)) forall z € R.

Proof. Write g(X) = X" + B, X711 ... + Bn for some B; € C with n > 1. Note
that § can be uniquely extended to a derivation of (). Since 0(b) € C, we see that
9(g(b)) = 6(b)g’(b) —%—‘g‘s(b) € I, where ¢/(X) = n27n-1 4 (-1 X"24+... 48,
and g°(X) = §(8) X1 + 6(B2)X™~%--- + §(8, . By the minimal choice of n, this

implies that
(4) (n = E)Br8(b) + 6(Brs1) = 0
for k=0,1,---,n -1, where Bo=1. Let z € R. Then, using (4), we have

§(d5(2)) =6(¢n(b, 2) + Prdn-1(b,2) +- - + Ba_161 (0, z))
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:¢n b: J(Z)) + :81¢n—1(b7 6(‘2)) e 5n—l¢l(b) (S(Z))

p > ((n=k)Bis(e) + 5(Bps1))bIk zbn=i=2

as desired.
We are now ready to give the proof of Theorem 1.

Proof of Theorem 1. In view of Lemma 3, R is a prime GPI-ring. It follows
from Martindale’s theorem [9] that RC is a centrally closed prime C-algebra with
soc(RC) # 0. We keep the notations explained in (1) for §. Let g(X) be the minimal
polynomial over C' of b modulo so¢(RC). That is, g(X) = X™ + 8, X1 1 ... + Bn,
where each 8; € C, is the polynomial of minirnal degree m such that g(b) = ™ +
Gb" 418, € soc(RC). Such a polynomial does exist because b is algebraic over
C. In view of Litoff’s theorem [6], there exists an idempotent e e soc(RC) such that

~

9(b) € eRCe. If e = 1, then RC is a finite-dimersional central simple C-algebra. We

are done in this case. Thus we may suppose e # 1. We claim that
(5) F(as((1 = e)X1(1~€)), -+, gy("1 — e)X:(1 ~¢)))

is a GPI for RC.

Suppose first that ¢ is X—inner. In this case ¢ = ad(h), where b € Q. Choose a
nonzero ideal I of R such that §((1 — e)y(l—e) € Rfory e I. Let Yy € I. Then
1:05((1 =)y =e))] = [906), (L)1 ~ )] = 0, implying that 55((1 - e}y(1—e)) €
Cr(b). Note that R(® = Cr(b). Since f(X1,....Xy) is a PI for Cr(b), we see that

Fas((1 - e)Xi1(1~e)),-- S 0((1—e) Xy (1 - e))) is a GPI for I and hence for RC 4,

Theorem 2] as desired.

Suppose next that § is X—outer. Since s0¢(RC) is invariant under § and § (b) € C,
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1t follows from Lemma 4 that §{(ds(z)) = 35(6(z)) for all z € R. Since 9(b) € soc(RC),
there exists an idempotent e € soc(RC) such ttat g(b) € eRCe [6]. Choose a nonzero

ideal I of R such that
(1~e)y(l—e), H((1 - e)y(1 - ¢)), e (H((1 - €)y(1 — e))) €R
for y € I. We see that
0=1[g(8), (1= e)y(1—e)] = [5,3((1 - e)y(1 - e))]
95([b, (1 - €)y(1 = €)]) = o (£(0) (1 — e)y(1 - e)))

=95 (S(H((1 = e)y(1 - ¢)))) = (35 (H((1 - e)y(1 - e))),

where the last equality follows from Lemma 4. This implies that g, (H((1 — e)y(l —

e))) € B for all y € I. Thus we have that

(6) F((H(O = X1 = ), H((1 - 3,01~ )

is a differential identity for I. Recall that these 6,6%,---, 67" =1 are distinct regular

words in do, dy, -+, dm_1, where d; = 67" for 0 <t <m—1. In (6) we write
(7) H((l —e)X;(1 - e)) =(1- e)dpm‘l(Xi)(l —e)+---,

where the dots denote a sum of terms g’ (Xi)cin whichj < p™—1anda,c e Q. Using
(7) to transform (6) into its reduced form and then applying Kharchenko’s theorem to
the reduced form by substituting 67" ~1(X;) by X; and &7 (Xi) by Ofor j < p™—1, we
- see that f(gb((l.— e)X1(1—e€)), -, d((1 - e)X:(1— e))) is a GPI for R and hence

for RC, as desired. This proves our claim.

We may assume, without loss of generality, that the monomial X; X, ... X ¢ occurs

in f(X1,...,X;). Write

(8) F( X1, Xy) = X1/ (X, -, X,) +hi (X1, Xy),

9




where hl(X L oo, Xt) consists of the monomials starting with +X; for some j > 1.

By (5) and (8) wé see that
©) 9((1 =) X2 (1~ ) F2(3((1 - &) Xa(1 ~€)), - 5o((1 e)X:(1—e)))

Fha(9((1 = ) X1(1 =€), -+, ip((1 - ) X,(1 e)))
is a GPI for R. We claim that the elements "1 —e),-+,b(1—e), (1 - e) are C—
independent modulo soc(RC). Indeed, suppose that 2z mb™ 7 (1 — e) € soc(RC)
for some p; € C. Now, by Lemma 2, we have s0c(RC) = soc(Q). Thus o bt =
D kb1 =€) + 1 mibnie ¢ soc(RC). By the minimal choice of 1, we see
that p; = 0 for each . This proves our claim. A>plying Theorem 2 to the monomials

in (4) starting with 5"~1(1 — €)X}, we conclude that
(10) u—@h@xa—@&u—@»~@au—@&u—@»

is a GPI for R. Next, an analogous argument proves that the elements (1 —e)b™=1(1 -
e), -+, (1-e)b(1—e), (1 —e) are C~independent modulo soc(RC). Note that the degree

of f1(Xa,-- *,Xt) is t — 1 and contains the monomial X»X3--- X,. Write
(11) fi(Xey - Xy) = X2 fa (X3, - 5 X1) + ha(Xa,- - Xy),

where hy(Xs, - +, X¢) consists of the monomials starting with £X; for some j > 2.
Applying (10) and (11), we can repeat using Thzorem 2 to handle the present case

- and conclude thé.t
@—@h@dﬂ—d&ﬁ-@%“wwﬂ-@&ﬂ—@»

is a GPI for R. Hence, by induction, we obtain the conclusion that a(1-e)Xx(1- e))
is a GPI for R. By Theorem 2 again, we see that o = 1, a contradiction. This proves

the theorem.
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The next main result is the following result.

Theorem 3. Let R be a prime ring and let § se a derivation of R algebraic over C.
Suppose that b € Q 1is an associated element 0° 6. Then R©®) and Cr(b) satisfy the

same Pls over C.
The following lemma will be used in the proof of Theorem 3.

Lemma 5. Let R be a prime PI-ring with cente~ Z and eztended centroid C. Suppose
that 37, ¢i(Aj(zk))a; = 0 for all 74 € Z, where each ¢i(Zjx) is a polynomial over
C' in commuting variables Zik, Aj are distinct regular words in derivations of Z and

a; € Q. Then 337, ¢i(zjk)a; = 0 for all zj, € C.

Proof. Choose a basis {by,---, b} of >iey Ca;. Write each a; = anzl Bimbm, where
Bim € C. The assumption that Z;lz;:l Bimbm @i (Aj(zx)) = 0 for all 7, € Z
implies that each 37 . Bim®i(Aj(zx)) = 0 for all z, € Z. Note that C is the quotient
field of Z. Applying Kharchenko’s theorem, we 0tain each POH Bim®i(Zji) is a GPI

for C. Thus 3 7| ¢:(2x)a; = 0 for all zjx € C. This proves the lemma.

Our Lemma 5 will be used in the following manner: Let R be a prime Pl-ring
with center Z and extended centroid C. A derivation of R vanishing on C must be
X~inner (see [12, p.68]). Hence, the restriction to Z of 4 basis for X—outer derivations
| of R gives a C~independent set of derivations of .7 and can be linearly ordered in the
same way as the original basis of R. In this wey, regular words for R give rise to

regular words for Z. We are now ready to give the

Proof of Theorem 8. If § is X~inner, then § = ad(b) and hence R(%) = Cr(b). The

conclusion is trivially true in this case. Thus We may assume that ¢ is X-outer and keep
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the notations explained in (1) and (1)’. It is clzar that R®) C Cr(b), implying that
each PI for Cg(b) is also satisfied by R, For t1e reverse direction, let f(X,,..., Xt)
be a nonzero polynomial over C which is a PI for R(5). Then R)C satisfies a nonzero
multilinear polynomial over C, implying that .29 satisfies a nonzero polynomial

with coeflicients £1 (see [1]). Thus RO is Pl-ring and so is R(9.

It follows from Theorem 2 that R is a prime Pl-ring and so Z, the center of R,
is nonzero [16]. Since C is the quotient feld of Z , We can choose y & Z such that
poi € Z for each 1 < i < m. Note that pPai € Z and §(uPey) = 0 for each i
Let y1,---,4: € Cgr(b) and Bi,-++,B: € Z. Then PP H(Biy;) € R for each i. Since
O(uPH (Biys)) = wPlb, Biyi] = 0, implying that pPH(Biyi) € R®). Thus we see that
f(uPH(,Blyl),'-~,upH(,Btyt)) = 0. Using the fect that 6,42, -+, 6P =1 are distinct
regular words in dy,dy, - - - ydm—~1, we transform :his identity into a reduced identity
for Z as the type given in Lemma 5. Applying Lemma 5 by replacing 6pm“1(ﬂ,~) with
Bi and 67(B;) with 0 for j # p™ — 1, we obtain that f(uPBy,, -, pPBy:) = 0 for all
Bi € Z and hence for all 5; € C. In particular, f(y1, -+, y:) = 0 as asserted. This

proves the theorem.

§3. Estimation of PI--degrees

In this section we will estimate the Pl-degree of a prime ring R in terms of the
| Pl-degree of R(®) and the algebraic degree of the associated elements of §, where § is
a derivation of R algebraic over C. We need this estimation to extend Theorem 1 to
the semiprime case in the next section. The following theorem expresses the minimal

polynomial of § in terms of ¢ (X) and the minimal polynomial of ad(b).

Theorem 4. Let R be ¢ prime ring and § a derivation algebraic over C and let
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{(X) and b be as described in (1) and (1)’ if g(X) is the minimal polynomial of
ad(b) over C, then g(£(X)) is the minimal po'ynomial of § over C. In particular,

deg Z(X) degc b S degc 9.

Proof. Denote by p(X) the minimal polynomial of § over C. It is clear that p(X) and
9(X) lie in C©) [X}, where C(®) is the subfield of constants of § in C. Set A(X) =
9(4(X)) € CU[X]. Since 6(c;) = 0 for each 4, we see that A(d) = 9(2(8)) = g(ad(h)) =
0. Thus p(X) divides A(X) in C®O[X]. We can vrrite P(X) =00 4(X)igi(X), where
q:(X) e [X] and deg ¢;(X) < deg£(X) for each i: q0(X) is simply the remainder
of p(X) divided by £(X) and ¢, (X ) is the rema nder of the quotient obtained above
divided by £(X) again and so on. Since p(X) and £(X) have their coefficients in c),
so has each ¢;(X). Let £ € R. Then

0=2(0)(z) = > _£(8)'eu(6)(z) = 3 ad(8)iqs(6)(z)
1=0

1=0

That is,

o+

(12) D 2d()*(a:(6)(X))

1=0
is a differential identity for R. Note that qt(X) # 0. Write ¢ (X)) =B X5 +-.. +050 €
CO[X], where 8, # 0 and 0 S5 <p™—1. Forj #t, write ¢;(X) = o X
Since these 6,6%,---,67" " are distinct regular ‘words in dg,ds, - - *ydm—1, applying
Kharchenko’s theorem to (12) by replacing §°(X) with the variable X and 67 (X) with
0 for j # s we see that Z;;é pyad(b)7(X) + Bsad(b)*(X) is a GPI for R. This implies
that g(X) is a divisor of 8, Xt + Z;;é ;X7 and, hence, deg g(X) < t. Thus
degp(X) 2 t(deg (X)) > deg£(X)ceg g(X) = deg A(X),
implying that p(X) = A(X) = 9(¢(X)).
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To prove the last statement, it suffices to show that dego b < degad(b). Set m =
degc ad(b). Then there exist B1,--+,8,,_; € C such that ad(b)™(z) + f1ad(b)™*(z) +
v+ Brm-1ad(b)(z) =0 for all z € R. Expanding this into a GPI and collecting terms
according to their left coefficients 1,5, ---, 5™, w2 have ™z + 3 0™ iy, = 0 for all
z € R, where v; € Q. In view of Lemma 1, the elements 1,5, ---, 5™ are C~dependent,

implying that dege b < dege ad(b), as desired.
We are now ready to state the main theore'n in this section.

Theorem 5. Let R be a prime ring and let § le a derivation of R algebraic over C.
Suppose further that R©) satisfies a nonzero P[ over C of degree t. Then R satis-
fies Sme(Xy1, -+, Xmt), where m is the reduced degree of §. In particular, R satisfies
Set (X1, -+, Xg), where s = degq 4.

For simplicity, we adopt the following terrninology from Herstein’s "Topics in
Algebra” [7]: A m x n matrix is said to be of size m by n. An n by n square matrix
is said to be of size n only. By the principal diagonal of a m x n matrix, we mean the
entries in the positions (7,1), and by the super diagonal of a m x n matrix, we mean
the entries in the positions (1,7 + 1), whenever -hey are defined. Consider matrices
over a field F'. By a Jordan block belonging to A € F, we mean a square matrix with

A on the principal diagonal, 1's on the super diagonal and 0’s elsewhere:

A1 0

0 A 0
(13) J= :

0 0 1

0 0 A
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A square matrix is said to be in the Jordan normal form, if it is of the form

J 0 - 0
0 Jo - 0
(14) : . :
0 0 - Jy

where each J; is a Jordan block belonging to some \; € F.

*

Lemma 6. Assume that R is the ring of square matrices of size n over g field F and
b€ R. Suppose that Cr(b) satisfies a nonzero P oyer F of degree d. Then dm > 2n,

where m = degpb. In particular, R satisfies San (X1, Xam).

Proof. Without loss of generality, we may assurne that F is algebraically closed and

that b is in its Jordan normal form (14).
Case 1. The minimum polynomial of b is of :he form (z — \)™.

So each J, in (9) is a Jordan block of size ‘m, belonging to A. We may further

assume that m =m; > m, > ... > mg. Any element g € R may be written in the

form:
A A - A
15) e A-21 A.zz A..‘Zlc |
A A;c2 A;ck

where A;; is the matrix of size m; by m;. For each 1 < ¢ S J <k, let e;; € R be the
- matrix (15), written as above, such that Ast = 0 for (s,t) # (4,) and such that Aij
is the m; by m; matrix with 1 on its principal d agonal and 0 elsewhere. We verify

easily that each e;; € Cr(b) for each 1 < 4 <J < k. A direct computation shows that

eit, ifj=s,
Assume towards a contradiction that the Pl-degres d of Cr(b) is < 2k. Without loss
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of generality, we may assume that Cr(b) satisfies a multilinear PI of the form:
H(X1, Xay oo, Xopo1) = X120, - - cXok_1 4+,

where the dots denote the sum of terms differen; from X; X, -- +Xok—1. Set X, = e,
Xy =e€12, Xzg=eg, ..., Xop_; = €rk- We have perr, ein, €20,...,e54) = ey #0,a
contradiction. So the PI-degree d of Cr(b) is > 2k. With this, we have dm, > 2km >

2(my+ma + - + mg) = 2n, as asserted.

Case 2. The minimum polynomial of b is o the form (z — Ap)™ .. (z = A,)me

)

where Aq, ..., A, are distinct.

We may assume that, for each ; — 1,...,3, Jki-—1+17""‘]ki—1+ki consist of all
Jordan blocks belonging to A; and n; is the sum of their sizes (set kg = 0 in the

above). We may thus write b in the form:

b= . U,
0 0 --- B,

where each B; is the n; by n; matrix:

Jri_1+1 0 0
5 - 0 ']k,-_.1+2 0
0 0 Jki—1+ki

- Let R; be the ri.rig of n; by n; matrices over F anc let d; be the Pl-degree of Cr, (B;).
The minimal polynomial of B; is obviously (X — 2\)™. We have dim; > 2n; by Case

1. Any a € R may be written in the form:

A A - A,
Az1 Ay - A,

a = . . . . y
Asl AsZ o Ass
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where Ay is the matrix of size n; by nj. A direct computation shows that a € Cg/(b) if
and only if A;; = 0 for i # j and each Aii € Cg,(B;). So the Pl-degree d of Cr(b) is >
the PI-degree d; of each Cr,(B;). Thus dm = almy + -+ Ms) > dimy + - -dgmg >
2(ny + -+ n,) = 2n, as asserted. By Amitsur-Levitzki’s theorem (10, p.21], R satisfies

Son(X1, -+, Xay,) and hence it satisfies Sam(Xy -, Xdm). This proves the lemma.

Proof of Theorem 5. In view of Theorem 1, R is a PI-ring. Suppose first that §
is X-inner. Thus d = ad(b) for some b € @. By Posner’s theorem (10, p.57], @ = RC
is a finite-dimensional central simple C-algebra. Moreover, Z(R), the center of R,
is nonzero and C is the quotient field of Z (R). A direct computation shows that
Cre(b) = Cr(b)C. Set F = C if C is finite and let F' denote the algebraic closure of
C'if C'is infinite. Then RC @ F 2 M,.(F) for some n > 1 and Creger(b®1) =
Cr(b)C @c F. Moreover, Cr(b)C ®c F, Cr(b)C and Cr(b) satisfy the same PIs over

C'. Hence, the case is reduced to Lemma 6 and i proved.

Thus we may assume that § is X—outer. We keep the notations explained in
(1) and (1)". In view of Theorem 3, R and Cr(b) satisfy the same PIs over C.
So Cg(b) satisfies a nonzero PI over C of degre: ¢ since R(®) does. It follows from
Lemma 6 that R satisfies Smt (X1, - “+y Xmt), where m = degs b. But, by Theorem
4, degl(X)dego b < degyd. So m = deg(b) < dege (6) and hence R satisfies

Sts(X1,- -, Xys), where s = dego 4, proving the theorem.

§4. The Semiprime Case

We will use Beidar and Mikhalév's theory of orthogonal completeness (2] to push
our result from the prime case to the semiprime case. We recall precisely the result we

need from this theory: We will assume some famiiarity with the basic notions of the
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first order logic with equality such as formulae. sentences (that is, formulae without
free variables), c;)njunctions, disjunctions and quantifications. Our logical symbols
are: V (or), A (and), = (not), — (if ..., then ...), ¥ (for all ...), 3 (there ezists ...)
and = (equals). By a language, we mean a set of nonlogical symbols (or, equivalently,
proper symbols). The language of ring theory ccnsists of two binary function symbols
+ (plus), - (times) and a constant symbol 0. The language £ we need here is the
language of ring theory expanded by adjoining a function symbol ¢ intended to denote
the derivation ¢ under consideration. For clarity, we also adopt the convention of
omitting the multiplication function symbol - in writing formulae. The concept of

Horn formula is defined inductively as follows:
(1) an atomic formula is a Horn formula;
(2) a disjunction of negated atomic formulae is a Horn formula;

(3) if ®1,...,0,,© are atomic formulae, tten the formula (1A AO,) = 0O

is a Horn formula;

(4) if v is a variable and © is a Horn formu.a, then Vv® and Jv® are also Horn

formulae;
(5) if ©; and ©, are Horn formulae, then sc is O; A Oy;
(6) all Horn formulae are obtained in this way.

A sentence of £ is said to be hereditary, if its truth on any given ring implies
its truth on any direct summand of this given ring. The main result of the theory of

orthogonal completeness for semiprime rings is tke following:

Theorem [2]. Let R be g semiprime ring which is orthogonally complete with respect
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to the Boolean ring B consisting of all idempotents in its extended centroid C. Let L
be the language as described above. (1) Let © b2 d sentence of L which is hereditary
and whose negation —© is logically equivalent to a Horn sentence. If ® holds on R,
then © also holds on any R/P, where P is any arbitrary minimal prime ideal of R.
(2) Let © be logically equivalent to a Horn sertence of L. If © holds on all R/P,

where P are minimal prime ideals of R, then ® also holds on R.

Assume that R is a semiprime ring and @ is its two-sided Martindale quotient
ring. Let Q¥ = {z € @ | z° = 0}. It is not obvious that our assumption that
constants of & satisfy a polynomial identity carries over to the orthogonal completion

of R. Instead, we observe the following:

Lemma 7. Suppose that f(Xi,...,X:) is a P for RO with coefficients £1. For
any ¢; € Q¥ i=0,...,n—1, for any b € Q and for any linear polynomial l(z) =

Z;n:l a;zbj, if Yoy ci6* = ad(b) and if b commutes with I(z), then the differential

identity

(16) f(\zciéi_l(l(yl))w :2: Ci5i—1(l(yt))
=1 i:=1

holds on Q.

Proof. Let c; € @@, b€ Q and I(z) = Y 7", ajzb; be as said above. For any z € @,
0= b i) = ad (1e) = 5( D b Ua),
1=1 =1
where the last equality holds since ¢; € Q(®). Pizk a dense two-sided ideal I of R such
that for any z € I, cid*}(8(z)) € R for each i. For ¢ € I, .1, ;6" 1(I(z)) € R©.
The identity (16) holds for y;,...,y: € I and thus also holds for yq,...,%: € @ (13,

Theorem 3.
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We now can prove the main theorem of this paper.

Theorem 6. Let R be g semaprime ming and let § be a derivation of R integral over
C. Suppose further that R(9) js g4 Pl-ring. Then R is a PI-ring. In addition, if R(9)
satisfies a nonzero PI with coefficients +1 of decree t, then R satisfies S,y (X1, Xg),

where s 15 the integral degree of § over C.
Proof. We consider the following formulae in cur language:

O, Vx ( i ba;xb; = 2"‘: aijjb>
=1 =1

Tpid(er) =0A--Ad(cs) = 0A v’x(z 6'(x) = [b,x])

i=1
PtV V}’c< (ZC 5 Zajylb Zc,é’“l(iajytbj)) = O).
i=1 i=1

Let b,c;,a;5,b; denote b,ciyaj,b; € Q. Tten O asserts that b commutes with
the linear polynomial £(z) = Z;’f__l a;zbj, ¥, asserts that ci,...,c, € Q© and
Yoy cift = ad(b), and finally ®mn asserts that the differential identity (16) holds on

Q. The above lemma can thus be expressed as

VbVa; - -amVby---b,Ve; .. Ch(Op AT, - ®n).
This sentence is obvious hereditary. Its negation is equivalent to:
(17) dbda;---am3b;---byIc; ... Cn On AT, A Pomn).

Since O, ¥, and ~®,y, ,, are obviously Horn, this negation is Horn.

By Lemma 7, the sentence (17) holds on Q, vhich is surely orthogonally complete.

By the first part of Beidar and Mikhalév’s theorem cited above, the sentence (17) also
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holds on any Q/P, where P is any arbitrary min mal prime ideal of R. In other words,
the assertion made in Lemma 7 is true in Q/P for any minimal prime ideal P of Q. A
close examination of our argument in the prime sase shows that the assertion made in
Lemma 7 is what we need to prove that R satisfies the identity Sgy(X1, ..., Xz:) there.
Therefore, for any minimal prime ideal P of Q, the quotient ring @@/ P also satisfies
the identity Sg;(X1,..., Xxt), where k is the reduced degree of § on Q/P. But the
reduced degree £ of § on Q/P is obviously < -he integral degree s of § over C by
Theorem 4. So for any minimal prime ideal P of Q, the quotient ring Q/P satisfies
the identity Sy (Xy,...,Xg). Let Sy (X1,...,275t) be expressed in our language by

the expression

Sst(xla ey Xg)

The sentence

vxl . ‘xst(sat(x17 ‘e -,Xst) = 0)

is obviously Horn and holds on Q/P for any minimal prime ideal P of Q. By the
second part of Beidar and Mikhalév’s theorem, this sentence also holds on Q. Thus,

Q also satisfies Sq(Xy,. .. , Xst) as asserted.
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