FEERARHLEE0LHARH LT RERS
%M Boltzmann & #2 A2 &) & 85 1% 3

st £ 4358 - NSC 88-2115-M-002-013
PATHAMR 8T HF8 A1 BES8HFTA3 B
EFAN RES & REE A

—PXHE

~
X

/}- J,T z % in Hy)//\ %/J Q/W‘ 66 G(dmtayii , ®

L2 1

N/

N

=B 3705

g CTY&ZV\Q%D %\Efzi\ Aj\ 0] ’)Z] 7@71 gw/er Zii
L5y 6) I




ABSTRACT. We derive an approximate Green finction for the linearized Boltzmann
equation. For the full nonlinear equation, the sclution constructed from the approx-
imate Green function satisfies the Burgers equations in the variables z and ¢ if the
initial value is close to a constant Maxwellian.

1. INTRODUCTION

In this paper, we consider the Boltzmann equation

0 0
(1.1) %fﬂ-f'%f:Q(f,f)

in the rarefied gas dynamicd with a cut-off hard potential in the sense of Grad,
where f = f(z,£,t) withz € R®, £ e R3 and t > 0, and

Q)= [ | G- 111 e, dn

1s the collision term. To understand microscopic dynamics nowadays, the Boltz-
mann equation is more and more important. Jowever, many fundamental topics
such as, for example,

(1) rigorus validity of the Boltzmann equation,

(2) existence and uniqueness of a global solution with a general initial value,
(3) existence for more general initial-boundary value problems,

(4) hydrodynamical limits,

(5) interaction of waves of the Boltzmann cuation

are still not well understood. In this paper, we mainly concern with a very first
step to understand the last topic (5), that is, the estimates of the Green function.

If we consider the full equation with a quadratic collision term, then we can
not avoid nonlinear wave phenomenon. Since in the hydrodynamic regime, the
Euler equations and the Navier-Stokes equations have shock and travelling wave
solutions, it is nature to consider similar problem for the Boltzmann quation. The
existence of a weak shock wave ( travelling wave ) for the Boltzmann quation was
obtain by Caflisch and Nicolaenko [1]. They used an exact travelling wave of the
Navier-Stokes equations as an approximate solution. Then the solution was found
by a Lyapunov-Schmidt method as a bifurcation from a constant Maxwellian state.
Unfortunately, they can not show this solution is nonnegative and it could be of
no physical meaning. Caflisch and Nicolaenko in the same paper also proved a
uniqueness result for the shock profile solution near a Maxwellian. Hence if we
believe there is a weak shock profile solution with physical meaning, it must be the
one constructed in [1].

Inspired by the works on shock profile solutions of conservation laws in Liu
and Zeng [9], Liu [6], Liu and Wang [7] and Liu and Yu [8], it seems we can
understand more about shock profile solutions ¢nd wave interaction from a better
estimate of the Green function. The ideas are: (1) obtain pointwise estimates for the
Green function of the linearized equation near a constant state; (2) obtain pointwise
estimates for the Green function of the linearized equation near a approxmate shock
profile solution; (3) use these estimates to trace the interaction of waves and show
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the convergence to a shock profile solution. The main difficulty to apply these ideas
to the Boltzmann equation is that there is one more variable ¢ in the equation.
When linearized around a constant Maxwellian, the known results by Ukai [12] and
Nishida and Imai [11] are L? type estimates for th2 semigroup. These estimates are
not sharp enough to trace movement of waves.

In this paper, we linearize the equation arounc. a constant Maxwellian. We use
the semigroup to represent a solution and drop terms which decay very fast in time.
Then we transfer the dominant terms into a convolution of the initial value and the
sorce term with the Green function. From this, an approximate Green function is
obtained. Moreover, the main terms of a solution satisfy the Burgers equations in
z and t when ¢ is large. This is similar to a Chaprian-Enskog expansion which also
keep much information in the direction of &.

2. SEMIGROUP OF THE LINEARZED EQUATION

€17

Let M = (27r)‘gemp(——7). We linearize ths equation around M and write

f=M+ M7 h and the collision term
Q(f, f) = Lh+vI(h, h),

where L = 2M_%Q(A/I%h,, M) is the linear part. The operator L is nonpositive,
ie.,
(Lh,h) <0 for h € D(L)

and satisfies 1 1 1
Lh=0iff h € span{Mz,&M 7, €2 M2}

Moreover, it can be decomposed as
Lh = —v([¢])h+ Kh,

where v(|€]) satisfies
0 <wo < w([€]) < w1 +[4])

and K is a compact operator in L2?. Now we consider the linearized equation

9 )
h & o—h=Lh

with
h’(z7§70) = hO(:Eaé)'

Let & denote the Fourier transform of & in 7. Then h(k,€,t) satisfies
8ﬁ+i§-kﬁ—Li'
ot S

Let
B(k) =L —i€-kl.

We can represent % in the form of semigroup. See [12] and [11].




Theorem 1. There ezist § > 0, by > 0 and b: > 0 such that for h, = h(k,€,0) €
D(B(k)),

(a) For ang
R ’ 1 —by tir R
h=eP®Eh = lim — e\ = B(k)) " ho dA
r—oo 271 —by—ir
+Zetd 7 () k), h o) 5 (k),

where d; (k) and ¢;(k) are the ezgenvalues and the corresponding eigenfunctions of
B(k).
(b) For k| > ¢,

—bo+ir N
h=eB®h = lim i/ e\ = B(k)) " ho dA

r—o0 27r'1, —bQ—iT

3. APPROXIMATE GREEN FUNCTION

Taking inverse Fourier transform in &, we heve

h(x,é’,t):/fzdk:/ ﬁdk+/ hdk.
k> |K|<6

By the spectrum property of B(k), we have
dj(k) = iak — ;K" -- O(|k)?),

where £ = £|k|, a; € Rand 8; > 0 for j = 1,2, .., 5 and the limit terms in Theorem
1 satisfy with some b > 0

: LS A Z1% —bt
lim — e (A = B(k) ~thy dA = O(e)

by —ir
for [k] < ¢ and
1 —ba+ir
lim — (A= B(k))"th,d\ = O(e~%)
r—oo 271 by —ir

for |k| > 6. Hence

and

/ hdk =0(e~") +
lk|<8

e=tt) +Z/ Biesn b5 5" 0 (— k), g )ab (k) d

|<5
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for some b3 > 0. The final form we obtained is as follows.

Therorem 2. Define the approzimate Green junction

5
G(I,y,t,f) = ZG] [:L‘) yat’é)
7=1

with G satisfying
G]' *y ho

5 _(zc—y-@z'ﬁ)2 -
:/Rs(wjvrt)‘fe 5 {(z/zj(O),ho(«S,y))%(O)

T — ajt

#3500 ol ) 5 50) + (S 5(0), Aoly, D)5 0)]

1.1 T — aj t

+ 5[251-26 — Gii )?]

< P50, ol ) G 5(0) + (05 0), ol ) 550

5?2 .
+ (530, ho(y, )95(0)] } dy.
Then S
h(z,&,t) =Y Gjxho+0(t2log’t).

j=1

Moreover, we can write h in the form

: o, 9 .
Rz, &,8) =~ {no,j4;(0) — 5;(”70,3'5%%(0) +am,545(0))
7j=1

2

1 62 0 G,
- 5%5[27714’ %d}j(o) +n2,5%5(0) -+ 19

Frz O]} + O log™t)

where

(z—y=-ajt)?

Uo,j:/ﬂgg(‘iﬁjm)_%e— Tt (45(0), holy, €)) dy,

_(:c—y—oe-t)g (9

mo= [ amRe e (0, ko 8y,

(z~y—a;t)? 52

ma= [ gm0 R 0) (0, 8)

One interesting consequence of Theorem 2 is: if we omit the terms decaying fast
in ¢ and consider the full nonlinear equation, then the integrals in € of the leading
terms in the expansion of h satisfy the Burgers equations. One advantage to use
the approximate Green function is that we can get more information in £ direction
when passing from the Boltzmann equation to t.xe Burgers equations.
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