
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2004; 11:41–58 (DOI: 10.1002/nla.332)

Partial pole assignment for the vibrating system
with aerodynamic e�ect

Wen-Wei Lin1;† and Jenn-Nan Wang2;∗;‡

1Department of Mathematics; National Tsing-Hua University; Hsinchu 300; Taiwan
2Department of Mathematics; National Taiwan University; Taipei 106; Taiwan

SUMMARY

The partial pole assignment (PPA) problem is the one of reassigning a few unwanted eigenvalues of
a control system by feedback to suitably chosen ones, while keeping the remaining large number of
eigenvalues unchanged. The problem naturally arises in modifying dynamical behaviour of the system.
The PPA has been considered by several authors in the past for standard state–space systems and for
quadratic matrix polynomials associated with second-order systems. In this paper, we consider the PPA
for a cubic matrix polynomial arising from modelling of a vibrating system with aerodynamics e�ects
and derive explicit formulas for feedback matrices in terms of the coe�cient matrices of the polynomial.
Our results generalize those of a quadratic matrix polynomial by Datta et al. (Linear Algebra Appl.
1997;257:29) and is based on some new orthogonality relations for eigenvectors of the cubic matrix
polynomial, which also generalize the similar ones reported in Datta et al. (Linear Algebra Appl.
1997;257:29) for the symmetric de�nite quadratic pencil. Besides playing an important role in our
solution for the PPA, these orthogonality relations are of independent interests, and believed to be an
important contribution to linear algebra in its own right. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we will study the vibrating system with aerodynamic e�ect originated from
a dynamic loads analysis system (DYLOFLEX) [1]. The model is described in the form

M �q+ (C1 + �(s)C2)q̇+ (K1 + �(s)K2)q=H (s; t) (1)

where M is the inertia matrix, C1 and K1 are the structural damping and sti�ness matrices,
respectively, C2 and K2 are aerodynamic damping and sti�ness matrices, respectively. The
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non-homogeneous term H (s; t) represents the forcing function which is the combination of
the generalized forces and gust inputs. In practice, the matrices M;K1; K2 are real positive
de�nite and C1; C2 are real symmetric. Theoretically though, we assume throughout the paper
that M;C1; C2; K1; K2 are real symmetric and M is non-singular. The factor �(s) in (1) is called
the Wagner lift-growth buildup function which is due to an instantaneous change in angle of
attack [2]. For our study, we take �(s) in the form

�(s)=�+
�

s−!
with constants � �=0 and ! �=0. In this expression, the parameter s is interpreted as the Laplace
transform parameter. Reinterpreting s as the t derivative and setting q= xe�t , system (1) will
lead to an open-loop cubic pencil

P(�) =M�3 + (C1 + �C2 −!M)�2 + [(K1 + �K2)−!(C1 + �C2) + �C2]�

+[�K2 −!(K1 + �K2)]

=M�3 + C�2 + K�+ L (2)

where

C=C1 + �C2 −!M

K =(K1 + �K2)−!(C1 + �C2) + �C2
L=�K2 −!(K1 + �K2)

(3)

On the other hand, by choosing the control force H (s; t)=BFTq̇+B(GT1 + �(s)G
T
2 )q in (1)

we obtain a controlled system, which gives rise to a closed-loop cubic pencil

Pc(�) =M�3 + [(C1 − BFT) + �C2 −!M ]�2 + [(K1 − BGT1 ) + �(K2 − BGT2 )

−!(C1 − BFT)−!�C2 + �C2]�+ [�(K2 − BGT2 )−!(K1 − BGT1 )

−!�(K2 − BGT2 )]

=M�3 + (C − BFT)�2 + (K − BGT1 − �BGT2 +!BFT)�

+(L− �BGT2 +!BGT1 +!�BGT2 ) (4)

Here B∈Rn×p is the control matrix and F;G1; G2 ∈Rn×p are the gain matrices, where 16p
6n. Without loss of generality, we assume throughout that B has full column rank. Let {�j}3nj=1
be the spectrum of P(�). Clearly, this is a self-conjugate set. Now let {�j}kj=1 be another
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self-conjugate set with 16k¡3n. Then the partial pole assignment problem by state feed-
back control is to �nd real gain matrices F;G1; G2 such that {{�j}kj=1; {�j}3nj=k+1}=�(Pc).
Hereafter, we denote �(Q) the spectrum of the pencil Q(�) or the spectrum of the ma-
trix Q. In other words, one would like to use the low rank perturbations BFT; BGT1 and BG

T
2

to assign a self-conjugate set {�j}kj=1 ⊂�(P) into {�j}kj=1, while keeping the rest of �(P)
unchanged. The main result of this paper is that a self-conjugate set {�j}kj=1 of �(P) can
be assigned to prescribed self-conjugate set {�j}kj=1 by appropriate choices of real matrices
F; G1 and G2 whenever a special generalized Cauchy matrix is non-singular (see Theo-
rem 3.2). It turns out when p=1 (single-input), this generalized Cauchy matrix is invertible
if and only if xTj b �=0 for all 16j6k, where B= b∈Rn×1, and {�j}kj=1 and {�j}kj=1 are two
sets with distinct elements. Further investigation shows that xTj b �=0 for all 16j6k and the
distinctness of {�j}kj=1 are su�cient to construct a solution to the PPA problem with single-
input. These conditions are exactly the conditions used in Reference [3] for the quadratic
pencil.
The PPA problem by single-input state feedback control for the �rst- and second-order

systems are studied in References [3, 4], respectively. Although it is not explicitly proved, the
gain vectors found in Reference [3] are real as long as the assignable eigenvalues and the
target values are self-conjugate sets. As for the PPA problem by multiple-input control for
the second-order system, several results are obtained in References [5–8]. In Reference [5],
the authors also present an algorithm for the PPA problem. Nevertheless, their method does
not preserve the eigenvalues that we do not intend to relocate. The partial eigenstructure
assignment problem is the main focus of Reference [6] in which both the eigenvalues and
the eigenvectors are relocated. To solve this eigenstructure assignment problem, the control
matrix B needs to be chosen as well. In Reference [8], the authors use the multiple-input
control to increase the robustness of the PPA problem. Numerical evidences show that the
multiple-input control out-performs the single-input control for the PPA problem. Comparing
our results with those in the aforementioned papers, an obvious distinct feature is that we are
dealing with a meaningful third-order system. Moreover, the number of eigenvalues we want
to relocate are arbitrary and the gain matrices we choose can be shown to be real whenever
both the assignable eigenvalues and the target values are self-conjugate sets. Similar results
for the second-order system can be found in Reference [8, Section 3.2]. However, the fact
that the gain matrices are real, which is not trivial in the multiple-input control, is not proven
there.
It should be pointed out that when the input is multiple, i.e. p¿1, we have certain degrees

of freedom in choosing the eigenvector associated with the assigned pole �j, 16j6k. This
fact paves the way for the discussion of robustness issue. The degrees of freedom in the
choice of eigenvectors will obviously give rise to the degrees of freedom in the choice of
gain matrices. The robust pole assignment problem is to choose appropriate gain matrices so
that the assigned eigenvalues are as insensitive as possible to perturbations in the coe�cient
matrices of the closed-loop system. We will report this matter elsewhere.
This paper is organized as follows. In Section 2, we derive some orthogonality relations

for the cubic pencil P(�). One of the orthogonality relations will play a key role in the
PPA problem. In Section 3, the solutions to the PPA problem with multiple-input state
feedback control for (1) are explicitly constructed. Some numerical results are provided in
Section 4.
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2. ORTHOGONALITY RELATIONS FOR P(�)

In this section, we will derive several orthogonality relations for the cubic pencil P(�) as in
(2). Similar orthogonality relations were derived for the symmetric de�nite quadratic pencil
in Reference [3]. If we assume that all eigenvalues of P(�) are distinct, then the argument in
Reference [3] can be directly applied to obtain the orthogonality relations for P(�). However,
we take a slightly di�erent approach here. Most importantly, our method is applicable for
more general eigenvalues
Let (X;�) and (X̃ ; �̃) be the eigenmatrix pairs of the cubic pencil P(�), where the matrices

X; �; X̃ and �̃ are of sizes n× ‘, ‘× ‘, n× ‘̃, and ‘̃× ‘̃, respectively, with 26‘ + ‘̃63n.
In view of the de�nition of the eigenmatrix pair (see Reference [9, Chapter 6]), we have that

P(�)X ≡ MX�3 + CX�2 + KX�+ LX =0 (5)

and

P(�̃)X̃ ≡ MX̃ �̃3 + CX̃ �̃2 + KX̃ �̃ + LX̃ =0 (6)

Transposing (5) and multiplying it on the right by X̃ yields

�3X TMX̃ +�2X TCX̃ +�X TKX̃ + X TLX̃ =0 (7)

Next, multiplying (6) on the left by X T gives

X TMX̃ �̃3 + X TCX̃ �̃2 + X TKX̃ �̃ + X TLX̃ =0 (8)

Eliminating the term X TLX̃ in (7) and (8), we get that

�3X TMX̃ − X TMX̃ �̃3 + �2X TCX̃ − X TCX̃ �̃2 + �X TKX̃ − X TKX̃ �̃=0 (9)

Rearranging Equation (9) yields

�(�2X TMX̃ + X TMX̃ �̃2 + �X TMX̃ �̃ + �X TCX̃ + X TCX̃ �̃ + X TKX̃ )

− (X TMX̃ �̃2 + �2X TMX̃ +�X TMX̃ �̃ + X TCX̃ �̃ + �X TCX̃ + X TKX̃ )�̃

=0 (10)

Now if we assume that

�(�)∩�(�̃)= ∅ (11)

then in view of (10) we have the �rst orthogonality relation

�2X TMX̃ + X TMX̃ �̃2 + �X TMX̃ �̃ + �X TCX̃ + X TCX̃ �̃ + X TKX̃ =0 (12)
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Next, eliminating terms containing X TKX̃ in (7) and (8) (by multiplying (7) on the right
by �̃ and multiplying (8) on the left by �) leads to

�(�2X TMX̃ �̃ + �X TMX̃ �̃2 + �X TCX̃ �̃− X TLX̃ )

− (�X TMX̃ �̃2 + �2X TMX̃ �̃ + �X TCX̃ �̃− X TLX̃ )�̃=0 (13)

Likewise, from (13) we can obtain the second orthogonality relation

�X TMX̃ �̃2 + �2X TMX̃ �̃ + �X TCX̃ �̃− X TLX̃ =0 (14)

provided that (11) is satis�ed. Subsequently, by eliminating terms containing X TCX̃ and
X TMX̃ in (7) and (8), respectively, and using the same argument as above, we are able to
derive the third orthogonality relation

�2X TMX̃ �̃2 − �X TKX̃ �̃− X TLX̃ �̃− �X TLX̃ =0 (15)

and the fourth orthogonality relation

�2X TCX̃ �̃2 + �X TKX̃ �̃2 + �2X TKX̃ �̃ + �2X TLX̃ +�X TLX̃ �̃ + X TLX̃ �̃2 =0 (16)

respectively, provided that (11) is satis�ed.
To compare with the results in Reference [3] where the second-order system is treated,

we disregard the aerodynamic e�ect, i.e. taking �=0 in �(s). In this situation, Equations (3)
become

C=C1 −!M; K =K1 −!C1; L= −!K1 (17)

First of all, we substitute (17) into the �rst orthogonality relation (12) and get that

�2X TMX̃ + X TMX̃ �̃2 + �X TMX̃ �̃ + �X TC1X̃ + X TC1X̃ �̃

+X TK1X̃ −!(�X TMX̃ + X TMX̃ �̃ + X TC1X̃ )=0 (18)

Next, we have to ignore the e�ect comes from the Laplace transform parameter s which
results in an extra t-di�erentiation. Equivalently, we would like relation (18) to hold for all
!∈R. This immediately implies that

�X TMX̃ + X TMX̃ �̃ + X TC1X̃ =0 (19)

which is the third orthogonality relation shown in Reference [3]. Likewise, substituting (17)
into (14), (15), and (16), respectively, and considering those relations to be satis�ed for all
!∈R, we can obtain that

�X TMX̃ �̃− X TK1X̃ =0 (20)

�X TC1X̃ �̃ + X TK1X̃ �̃ + �X TK1X̃ =0 (21)
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and

�2X TMX̃ �̃2 + �X TC1X̃ �̃2 + �2X TC1X̃ �̃

+�2X TK1X̃ +�X TK1X̃ �̃ + X TK1X̃ �̃2 =0 (22)

respectively. Formulas (20) and (21) are essentially the �rst and second orthogonality relations
obtained in Reference [3]. Notice that (22) is redundant and it can be derived by (20) and (21)
immediately. It should be pointed out that the orthogonality relations derived in Reference [3]
are based on the assumption that all eigenvalues are distinct. This condition is, apparently,
more restrictive than (11).

3. SOLUTIONS TO THE PPA PROBLEM

In this section, we will show how to solve the PPA problem by multiple-input feedback control
for the cubic pencil P(�). For this case, we aim to relocate k eigenvalues of P(�). More
precisely, let {�j}kj=1 ⊂�(P) and {�j}kj=1 (16k63n) be two self-conjugate sets of complex
numbers. Then we want to �nd appropriate F;G1; G2 ∈Rn×p such that {�1; : : : ; �k ; �k+1; : : : ; �3n}
=�(Pc). Notice that the eigenvalues {�j}3nj=k+1 of P(�) remain unchanged in the feedback
control. Following the ideas in Reference [3], we shall use one of the orthogonality relations
derived in the previous section to �nd the forms of F;G1; G2 such that {�j}3nj=k+1 ∈�(Pc). With
abuse of notations, let us de�ne

�= diag(�1; : : : ; �k)

�(�̃) = {�k+1; �k+2; : : : ; �3n}
X = [x1; : : : ; xk]

X̃ = [xk+1; xk+2; : : : ; x3n]

where {(�j; xj)}kj=1 and (�̃; X̃ ) are eigenpairs and an eigenmatrix pair of P(�), respectively.
Now we can prove that

Theorem 3.1
Assume that (11) is satis�ed, i.e.

�(�)∩�(�̃)= ∅

Let � �=0, �∈Ck×p, and
F =MX��

G1 = [−!(K1 + �K2) + �K2]X�+ (1−!)[MX�2 + (C1 + �C2)X�]�

G2 =
1
�

{[!(K1 + �K2)− �K2]X�+![MX�2 + (C1 + �C2)X�]�}
(23)
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then

Pc(�̃)X̃ =MX̃ �̃3 + [(C1 − BFT) + �C2 −!M ]X̃ �̃2 + [(K1 − BGT1 ) + �(K2 − BGT2 )

−!(C1 − BFT)−!�C2 + �C2]X̃ �̃ + [�(K2 − BGT2 )−!(K1 − BGT1 )

−!�(K2 − BGT2 )]X̃

=0

That is, (�̃; X̃ ) is an eigenmatrix pair of the cubic pencil Pc(�).

Proof
This is the place where we use one of the orthogonality relations. Since

MX̃ �̃3 + CX̃ �̃2 + KX̃ �̃ + LX̃ =0

where M;C;K; L are given in (3), by using (23), we obtain that

Pc(�̃)X̃ =MX̃ �̃3 + CX̃ �̃2 + KX̃ �̃ + LX̃

− {BFTX̃ �̃ + [(BGT1 + �BGT2 )−!BFT]X̃ �̃

+ [�BGT2 −!(BGT1 + �BGT2 )]X̃ }

=−B�T{�X TMX̃ �̃2 + [�2X TM +�X T(C1 + �C2 −!M)]X̃ �̃

+X T[!(K1 + �K2)− �K2]X̃ }

=0 (24)

Note that the last equality in (24) comes from the second orthogonality relation (14), i.e.

�X TMX̃ �̃2 + �2X TMX̃ �̃ + �X TCX̃ �̃− X TLX̃

=�X TMX̃ �̃ + [�2X TM +�X T(C1 + �C2 −!M)]X̃ �̃

+X T[!(K1 + �K2)− �K2]X̃

=0

provided that (11) is satis�ed.

Theorem 3.1 implies that if the modes {�j}kj=1 that we want to relocate are entirely di�erent
from other eigenvalues of P(�), then the choices F;G1; G2 in (23) will keep the rest of
eigenvalues (also eigenvectors) of P(�) unchanged. Next, it remains to prove that the modes
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{�j}ki=1 can be assigned to the appropriate prescribed values {�j}ki=1 with the real matrices
F;G1 and G2 de�ned by (23). Similar to the technique used in Reference [3], we will show
that this can be done by choosing appropriate �.
To begin with, let the self-conjugate set {�j}kj=1 be arranged in the following way:

{�j}kj=1 = {{�2‘−1; �2‘}m1‘=1; {�j}kj=2m1+1}
where 06m16k=2, {�2‘−1; �‘}m1‘=1 are pairs of conjugate complex numbers with non-zero imag-
inary parts, and {�j}kj=2m1+1 are all real numbers. We aim to assign {�j}kj=1 into a self-conjugate
set of complex numbers {�j}kj=1. Of course, we assume that

{�j}kj=1 ∩�(P)= ∅ (25)

Likewise, we put

{�j}kj=1 = {{�2r−1; �2r}m2r=1; {�j}kj=2m2+1}
where 06m26k=2, {�2r−1; �2r}m2r=1 are pairs of conjugate complex numbers with non-zero
imaginary parts, and {�j}kj=2m2+1 are all real numbers. Correspondingly, the eigenvectors as-
sociated with {�j}kj=1 are grouped into

{{x2‘−1; x2‘}m1‘= 1; {xj}kj=2m1+1}
where x2‘−1 = �x2‘ for all 16‘6m1 and {xj}kj=2m1+1 are real vectors. Notice that m1 is not
necessarily equal to m2. Now suppose that U=[u1; : : : ; uk] is a p× k complex matrix with
column vectors uj �=0 satisfying


u2r−1 = �u2r for 16r6m2

uj ∈Rp×1 for 2m2 + 16j6k
(26)

Subsequently, let zj be the jth column of BU, i.e. zj=Buj �=0 for 16j6k. Notice that {zj}kj=1
satisfy the same relations as in (26). In view of (25), we de�ne

yj=P(�j)−1zj; 16j6k

That is, yj satis�es

P(�j)yj=Myj�3j + Cyj�
2
j + Kyj�j + Lyj= zj; 16j6k

Notice that yj �=0 for all 16j6k. In the following, we shall show that yj is an eigenvector of
the closed-loop cubic pencil Pc(�) related to the pole �j. It should be noted that the degrees
of freedom in the choice of yj is re�ected by the degrees of freedom in choosing zj for any
given �j. Finally, we denote

C=




xT1 z1
�1 − �1 · · · xT1 zk

�k − �1
...

. . .
...

xTk z1
�1 − �k · · · xTk zk

�k − �k



=




xT1Bu1
�1 − �1 · · · xT1Buk

�k − �1
...

. . .
...

xTk Bu1
�1 − �k · · · xTk Buk

�k − �k




∈Ck×k
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which is a generalized Cauchy matrix [10]. Now we are in a position to show that eigenpairs
{(�j; xj)}kj=1 of P(�) can be assigned to {(�j; yj)}kj=1 by the choices of real gain matrices
F;G1; G2 in (23) with an appropriate � provided that C is invertible.

Theorem 3.2
Assume that the sets {(�j; xj); �j}kj=1 and the matrix U=[u1; : : : ; uk] de�ned by (26)
satisfy

detC �=0 (27)

and {�j}kj=1 are all non-zero. Let F;G1; G2 be chosen as in (23) with

�T =��−1 (28)

where �=UC−1 ∈Cp×k , then {(�j; yj)}kj=1 are eigenpairs of Pc(�). Moreover, the gain matrices
F; G1 and G2 are real.

Proof
First of all, we want to check that {(�j; yj)}kj=1 are eigenpairs of Pc(�). To this end, we
compute

Pc(�j)yj =Myj�3j + [(C1 − BFT) + �C2 −!M ]yj�2j + [(K1 − BGT1 ) + �(K2 − BGT2 )

−!(C1 − BFT)−!�C2 + �C2]yj�j + [�(K2 − BGT2 )−!(K1 − BGT1 )

−!�(K2 − BGT2 )]yj

= zj − B{FTyj�2j + (GT1 + �GT2 −!FT)yj�j + [�GT2 −!(GT1 + �GT2 )]yj}

= zj − B�T{�X TMyj�2j + [�2X TM +�X T(C1 + �C2 −!M)]yj�j

+X T[!(K1 + �K2)− �K2]yj}

= zj − B�T{�X TMyj�2j + (�2X TM +�X TC)yj�j − X TLyj} (29)

By virtue of the relation

�X TK = − (�3X TM +�2X TC + X TL)

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2004; 11:41–58
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we can get

�X Tzj =�X T(Myj�3j + Cyj�
2
j + Kyj�j + Lyj)

=�X TMyj�3j +�X
TCyj�2j − (�3X TM +�2X TC + X TL)yj�j +�X TLyj

=�X TMyj�3j +�
2X TMyj�2j +�X

TCyj�2j − X TLyj�j
− (�3X TMyj�j +�2X TMyj�2j +�2X TCyj�j − �X TLyj)

= �j(�X TMyj�2j +�
2X TMyj�j +�X TCyj�j − X TLyj)

−�(�2X TMyj�j +�X TMyj�2j +�X TCyj�j − X TLyj); 16j6k

from which it follows that

�X TMyj�2j +�
2X TMyj�j +�X TCyj�j − X TLyj = (�jI − �)−1�X Tzj

=�(�jI − �)−1X Tzj (30)

Therefore, if �T =��−1 with �=UC−1, then we obtain from (29) and (30) that

Pc(�j)yj= zj − B��−1�(�jI − �)−1X Tzj= zj − B�(�jI − �)−1X Tzj= zj − Buj=0

for all 16j6k. In other words, we have that {�j}kj=1 ⊂�(Pc).
Now we want to show that F;G1 and G2 are real matrices. In view of their structures, it

su�ces to show that matrices X��, X� and X�2� are real. It is useful to look at the form of
�C. We can see that

�C=




�xT1 �z1
��1 − ��1

�xT1 �z2
��2 − ��1

· · · �xT1 z2m2+1
�2m2+1 − ��1

· · · �xT1 zk
�k − ��1

�xT2 �z1
��1 − ��2

�xT2 �z2
��2 − ��2

· · · �xT2 z2m2+1
�2m2+1 − ��2

· · · �xT2 zk
�k − ��2

...
...

. . .
...

. . .
...

xT2m1+1 �z1
��1 − �2m1+1

xT2m1+1 �z2
��2 − �2m1+1

· · · xT2m1+1z2m2+1
�2m2+1 − �2m1+1

· · · xT2m1+1zk
�k − �2m1+1

...
...

. . .
...

. . .
...

xTk �z1
��1 − �k

xTk �z2
��2 − �k · · · xTk z2m2+1

�2m2+1 − �k · · · xTk zk
�k − �k



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On account of the complex conjugation, we can see that

�C=




xT2 z2
�2 − �2

xT2 z1
�1 − �2 · · · xT2 z2m2+1

�2m2+1 − �2 · · · xT2 zk
�k − �2

xT1 z2
�2 − �1

xT1 z1
�1 − �1 · · · xT1 z2m2+1

�2m2+1 − �1 · · · xT1 zk
�k − �1

...
...

. . .
...

. . .
...

xT2m1+1z2
�2 − �2m1+1

xT2m1+1z1
�1 − �2m1+1

· · · xT2m1+1z2m2+1
�2m2+1 − �2m1+1

· · · xT2m1+1zk
�k − �2m1+1

...
...

. . .
...

. . .
...

xTk z2
�2 − �k

xTk z1
�1 − �k · · · xTk z2m2+1

�2m2+1 − �k · · · xTk zk
�k − �k




(31)

Let Scol ∈Rk×k be the matrix such that for any A∈Ck×k AScol is equal to the matrix derived
by swapping the (2r − 1)th and (2r)th columns of A for all r with 16r6m2. Likewise, we
de�ne Srow ∈Rk×k to be the matrix such that SrowA is obtained by exchanging the (2‘− 1)th
and (2‘)th rows of A for all ‘ with 16‘6m1. Using Scol and Srow, we can get

�� �CScol = ��S−1
rowSrow �CScol = �UScol

From (31) it follows that Srow �CScol =C. Similarly, the de�nition of U implies �UScol =U.
Consequently, we obtain that

��S−1
row =UC

−1 =� (32)

Now let �=[�1; : : : ; �k] with �j ∈Cp×1 for 16j6k, then relation (32) is equivalent to

��2‘−1 =�2‘ for 16‘6m1 and �j ∈Rp×1 for 2m1 + 16j6k (33)

Calculating X��, X� and X�2� reveal that

X��= X��−1�T =
m1∑
‘=1
(x2‘−1�T2‘−1 + x2‘�

T
2‘) +

k∑
j=2m1+1

xj�Tj

X�= X�−1�T =
m1∑
‘=1
(x2‘−1�−1

2‘−1�
T
2‘−1 + x2‘�

−1
2‘ �

T
2‘) +

k∑
j=2m1+1

xj�−1
j �

T
j

X�2�= X�2�−1�T =
m1∑
‘=1
(x2‘−1�2‘−1�T2‘−1 + x2‘�2‘�

T
2‘) +

k∑
j=2m1+1

xj�j�Tj

(34)

Combining (33) and (34), we �nd that X��, X� and X�2� are real matrices. The proof of
theorem is now complete.

Now we would like to make some remarks on condition (27) in Theorem 3.2. It is clear
to see that if xTj B=0 for any j with 16j6k, then the matrix C is never invertible regardless
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how we choose U. In control theory, xTj B=0 corresponds to the fact that the mode �j is
uncontrollable. In other words, this eigenmode cannot be replaced. On the contrary, if xTj B �=0
for all 16j6k and the elements of the set {�j; �j}kj=1 are distinct, then C is invertible for
some choices of U. To see this, we �rst recall that the determinant of the usual Cauchy matrix

C0 =




1
�1 − �1 · · · 1

�k − �1
...

. . .
...

1
�1 − �k · · · 1

�k − �k




is given by

detC0 =

∏
16i¡j6k(�i − �j)

∏
16i¡j6k(�i − �j)∏k

i; j=1(�i − �j)
(35)

(see e.g. Reference [11]). Hence, C0 is non-singular when elements of {�j; �j}kj=1 are distinct.
Since xTj B �=0 for all 16j6k, we can �nd a non-singular real p×p matrix R such that the
�rst entries of xTj BR are not zero for all 16j6k. Now we choose u1 = u2 = · · · = uk =R[1; 0;
: : : ; 0]T ∈Rp× 1. Then we get that

xTj Bui= x
T
j BR[1; 0; : : : ; 0]

T = aj �=0; 16i; j6k

which implies

detC=

(
k∏
j=1
aj

)
detC0 �=0

In addition, it is well known that the Cauchy matrix is ill-conditioned. To compute the
solution � for linear system �C=U more accurately and stably, we use the following strate-
gies. Let C=X�Y∗ be the SVD of C, where X, Y are unitary and �=diag(�1; : : : ; �k) with
�1¿ · · ·¿�k¿0. If C is nearly singular, i.e. �k ≈ 0, then we adopt Chan’s idea [12] in which
a de�ated decomposition of the solution to a nearly singular system were introduced. On the
other hand, if �1�1 and �k ≈O(1), i.e. C has a bad condition number, we compute � by

�=UY�−1X∗ (36)

Notice that all unitary operations are numerically stable and �−1 in (36) can be explicitly
calculated.
As indicated in Reference [3], the assumption that all {�j}kj=1 are all non-zero in Theo-

rem 3.2 can be removed because we always can construct a new cubic pencil P̃(�) out of
the original one P(�) so that all eigenvalues of P̃(�) do not vanish. To see this, let the new
cubic pencil P̃(�) be de�ned by

P̃(�)=M�3 + C̃�2 + K̃�+ L̃
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where

C̃ =C + 3�M

K̃ =K + 2�C + 3�2M

L̃= L+ �K + �2C + �3M

then it can be easily veri�ed that {�j − �}3nj=1 =�(P̃).
According to the last remark, if we want to move {�i}kj=1 to {�j}kj=1 and some of {�j}kj=1

vanish, then we can �rst construct a shifted pencil

P̃(�)=M�3 + C̃�2 + K̃�+ L̃

with a real shift � �=0 such that all {�j − �}kj=1 are not zero. It should be mentioned that if
P(�j)xj=0, then P̃(�j−�)xj=0 as well. Therefore, the generalized Cauchy matrix C does not
change when {�j; �j}kj=1 are shifted to {�j−�; �j−�}kj=1. Moreover, if the original pencil P(�)
is symmetric, then so is the shifted pencil P̃(�). Thus, we can perform the pole assignment
for P̃(�). To restore the shift, we simply add � to each eigenvalues of the shifted closed
pencil P̃c(�). More precisely, let F̃ ; G̃1; G̃2 be the feedback matrices for P̃(�), then the shifted
closed pencil becomes

P̃c(�) =M�3 + (C̃ − BF̃T)�2 + (K̃ − BG̃T1 − �BG̃T2 +!BF̃T)�

+(L̃− �BG̃T2 +!BG̃T1 +!�BG̃T2 )

=M�3 + Ĉ�2 + K̂�+ L̂

where

Ĉ = C̃ − BF̃T

K̂ = K̃ − BG̃T1 − �BG̃T2 +!BF̃T

L̂= L̃− �(1−!)BG̃T2 +!BG̃T1

Restoring the shift � gives

Pc(�) =M�3 + (Ĉ − 3�M)�2 + (K̂ − 2�Ĉ + 3�2M)�+ (L̂− �K̂ + �2Ĉ − �3M)

=M�3 + (C̃ − BF̃T − 3�M)�2

+ [K̃ − BG̃T1 − �BG̃T2 +!BF̃T − 2�(C̃ − BF̃T) + 3�2M ]�
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+ [L̃− �BG̃T2 +!BG̃T1 +!�BG̃T2 − �(K̃ − BG̃T1 − �BG̃T2 +!BF̃T)

+ �2(C̃ − BF̃T)− �3M ]

=M�3 + (C + 3�M − BF̃T − 3�M)�2

+ [K + 2�C + 3�2M − BG̃T1 − �BG̃T2 +!BF̃T

− 2�(C + 3�M − BF̃T) + 3�2M ]�

+[L+ �K + �2C + �3M − �BG̃T2 +!BG̃T1 +!�BG̃T2

− �(K + 2�C + 3�2M − BG̃T1 − �BG̃T2 +!BF̃T)

+ �2(C + 3�M − BF̃T)− �3M ]

=M�3 + (C − BF̃T)�2 + (K − BG̃T1 − �BG̃T2 +!BF̃T + 2�BF̃T)�

+[L− �BG̃T2 +!BG̃T1 +!�BG̃T2 + �(BG̃T1 + �BG̃T2 −!BF̃T)− �2BF̃T]

=M�3 + (C − BF̃T)�2 + [K − B((1− �)G̃1 + (2�−!�+ �2)F̃ − ��G̃2)T

−�B((1 + �)G̃2 + (!�− �2)=�F̃ + �=�G̃1)T +!BF̃T]�

+[L− �(1−!)B((1 + �)G̃2 + (!�− �2)=�F̃ + �=�G̃1)T

+!B((1− �)G̃1 + (2�−!�+ �2)F̃ − ��G̃2)T]

Therefore, the whole process is equivalent to applying feedback matrices

F = F̃

G1 = (1− �)G̃1 + (2�−!�+ �2)F̃ − ��G̃2
G2 = (1 + �)G̃2 + (!�− �2)=�F̃ + �=�G̃1

to the original pencil P(�).
To connect with the results in Reference [3], it is useful to explore the single-input case

(p=1) a bit further. Let {�j}kj=1; k ∈N, be a self-conjugate set of non-zero eigenvalues of
P(�) with associated eigenvectors {xj}kj=1 and {�j}kj=1 be any self-conjugate set of complex
numbers satisfying

{�j}kj=1 ∩ {�j}kj=1 = ∅ (37)
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In this situation, the associated Cauchy matrix is

C=




xT1bu1
�1 − �1 · · · xT1buk

�k − �1
...

. . .
...

xTk bu1
�1 − �k · · · xTk buk

�k − �k




(38)

where b=B∈Rn×1 is the control vector and u1; : : : ; uk are non-zero scalars. In order to �nd
the gain vectors we are required to solve the system of equations

�C=[u1; : : : ; uk]

which is equivalent to

[�1; : : : ; �k]




xT1b
�1 − �1 · · · xT1b

�k − �1
...

. . .
...

xTk b
�1 − �k · · · xTk b

�k − �k



=[1; : : : ; 1] (39)

Let

C̃=




xT1b
�1 − �1 · · · xT1b

�k − �1
...

. . .
...

xTk b
�1 − �k · · · xTk b

�k − �k




then in view of (35) its determinant is explicitly written as

det C̃=
k∏
i=1
xTi b

∏
16i¡j6k(�i − �j)

∏
16i¡j6k(�i − �j)∏k

i; j=1(�i − �j)
Therefore, in addition to condition (37), if xTj b �=0 for all 16j6k and both {�j}kj=1 and
{�j}kj=1 have distinct elements, then C̃ is invertible. The solution to (39) is given by

�j=
1
xTj b

∏k
i=1 �i − �j∏k

i=1; i �=j �i − �j
; 16j6k (40)

which is due to an identity

k∑
i=1

∏k
j=1; j �=‘ �j − �i∏k
j=1; j �=i �j − �i

=1
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for any 16‘6k (see Reference [3]). Hence, under the conditions that xTj b �=0 for 16j6k,
{�j}kj=1 are all non-zero and distinct, and {�j}kj=1 have distinct elements, we can construct the
gain vectors

F =MX��

G1 = [−!(K1 + �K2) + �K2]X�+ (1−!)[MX�2 + (C1 + �C2)X�]�

G2 =
1
�

{[!(K1 + �K2)− �K2]X�+![MX�2 + (C1 + �C2)X�]�}

where �=[�1; : : : ; �k]T ∈Ck with

�j=
�j
�j
=

1
xTj b

�j − �j
�j

k∏
i=1
i �=j

�i − �j
�i − �j ; 16j6k

will move {�j}kj=1 to {�j}kj=1 and keep the rest of �(P) unchanged. The vector � we derive
here has the same form as obtained in Reference [3]. By straightforward computations, we
can check that the gain vectors F;G1 and G2 are real. It is worth mentioning that the system
(39) is solvable with one solution given by (40) whenever xTj b �=0 for all 16j6k and {�j}kj=1
are distinct. These two conditions are exactly the same conditions used in Reference [3]. Of
course, if {�j}kj=1 are not distinct, then the choice of � is not unique. Now, if we ignore
the aerodynamic e�ect in (1), i.e. �=0, then we can see that G2 does not appear in the
closed-loop cubic pencil Pc(�) and

F =MX��

G1 =−!K1X�+ (1−!)(MX�2 + C1X�)�=−KX�
which are identical to the gain vectors derived in Reference [3].

4. NUMERICAL EXAMPLE

A set of pseudosimulation data is provided by The Boeing Company for testing purposes.
The sizes of matrices M , C1, C2, K1 and K2 are all 42× 42. Therefore, the total number of
eigenvalues (counting multiplicity) is 126. Now we let

{�j}12j=1 = {�1; �2; �3; �4; : : : ; �11; �12}

= {�1; ��1; �3; ��3; : : : ; �11; ��11}
be a set of six pairs of complex conjugate unwanted eigenvalues and

{�j}12j=1 = {�1; �2; �3; �4; : : : ; �11; �12}

= {�1; ��1; �3; ��3; : : : ; �11; ��11}
be a set of prescribed values. Their speci�c values are given in Tables I–IV.
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Table I. Unwanted and prescribed eigenvalues.

j �j �j

1 −1:9416357e + 00 + 5:7145254e + 01i −1:8907325e + 00 + 6:1436553e + 01i
2 −1:9416357e + 00 − 5:7145254e + 01i −1:8907325e + 00 − 6:1436553e + 01i
3 −6:9183335e − 01 + 4:1683158e + 01i −2:2785004e + 00 + 3:9639351e + 01i
4 −6:9183335e − 01 − 4:1683158e + 01i −2:2785004e + 00 − 3:9639351e + 01i
5 −2:6340898e + 00 + 3:5063988e + 01i −6:0938997e − 01 + 3:7364828e + 01i
6 −2:6340898e + 00 − 3:5063988e + 01i −6:0938997e − 01 − 3:7364828e + 01i
7 −2:5838961e + 00 − 2:8441096e + 01i −4:5168038e − 01 − 2:8518590e + 01i
8 −2:5838961e + 00 + 2:8441096e + 01i −4:5168038e − 01 + 2:8518590e + 01i
9 −9:9717738e − 01 − 1:5327875e + 01i −1:4440260e + 00 − 2:1440443e + 01i
10 −9:9717738e − 01 + 1:5327875e + 01i −1:4440260e + 00 + 2:1440443e + 01i
11 −3:2740196e − 01 + 1:4651202e + 01i −1:1006744e + 00 + 1:9167033e + 01i
12 −3:2740196e − 01 − 1:4651202e + 01i −1:1006744e + 00 − 1:9167033e + 01i

Table II. Relative errors of assigned eigenvalues.

j |�j−�̂j|
|�j|

1 9:584286188571896e − 11
3 1:348282068322105e − 11
5 8:323364112144900e − 12
7 4:054783553919088e − 11
9 5:260232134411892e − 11
11 8:279416920535226e − 11

Table III. Norms of gain matrices.

‖F‖2 5:304129423507520e + 06
‖G1‖2 6:333435534363977e + 08
‖G2‖2 6:009725627198257e + 07

Table IV. Errors of imaginary parts of gain matrices.

‖F − �F‖2 4:404408704029483e − 08
‖G1 − �G1‖2 3:463194515350621e − 06
‖G2 − �G2‖2 3:624612282800583e − 07

Here we choose a double-input B=[b1; b2] with

bT1 =
1√
21
[1; 0; 1; 0; : : : ; 1; 0]T

bT2 =
1√
21
[0; 1; 0; 1; : : : ; 0; 1]T
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For comparison purpose, we denote {�13; : : : ; �126} the remaining eigenvalues of the open-loop
pencil P(�) and {�̂1; : : : ; �̂12; �̂13; : : : ; �̂126} the eigenvalues of the closed-loop pencil Pc(�). All
computations are performed in MatLab version 6.0 on a Linux machine. We �nd that

max

{
|�i − �̂i|

|�i| ; i=13; : : : ; 126

}
=8:577661179394325e − 010

5. CONCLUSION

We have solved the PPA problem by multiple-input state feedback control for the vibrating
system with aerodynamic e�ect. The choices of gain matrices reply on the invertibility of
a generalized Cauchy matrix which is formed by the control matrix, unwanted eigenpairs,
and prescribed eigenvalues. Under generic conditions, we can see that a self-conjugate set of
unwanted eigenvalues can be relocated to almost arbitrary prescribed values which are closed
under complex conjugation, while keeping other eigenvalues unchanged. This pole assignment
can be achieved by the real gain matrices. Therefore, this control is realizable by means of
physical devices. If the aerodynamic e�ect is neglected and the feedback control is governed
by single-input, then we recover a solution to the PPA problem for the quadratic pencil derived
in Reference [3].
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