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Extension of Real Numbers Topological Space

to Fuzzy Numbers Topological Space

Kweimei Wu
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Abstract

The fuzzy numbers, fuzzy points on R(= (—oc0, +c0)) are all made vaguely from the real
numbers, and fuzzy intervals are all made vaguely from the intervals of real numbers. The
fuzzy sets on R that we considered here are fuzzy numbers, fuzzy intervals, fuzzy points and
their arbitrary intersections,unions. Let Fyy denote the family of these fuzzy sets. We construct
a fuzzy topological space on Fyy which has some connection with the usual topological space
(R.Tg).

Keywords: fuzzy topology, fuzzy topological space, fuzzy number, fuzzy point, fuzzy interval.
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1.Introduction

Since the fuzzy numbers. fuzzy points on R are all made vaguely from the real numbers. and fuzzy
intervals are all made vaguely from the intervals of real numbers. Hence there are some relations
between fuzzy numbers, fuzzy points. fuzzy intervals and real numbers. By using these relations. we
may induce a tuzzy topological space for real line R.

In §2. let the fuzzy sets on R considered be fuzzy numbers. fuzzy intervals, fuzzy points and their
arbitrary intersections,unions. Let this family be denoted by Fv. Since the intersections of fuzzy
intervals, fuzzy points can be expressed by the unions of fuzzy intervals, fuzzy points, empty set, in
this paper, we shall learn that fuzzy numbers can be written as a countable union of fuzzy intervals.
Therefore all the fuzzy sets in Fiy are fuzzy intervals, fuzzy points and their unions.

Let B* = {(a,b), (a,00), (—o0,b), (—oc,oc) | Va < b, a,b < R} be the set of all open intervals
in R. Let Tx be the family of all open sets in R and obtain the crisp topological space (R.Tg).

Corresponding to this B*, let B = {(ay,b:), (ax,oc), (=oc.by), (—oc,¢) [VO <A<, a<
b, a,b € R}. Similar as the topology defined on R, we may have Tr. the family of all open fuzzy
sets made from Fy.

Recall that the fuzzy sets we considered are those in Fy. Since these fuzzy sets in Fly are fuzzy
intervals, or their unions, it is possible to use the sets in B to define the open fuzzy sets in Fiy. Thus
we have the fuzzy topological space (R, Tr) for R.

Let B; be the family of all level 1 open fuzzy intervals, i.e.
B, = {(ax,by), (ar,20), (=20,by). (—oc,oc) | A=1, Va<b, abe R}

and F,(1) be the family of all level 1 open fuzzy points, i.e. F,(1) = {ay | A=1. ¥Va < R} Then
we will have an one-one onto mapping F,(l) «— R, B; «— B~. Let F| be the family of all level 1
fuzzy intervals, level 1 fuzzy points and their unions. We can then define the open fuzzy sets from
sets in 57 and induce a fuzzy topology 7T, and a fuzzy topological space (R, T,) for R. If we restrict
the fuzzy sets on R to sets in F, there is an one-one onto mapping between T, and T which leads
to the result that the topological space (R.T,) is isomorphic to the crisp topological space (R, Tr).
And also since T, C Tk, T, is isomorphic to T, we can treat Tg as a subfamily of Tr or conversely,

say (R.TF), an extension of (R, Tg).



2. Fuzzy topology for R and fuzzy topological space

The fuzzy numbers. fuzzy points on R are all made vaguely from the real numbers. The fuzzy
intervals which we will define later are also made vaguely from the intervals of real numbers. Therefore
there are some connections with the real numbers. By using these connections, we shall construct a
fuzzy topology on R.

Definition 2.1 The fuzzy numbers on R in general have the following forms:

° L(z). a<z<h 5

(r°) uVL S\ 0, elsewhere (2.1)
p<z<ec

2°) Az == 5 9

(2°) u”“ { 0, elsewhere (2.2)
fr(z), a<z<b

(3°) pylz) = i frlz), b<z<ec (2.3)
0, elsewhere

where fr(z) is a continuous increasing function in [a, b], fgr(z) is a continuous decreasing function in
[b.c] and fr(a) = fa(c) =0, fL(b) = fr(b) =1
Definition 2.2 The membership function of a fuzzy set ay, 0 < A < 1 on R is defined as follows:

A ifz=a 5
Hay (2) = {0, ifz#a (24)

we call ay, a level A fuzzy point. Let the family of all level \ fuzzy points be Fo(A) = {a\| ¥ a € R},
0 <A< 1and let the family of all fuzzy points be F,, = UOQSI F,(A).

Definition 2.3

(a) The membership function of the fuzzy set (ay, by), 0 < A < 1 on R is defined as follows:

A, ffa<z<b (
i 0, elsewhere

(3
Ot
N’

Hiay, b’\)(l') =

we call (ay. by). a level A fuzzy interval. Also we can write (ay, by) = UKKb zy. Other level
A fuzzy intervals, 0 < A < 1; are [ay, by]. [ax. ba). (ay, i (ax, =¢), [y, oc), (=3¢, by).
(—2¢. by], (=>c. 2¢). Their membership functions are defined accordingly as in (2.5). For
instance, the membership function of [ay, oc) is

{/\, ifz>a

Hiay, 00)(3:) = 0 ifr<a



The fuzzy point by can be written as by = {a., b\’ﬂ'b\ ca). a < b < c. Let [{ay. b))
denote any one of the following fuzzy intervals. (ay, ba). [ax. ba], lax. by), (ax. byi. Let
F:(\) = {{(ay, by) | ¥ a <b. ab< R} be the family of all level A fuzzy intervals. and let
Fr=U o<a<t Fr(M) be the family of all fuzzy intervals. When a = —2¢, I{ay, by) = (—2<. by)
or (=>c. by): When b = . I{ay. by) = (ay. o) or [ay, >¢): When a = —¢, b = >c. we assume
this fuzzy interval (ay. by) with A = 1 ie. pg, sy(z) =1, ¥ —oc <z < oc. Meanwhile, the
characteristic function of R is Cr(z) = 1, ¥ — oc < = < 2o. Therefore u,, 5,)(z) = Cr(z).

Vz le ffA=1 a=—oc, b=12. (a;.b;) is exact the same as (—oc, o0). That is to say, we

may treat R as a level 1 fuzzy interval. Thus R € Fy(1).

The following are special cases of (2.1)~(2.3).

(b) The membership function of the fuzzy set A on R is

=% g<zxr<b
0, elsewhere
we call 4, a triangular fuzzy number, denoted by A=(a,b,c),a <b<c Let Fr be the family

of all triangular fuzzy numbers, i.e. Fr = {(a, b, ¢)|Va<b<c, a,bc€ R}.

(c) The membership function of the fuzzy set BonRis

22 g<z<b

- — b~a'’ .
Hglz) = 0, elsewhere (

[ Q]
~1
~—

we call B, a left triangular fuzzy number. Let Fy = {(a, b. ¢)| Ya <b=c, a,b.c € R} be the

family of all left triangular fuzzy numbers.

(d) The membership function of the fuzzy set Con R is

pe(r) =

=z p<zr<c
c—0 - - -
, elsewhere

we call C, a right triangular fuzzy number. Let Fgr = {(a, b, ¢)|Va=b<c. a.b,c € R} be

the family of all right triangular fuzzy numbers.

Let

F=FrUF, UFr={(a. b ¢)]Va<b<ec, excepta=b=ca,bce R}



For convenience. we shall call all the members in F. and those defined in (2.1)~(2.3) by fuzzy
numbers.

Let [({a.b) be the real number interval corresponding to [(ay.by). For instance. if [{ay.2\) =
(ax.by). then [(a.b) = [a.b). And let Ry = {[(a. b)| ¥ a < b. a.b € R}. Since the characteristic
funcrion for (a.b) is Crupy(z) = 1. if a < r < b and Ciyp)(z) = 0. if z < a or z > b. Therefore we
have p,, 5)(2) = Crap(z), ¥ o € R. Similarly gy, 6,)(z) = Crap(z), ¥z € R. Also there is an

one-one onto mapping
I(Cbl,b1> ‘—*.[((l,b), \V/I(al,bl)eF[(l), ‘v’[(ab) ER[

Hence F((1) is equivalent to R;, denoted by F;(1) & R;. That is, the level 1 fuzzy interval I(a;, b;)
and the real number interval I(a,b) are the same thing but with different expressions.

We note that there are some connections between F,(1) and R too. The characteristic function
for real number a is Cy(z) = 1, if z = a; and C,(z) = 0, if z # a. And the membership function
of level 1 fuzzy point a;(€ F,(1)) is pg, (z) = 1, if z = a; and g, (z) = 0, if z # a. Therefore
Lo, (z) = Cy(z), ¥V € R. Also there is an one-one onto mapping a,(€ F,(1)) — a(€ R). Hence F,(1)
is equivalent to R, denoted by F,(1) = R. That is, the level 1 fuzzy point a; and the real number a
are same thing but with different expressions. Between F, and R, F; and E;, we have a many-one

onto mapping. For each A € (0, 1],
ar(€ F,(\)) — a(e R), I(ay,by)(€ Fi(\) — I(a,b)(€ Ry).

The fuzzy sets on R considered in the following are all fuzzy numbers, fuzzy points, fuzzy intervals
and their arbitrary intersections. unions. Let this family be denoted by Fly.

In order to establish a fuzzy topology for R, we need to know the following definitions.
Definition 2.4 (Chang [2], definition 2.2) A fuzzy topology is a family T of fuzzy sets in X satisfies
the following conditions:

(a) o. XeT.
(b) f 4. BT, then ANB<T,
(c) If 4, € T, Vi € I, where [ is any index set, thenU,.; 4; € T.

6



T is called a fuzzy topology for .X and the pair (X.T) is a fuzzy topological space (FTS for
short). Every member of T is called T—open fuzzy set. A fuzzy set C in X is T—closed fuzzy set iff
its complement C" is a T—open fuzzy set.

Definition 2.5 (Chang [2], definition 2.3) A fuzzv set [ in a FTS (X.T) is a neighborhood (nbhd
for short) of a fuzzy set A iff there exists an open fuzzy set O( T) such that 1 O C .
Definition 2.6 (Chang [2], definition 3.1) A sequence of fuzzy sets, say {4, n = 1.2,---,} is
eventually contained in a fuzzy set A iff there exists an integer m such that whenever n > m, then
A, c A If {4, n =12} is a sequence in FT'S (X.T), then we say that this sequence
converges to a fuzzy set A iff it is eventually contained in each nbhd of A (i.e. if B is any nbhd of
A, there is a positive integer m such that whenever n > m, 4, C B).

Since F,(1) = R, and F;(1) = Ry, therefore in order to establish a fuzzy topology for A relatively
to the topology on R, we first go over the topology on R. Let B* be the family of all open intervals
on R, i.e.

B* = {(a,b), (a,00), (=o0,b), (—o0,0) | Va < b, a,b€ R}.
Define the open set on R as follows:
Definition 2.7 (corresponds to the Definition 2.8 below) A subset O of R is an open set iff for each
z € O there exists an U € B* such that z € U C O.

Let Tx be the family of all open sets of R defined in Definition 2.7. It’s being proved that Tg
satisfies the definition of a topology. Therefore we have a topological space (R.Tg). Since F(1) = R,
F;(1) = Ry, corresponding to the topology Ty induced by Definition 2.7, we shall consider the
following fuzzy topology for R.

Corresponding to B*, let
B = {(ax by), (ar,o¢), (=00,by), (—=2c,0¢) |[VO< A< 1, Va<b a b€ R}

be the family of all level A (0 < A < 1) open fuzzy intervals. Let By be the family of all level 1 open

fuzzy intervals, i.e.
81 = {(a’ltbl)v (a‘laoc)) (_Qc,bl), (_—OCOC) ! va‘ < bf a’b S R} - B

From the following properties 2.3 and 2.4, we will learn the facts that all the fuzzy numbers in

F and those defined in (2.1)~(2.3) can be expressed by countable unions of fuzzy intervals. And we

7



know that the elements in Fy are fuzzy points. fuzzy intervals. fuzzy numbers and their arbitrary
intersecrions. unions. Since the intersection can be expressed by union of fuzzy points or fuzzy
intervals or o, then F\ contains fuzzy points, fuzzy inrervals. fuzzy numbers and their arbitrary
unions. Hence we can discuss problems on Fy by using the fuzzy ropology Tr induced by b.
Definition 2.8 A fuzzy set O(E Fy) on R is an open fuzzy set iff for each z, C O. there exists
U € B such that z, C Uco.

Let Tr be the family of all open fuzzy sets in Fy. Obviously B C Tr. We now prove that Iz is
a fuzzv topology as defined in Definition 2.4.

Property 2.1
(1) Tr is a fuzzy topology for R.
(2) (R, TF) is a fuzzy topological space.

Where the fuzzy sets on R are restricted to the fuzzy sets in Fy.

Proof:
(a) ¢ is open, R € B, therefore 0. R € Tr. So (a) of definition 2.4 is satisfied.

(b) If A, B € T, then for each z, C AN B, we have z), C A and z, € B. Since A, B are open
fuzzy sets, by Definition 2.8, there exists U V € B such that z) C UcA andzycVCB
which means

2 CUNV cANB
Since £y UV, therefore U1V # 0. The intersection of U and V is an open fuzzy interval.

For instance.
(Ga, ba) N (c3.dg) = (Ca,by) EBifa<ce<b<d 0<a<3< L
Therefore U NV & B, i.e. AN B € Tr. Definition 2.4(b) is satisfied.

(c) If 4, € Tr, j € I(any index set), then for each zx C Ujes A;, there exists some n € I such that
Iy C A,. Since 4, is an open fuzzy set, there is an U € B such that z, C UcA,C Ujer 45

Therefore U]E, ;:l]- € Tr. Definition 2.4 (c) is satisfied.



Now let X = R. T = T in definition 2.4. it will satisfv all the three conditions of Definition 2.4.
Therefore Tr is a fuzzy topology and hence (R.Tr) is a fuzzy ropological space. From property 2.1.
when X = R. T = Tr. Definition 2.4 is fulfilled. Therefore Definition 2.5 and 2.6 hold for X = R
and T = Tr. C = Fy is a closed fuzzy set iff its complement C’ is an open fuzzy set.

In F;(1). intersection of two level 1 fuzzy intervals is a level 1 fuzzy point or union of level 1 fuzzy
points or ©. Fp(1) = R, Fy(1) = R;. Similarly to Tr, we can induce a fuzzy topology to T, by B;.
There is an one-one onto mapping between B; and B*. Also, it leads to the one-one onto mapping

between T, and T. For example, ifa < b < c < d,
(a1,01) U (c1,d1)(€ Tp) = (a,b) U (c,d)(€ Tk).

Since By C B C T, therefore T, is a subfamily of Tr. Hence Tgr may be considered as a subfamily

of Tr, or to sav, Tr is an extension of Ty.

Example 2.1

(1) The complement set of level A, (0 < A < 1), fuzzy interval (ax,by] is
lax,b)] = (—oc,a;) U [a1-x, b1-2] U (b1, <) € TF.
Therefore [ay, bx] is not closed.

(2) The complement set of level 1 fuzzy interval [a;, b:] is
a1, by]' = (=00,a,) U (b1, o0) € Tk

Therefore [a, by] is a closed fuzzy interval.

Property 2.2 Let 4, C Ayc-.cA,cC A be a sequence of increasing fuzzy sets in Fy.

If nlim pi (x) = pi(z), v z, then sequence {4dn; n=1,2,--} will converge to A and denoted by

A= lim 4, =

n-—oc

A,

Cy

n=1 -

Proof: Let B be any nbhd of A, then by definition 2.5, there exists O € Tr such that AcOcB.

Let m be any fixed positive number, then for all n > m, A, ¢ A ¢ B. Thus by definition 2.6,



sequence {A,: n=1.2.---} converges to A.

Property 2.3

(a) The fuzzy number B = (a,b.b) in F; can be written as a countable union of fuzzy intervals By,
Le.

B={ U B,
n=1 k=1

where By, is defined in the proof.

(b) The fuzzy number C = (b,b,c) in Fj also can be written as a countable union of fuzzy intervals
Ckn,te.
C’::LJ LJ Ckm
n=1k=1

where C‘,C,n is defined in the proof.

(c) The fuzzy number A = (a,b,c) in Fr can be written as a countable union of fuzzy intervals, i.e.
A= U BenUCln)
n=1 k=1

Proof:

(a) For any fixed positive integer n, n = 1,2,---, we now partition [a, b] into n equal subintervals

by points p*n) = a + #8=2 £ — 0 1 ... n. Then

n

8] = (607, p07) U [, p) U U [, )

Let fuzzy intervals By, be

Brn = E}’i:ll:)pgifin) k=1,2.---,n—1; (x1)

and Bun =0y o0l =120 (2)
(k,n) _ k

where ak‘,I:p*———a:—,k=0,1,~~,n~l;n=l,2,---.
b—a n

Insert Fig.1 Here
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It is obvious that

Bin CB. 7nand Be,n B, =o0. itk =1. (=3)

TCs
,

Therefore

1
0 < pglx) "”Uz_lék.n(m <—. Ya<zr<b andn=12 .

n
Thus we have
lim ) 5, (%) = ps(z), Vz. (*4)
Now, for each m, m = 1,2.-.. let s,, be the least common multiple of 1,2,---,m; ie. s, =
L.C.MA{1,2,---,m}. Then there is a positive integer ¢ such that s, = tm. For instance,
m=l=s=1m=2=s5=2m=3=s3=6; - etc. andrii_r_r(lx S = OC.

Same as in (x1) and (%2), let s, + 1 points of s,, equal subintervals of [a, 5] be

a= p(O,Sm}:p(i,Sm)’p(‘Z.Sm)’ T ,p(Sm.Sm) = b}

=

Then we have these fuzzy intervals Bk,sm, k=1,2,---.5,. If m <n, then

o =LCM(1,2,---,mm+1,---,n)=LCM(sp,m+1,---,n)

Hence there is a positive integer w(m,n) such that s, = w(m,n)sn,, i.e. = = w(m.n) is a

positive integer. And the numbers that divide [q,b] into s, equal subintervals and s, equal

subintervals are

Y Z b— -
p(le“'/ o ( ‘ a) Z — 0 1 L Sp. <><j)
Sn
o k(b —
pleom) g Kb =a) 0y (+6)
Sm
respectively.
In (x3) and (x6), for those [ = 2k =w(m,n)k, k=0,1,---,5n, we have
[l =0, wim.n),2w(m,n), -, s,. Then
. I(b— k(b - .
p(l’b“)=a+ (S a)=a+_(_ a):p(&.sm)7 ’lC:O)ls"'ySm)
n Sm



Specially.
Oon) = g = plOsm) and pb

Thus
{p‘i)’C,Sm);k —_ O. 1 PN -Sm} - {p/Sn)!Z — O7 ]_: e -.'Sn} for m < n.
Therefore the sequence of fuzzy sets 7, Be,,.. m=1.2,-- is increasing as m increases. also

sm Bk.).m(‘r) = #B(I) vz

U Bism C©B. ¥m and rrk—ar%o uUk:l
This is the same result as in (x4). Hence from property 2.2 we have

J (x7)

n
.S,Cx

If s, < u, uis a positive integer, then s; < sy < --- < s, <u, wheres; =1, 5, =2,53 =6,

and
u Bk,sm
m=1 k=1
= (U Bk.sl) u(y Bk,n) u---u(Ud Bk,sr)
k=1 k=1 k=1
UBICSL L}Bksz) U(U Blc,Sr)U"‘U(U Bk.u)
k=1 k=1 k=1
cy u Ben CB, ¥Yr uifs, <u(by(x3)).
n=1 k=1

, let 7 — oo, hence by (*7) we have

SR
n=1 k=1

Since lim s, = oc¢
r—oo

(b) As in part (a), for fixed n, we divide [b, ¢] into n equal subintervals by points

ke=b) kE=0,1.---,n:

q(lc,n) =} +
n

then

Let the fuzzy intervals C’k‘n be
(k=1,n) (k’n)]k:93,nn:1_

= o,n) (1,
Cly" - [qﬁ(ﬁ: ! 31 :)] C’Cn - (qﬁk,n 145, 0

12



and
c— g~ n—~K

jkﬂ =

o
[
—
o
S
3
I
—
o

c—>b n
Using the same argument as in part (a), we can prove
x

C=U U

n=1 k=1
(c) Follows from (a) and (b).

Property 2.4

(a) The fuzzy number M, can be written as a countable union of fuzzy intervals, i.e.

=0 0 e
n=1 k=1
where
Myen = [phi\™ 087 )k =120 = 1 Menn = 0707 0007
and
ptem) :a:——k(bn— D k=01 n e = (), E=01 -1

(b) The fuzzy number Mp can also be written as a countable union of fuzzy intervals, i.e.

Mr= U JMakn

n=1 k=1
where
rn = (607 g8 Man = (@57 V) k = 2,3,
and
¢+ = b+ k(#n"i) k=010 Ben=frl@®), k=12 .n

(c) The fuzzy number M/ can also be written as a countable union of fuzzy intervals, i.e.

ML,m U Makn),

IIC_:

where M, Mpen are as in (a) and (b) respectively.
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Proof: Similar as in Property 2.3.
There are many-one and onto mappings between F, and R. F; and R;. From Definition 2.5 and
2.6. we may have the following definitions.

Definition 2.9

(a) The e-nbhd of fuzzy point a, is the open fuzzy interval ((a — €)x.(a + €))).

Since ay C ({(a —€)x. (a +€)2)(€ Tr), Definition 2.5 is satisfied.

(b) The e-nbhd of fuzzy interval I(a,. b)) is the open fuzzy interval ((a —€)x.(a = €)y)

}-

Since [{ax,bx) C ((a =€), (a +€)1)(€ Tr), Definition 2.5 is satisfied.
(c) The e-nbhd of real number a is the open interval (a — ¢, a + €).

Remark: For each A fixed, 0 < A < 1. there is a one-one onto mapping between (a) and (c).

Definition 2.10
(a) In F,. z, approaches to ay (€ F,) iff Ve >0, z) C ((a — €)x, (a +€)a).

(b) In Fy, I(z.,y\) approaches to [(ay, b)) (€ Fy) if ¥ e >0, I{(za, yx) C ((a =€)y, (a+€)y).
Note here I(zy,yx) and I(ay,by) have the same form, that is, if I(zy,ys) = [zx,ys), then
I(ay, by) = [ax, by).

(c) In R, z approaches to a(€ R) iff Ve > 0.2 € (a —¢€.a+¢).

Remark: For each A fixed. 0 < A < 1. there is a one-one onto mapping between (a) and (c).

Definition 2.11

(a) In F,. sequence x&n”\. n =12, converges to ay(€ F,) iff ¥ € > 0, there exists a natural number

m such that whenever n. > m, z\" C ((a — €y, (a+¢€))

(b) In Fy, sequence I(z\™ y”), n = 1.2, - converges to [(ax,by) if ¥ € > 0, there exists a natural

number m such that whenever n > m, I(z{"”, y,(\n)) C((a=e€)x, (b+e€)y)

(c) In R. sequence '™, n =1.2,--- converges to a(€ R) iff ¥V ¢ > 0, there exists a natural number

m such that whenever n > m, z(® ¢ (a—¢€a+e¢).

14



Remark: For each A fixed, 0 < A < 1, there is a one-one onto mapping between (a) and (c).
Note that for each \. 0 < A < 1, F,(\) = R, and F(\) = R;. Therefore we have the following
property.

Property 2.5
(a) In R. x approaches to a iff in F,. z\ approaches to ax.

. o - (n
(b) In R, sequence ™ n =12 - converges to a iff in F,, sequence x; ), n =12 --- converges

to ax.

Proof: It follows from Definitions 2.10 and 2.11 and the equivalence between F}, and R.

Property 2.6

(a) In R, z approaches to a, and y approaches to b, z < y, a < b iff in F,, z approaches to a,, and

y» approaches to by = In F, (z,,y,) approaches to (ax,bx).

(b) In R, sequence ™ n = 1,2, - converges to a and sequence y™ n = 1,2, - converges to
1 ) . . {
b, 2 < y™W V¥n and a < b iff in F,, sequence 2 n = 1,2, converges to a and nes
n =1.2,--- converges to by = In Fy, (rgn),y,(\n)) converges to (ay, by).
Proof:

(a) In R, by Definition 2.10 (c), we have for each ¢ > 0,

r€fa—eca+e)andy € (b—eb+e)Ve>0
2y C ((a=€)y, (a+e€)x) and yy C ((b—€)x, (b+€)r)7e > 0 (by property 2.5 (a))
= (2, 40) C (@ =€), (b+€)x)
(b) Similar to part (a).

We shall now proceed to define the neighborhood of fuzzy numbers in F by Definition 2.5 and
Property 2.3.

Definition 2.12
(a) The e-nbhd of fuzzy number B = (a,b,b) in F is U U7, B*™

15
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(b) The e-nbhd of fuzzy number C = (b.b,c) in FpisUX Ui, Cion

(c) The e-nbhd of fuzzy number A = (a,b, c) in Fris

x n
U LJ‘ (Bg(lc.n) U C"re(.f\xn))
n=] k=1
where
Bé(kyn) = ((p(k—lvn) - E)ak—l,n (p(k'n) e)ak_;‘n) E TF
Ce(k n) :( (q(/c—l,n) _ 6),’3’:‘"’ (q(lc,n) + 6)3,”‘) € Tr
and
P(k'n) =a -+ k(b—a)7 q(k’") =b+ k(c—b), k=0,1,--- ,n: n=12
n n
k
Cen = —, k=0,1,---,n—1;, n=1,2,
n—=k
/Blcnz n 7k=1)27' 777,,7}:1,2,

(d) For the fuzzy numbers M, Mgz, M defined in (2.1),(2.2),(2.3) respectively, by Property 2.1

their e-nbhd can be defined accordingly:

1. For My, we take ag = fr(p®™), k=0,1,---,n~1; n=12---in (a).

AV}

. For Mg, we take G, = fr(@*™), k=1,2--- . n; n=1,2,---in (b).

3. For M, its e-nbhd is the union of e-nbhds of M}, and Mg.

Remark: By Property 2.3, we have

n

B=UU BinC U U B*V(eTr)

n=1kLt=1 n=1 k=1

- x n - 0 no_

C=U U Cnc U UCHEY(eTr
n=] k=1 n=1 k=1

_ > n - . x n ) -

A= U U BenUCrn) C U U (BEYUCE)(e Tr)
n=1k=1 n=]1k=1

They all satisfy the definition of e-nbhd as stated in Definition 2.5.

Definition 2.13

16



(a) The fuzzy number ¥ = (z.y.:) in F approaches to the fuzzy number B = (a.b.b) in F,. iff
z =y and

7€>0. YviknCB;"“”". V=12 -n n=12 ... (:

[ ]
el

(b) The fuzzy number ¥ = (z.y.z) in F approaches to the fuzzv number C = (b.b.c) in Fg. iff
z =y and

Ve>0, Yon CCH Y Yhk=12--n n=12..-. (2.10)

€

(c) The fuzzy number ¥ = (z,y, z) in F approaches to the fuzzy number A = (a,b,¢) in Fr. iff

Ve>0, Yflkncéék’”), and ?ymcé'e(k’”), Yk=12--n n=12---. (2.11)
Where
Yien = (870 68 ) k=12, n=1; n=12 - Vipn = (et el
v (0,n 1n ¥ k—1n k,n . _ ;
Yo = (w57 ug ™), Yoen = (WY ™) k=23, 0 n=1,2,
t(kv”)zr_é_ﬁ.(g__i)’ ) :y_:,_&_‘_y)’ k=01,---mn=12,---.
n n
k n—=k
Qi pn = —, ,Sk,nz , kzO,l,--~,n, TI.=1,2,"';
n n
Remark:
1. In (a),
- X0 n - - o n -
Y =1! L) Yikn C B, = U U Bék,n)e(TF)
n=1 k=1 n=1 k=1

which is the e-nbhd of Y as defined in definition 2.12 (a).

(SN}

[n (b),

3

Wc:;

Y = kn Loj‘j (TF)

n 1

1k
which is the e-nbhd of Y as defined in Definition 2.12 (b).

l |

In (c¢),

(W]

Y‘ = (Y_—l/‘:n U }}‘an) C Bs U Ce - (TF‘)

1

which is the e-nbhd of ¥ as defined in Definition 2.12 (c).

n=1

8
s

17



For rhe fuzzy numbers M, Wz, and V. we can similarly define their conceprt of approach.

Definition 2.14

(a) A sequence of fuzzy numbers in F. (™) — (Tm, Ym. 2m), m = 1.2, converges to the fuzzy
number B = (a,b.b) in F;, iff 2, = Ym, ¥ m = 1.2.--- and ¥ € > 0. there exists a natural

number M/ such that whenever m > /.

Vied CBEY Wk =12-n n=1.2 ... (2.12)
(b) A sequence of fuzzy numbers in F,Ym = (Tm, Ym, Zm), m = 1,2.--- converges to the fuzzy
number C' = (b, b c)in Fp, iff 2, = yp,, Y¥m =1,2,- - and V € > 0, there exists a natural

number M such that whenever m > A/,

Yad CCHE™ Y k=1,2-on; n=12-. (2.13)

(c) A sequence of fuzzy numbers in F, Y™ = (Tm, Ym, 2Zm), m = 1,2,--- converges to the fuzzy

number 4 = (a,b,¢) in Fr, if V ¢ > 0, there exists a natural number M such that whenever

m > M,
Yo CF and VW c D¢ Wk =1,2n; n=1.2.. (2.14)
where
Vi) = [t f”f’,t&i”f’j’ﬁ E=12 - n—1 n=12 - F = froinm gunm |
R ————k(ym = ) U"""’”‘) = ym + ———~k(zm — ym), k=01 nin=1,2 .-
m n ’ gm n H : i H s
k n—k
Qg nm = —, Bknmz k=0.1 n, n=1.2
n n
Remark 1: In (a),
~ im x n = (m) - oc n, (k)
FW=uungc b=y g Bt e (Tr)
l k=1 n=1 k=1
satisfies Definition 2.6. Similarly for (b) and (¢).

Remark 2: For the fuzzy numbers M;, Mg, and M, by Property 2.4, we can similarly define the
concept, of their convergence. As to the fuzzy sets of Fy not described in Definition 2.9~2.14, their

e-nbhd and concept of convergence may be defined accordingly by using Definition 2.5 and 2.6.

18



Property 2.7

(a) The fuzzy number Y = (z.y.z) in F. approaches to the fuzzy number B = (a.b.b) in Fy. iff

:=yand7e>0.|z—-a| <eand |y - bl <e.

(b) The fuzzy number ¥ = (z.y, z) in F, approaches to the fuzzy number C = (b.b.c) in Fgr. iff

c=yandVe>0. ly—-b<eand iz -] <e

(c) The fuzzy number ¥ = (x,y,z) in F, approaches to the fuzzy number 4 — (a,b.c) in Fr, iff

Yex>0,lz—al<ely—bl<eand |z —c| <e

Proof:

(a) From Definition 2.13 (a), we have

That is

and

?MnCBE(k‘"), Yk=12---nandn=12---;

V(O B et [V I
n n
x—l—k(y_z) <a+k(b—a)—:—e Vk=1,2--nandn=1,2
n n
—k-1)(y—z—-b+a)<n(z—a+e).Vk=12,-n n=12 (2.15)
k(ly—z—b+a)<n(-z+a+e), VEk=12--n;n=12 ... (2.16)

Letz—a+e>0and —z+a+ € >0, we have

lz—a|l <e¢ (2.17)

Since |z —al <€ if y—z—-b+a >0, then (2.15) holds and from (2.16) which holds for

k=1.2.

-.n: n=1,2 .- Therefore

nly—z—b+a)<n(-z+a+e¢), Vn=12 -
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and hence

y<b=e 2.13)
If y—x—b+a < 0rthen (2.16) holds and from (2.15), which holds for & = 1.2.---n: n = 2.3,
Therefore we have
(n—1)(-y+z+b—a)<n(z—a+e), 7n=2.3--
1 :
or b—ﬂ 1(I—a—:—ne)<y,‘v’n=2,3,-~- (2.19)
Combining (2.18) and (2.19), we have
1 ,
—n_l(x—a+ne)<y<b+e,\/n:2,3,~~- (2.20)
Letting n — o, (2.20) becomes
b—e<y<b+eor|y—»bl <ce (2.21)

Conversely, if [z —a| <ecand |y — bl <€, ie. a—e<z<a+eandb—ec<y<b+e irom

—e < z — a, we add ne to both sides, and get

(n—le<z—a+neore< (z—a+ne), Yn=23;

n—1

which implies

Then
1

n—1

(z—a+ne)<b—e<y<b+e Vn=23 -

This is (2.20). Tracing back from there, we have Y approaches to B.

(b) By definition 2.13 (b). we have

Yoen CCHM ¥ =12n; n=12
1.e.
k-1 - E— 1)z -
b D=t (ko DEmy)
n n



; kic—
y-%——‘-———<b-;~u—1—e. Yhk=12 --nandn=12.---;
n n

With the same argument used in (a), we have the necessary and sufficient conditions for ¥’

approaches to C are: |y —b| < ¢ and |z — cl <€, e > 0.
(c) Follows from (a) and (b).
Property 2.8

(a) A sequence of fuzzy numbers in F, Y™ = (Zm, Yms 2m), m = 1,2,--- converges to the fuzzy
number B = (a,b,6) in Fr, iff z;, = ym, Ym = 1,2.--- and V € > 0, there exists a natural

number M such that whenever m > M| |z,, — a| < € and |y, — b] < €.

(b) A sequence of fuzzy numbers in F, Y™ = (2., ym,zm), m = 1,2,--- converges to the fuzzyv
number C = (b,b,¢) in Fg, iff z,, = Ym, Ym = 1,2, --- and V € > 0, there exists a natural

number M such that whenever m > M| |y, — 8| < e and |z, — ¢| < €.

(c) A sequence of fuzzy numbers in F, Y™ = (£,, ym,zm), m = 1,2, - converges to the fuzzy
number A = (a.b,c) in Fr, iff V ¢ > 0, there exists a natural number M such that whenever

m>M, |zm —al <€ |ym — bl <eand |z, —c| < e

Proof: Similar as the proof of Property 2.7.
Example 2.2 Let
~ 1

1
Ap=(9—-=,10,12+ =), m=1,2,---
m m

be a sequence of fuzzy numbers and A = (9,10, 12); i.e. in Property 2.8 (c).

1
Irn:9_—y ym=10 Zm:12+-“8,:9b:10C=12
m m

For each ¢ > 0, take any natural number M > é, then for every m > M,

1
< — ’ — = > — 12 =
7 <€ |ym — 10 =0 <e¢€, |2m — 12|

1
|[Tm — 9 = —
m

Therefore by Property 2.8 (c), this sequence A,,, m = 1,2, --- converges to A.
Now we have the addition (+) in F by the following:

I£ (a,b,¢), (p,q,7) € Fr, then (a,b,¢)(+)(p,q,7) = (a +p,b+q.c+7) € Fr.
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Thus we have the following propertv (by Property 2.7):

Property 2.9 If (z.y.z) € F approaches to (a.b,c) € F and (5.t.w) € F approaches to \p.q.7)

M

£ F.then (z.y.z)(=)(s.t,w) € F approaches to (a.b.c)(+)(p.q.7} € Fr.
Proof: Since (r.y.z) approaches to (a.b,c) and (s.t, w) approaches to (p.q.r), by Property 2.7 ().

we have

w—r <

N m
[CR e

, €
: ;y—bl<§, |z —c] <

N m
o m

o) m

iz —al <

which implies

T+s—a-p/<|z—a|+]s—pl <3 -

N o

ly+t—b-—gql<ly—bl+it—gqg/<eand |z+w—c—r|<|z—c|+|w-T[<e

Hence (z,y, z)(+)(s.t,w) approaches to (a,b,c)(+)(p,q. 7).

Property 2.10 If sequence (Zm,Ym,2m) € F, m=1,2, --- converges to (a,b,c) € F and
sequence (sm,tm, wm) € F, m =1,2, --- converges to (p,q,r) € F, then
sequence (Zom, Ym. 2m)(+)(Sm: tmy Wm) € F, m = 1,2, - converges to (a,b,c)(+)(p,q,7) € Fr-

Proof: Similar as the proof of Property 2.9.

Next we have the multiplication in F: For (a,b,c) € F,

(ka, kb, kc), k>0

k- (CL., b: C) = (k‘C, kb7 ka)’ k<0

Property 2.11
(a) If (z.y, z) € F approaches to (a,b,c) € F, then k- (r,y, z) approaches to k- (a,b.¢). &£ # 0.

(b) If (£n.yn.2n) € F, n =12, --- converges to (a,b,c) € F, then k- (T, Yny2n), n = 1.2,

converges to k- (a.b,c), k # 0.

Proof:
(a) If (z,y.2). (a.b,c) € F, then by Property 2.7 (c), we have

€
lz —a|l < —, Iy—b]<l—-:—, |z —c] <



Therefore

hr — kal = kllz —a| <e, |ky — kbl = |k|ly — bl <€, lkz—ke|=kllz—¢] <e.

Thus k(x,y.z) approaches to k(a.b.c).
(b) Similarly as in part (a).

Definition 2.15 In FTS (R,Tr), a subfamily A of Tr is called a base for Tr iff for any open fuzzy
set O (€ Tr), each z5 C O, there is a member U of A such that z, ¢ U c O.

From the definition of Tr, we know that
B = {(ax, b)), (ax,o0), (=00,by), (—oc,0) V0< A<, a<b, a,bec R}

is a base for Tr.
Let R, be the family of all rational numbers in R. We know that R, is dense in R, i.e. Cl{(R,) = R,

where Cl(R,) means the closure of R,.. Let
Br = {(pou%)» (pavoo)v (_OC!QC!>a (—O0,0C) |V O < a S 11 p < Q7 pl q:a E R"'} C B

Then B, is a subfamily of Tr.

Property 2.12 FT'S (R,Tr) has a countable base B, for Tr.

Proof: For each open fuzzy set Oe Tk, since B is a base for Tr, by Definition 2.15, for each z) C 0,
there exists open interval, say (aq,bs) € B such that z) C (a4, ba) C O, wherea <z <band A < .
The reason is that pz, (¥) < Laaba)(y), Vy. Now since CI(R.) = R, there are p, ¢, 3 € R. and
Ge(0.1]suchthata<p<z,z<g<band 0 < A< 8 <« Therefore

zx C (ps,g3) C (@arba) C O.

where (p3,q3) € B, and by Definition 2.15, B, is a base for T¢. Since R, is countable, therefore
we say 55, is a countable base for T.
Definition 2.16 (Pu and Liu [4], Definition 4.1'; Azad [1], §3 ) The intersection of all the closed
fuzzy sets containing A(€ Fy), is called the closure of A, denoted by CI(A). Obviously, CI(A) is the

smallest closed fuzzy set containing A i.e.
Cl(A)=inf{C|C D A,C' €T} = {C|ICDAC €T}
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Property 2.13 (R, Tr) has the following properties:

(Ch)
(Ca)

(C3)

Az cid)

A is closed iff Cl(4) = -

ClCl(A)) = Cl(A)

(Cs)U 32, Cl(Ag) C CUUZ, Ax) (see Azad [1], §3)

(C7) Cllo) =0
Proof:
(Cy) Follows immediately from Definition 2.16.

(C2)

If 4 is closed, then from Definition 2.16, C’Z(/i) = inf{é[é' DA C eTr} = A. Conversely, if
Cl(A) = A, since CIL(A) is closed, so does A.

Follows from (Cs).
Since B C CIl(B), A C B, therefore A C Cl(B). By Definition 2.16, we have Cl(A) C CI(B).

Since 4 < Cl(A), B C Cl(B), therefore AU B C CI(A) U CI(B). However, both Cl(A) and
C'l{B) are closed, which means Cl(A) U Cl(B). is closed. Therefore

Cl(AUB) c Cl(A)uCl(B).

Conversely, we have A C AU B, B ¢ AU B. Therefore Cl(A) ¢ Cl(AU B) and CI(B) C
Cl{AUB) by (Cy). Hence CI(A) UCI(B) c CI(AU B). Thus CI(A) U Cl(B) = Cl(AU B)

Follows from Azad [1], §3.

It holds clearly.
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Example 2.3

(1) From Example 2.1, [ax.b,}. (0 < A < 1). is not closed, [ay,b] is a closed fuzzy interval.

(2) Since [(ay,by) C [aa.bo] if A < a < 1. From the fact that [aqs. ba). (0 < & < 1) is not closed, we
have Cl(I(ay.by)) = [ay1.b1]. Also Cl(I(ay,b) = [a;,b]. This fact corresponds to the fact that
Cl(I(a.b)) = [a.b] in (R.Tg).

(3) If B = (a.b,b), by Property 2.3,

CZ(Bkn) ( Sk ln) (k‘,n)]’ k=1,2,--.n:

O Cl(Byp) =

k=1

[pglc—l.n)mgkv”)] = [ay, b1], ¥n.
1

By (C5), U7, Cl(Bin) = CUUR., Bk.n), therefore by (Cs),

TfC:

(a1, b1] = fj U Cl(Bn) = B olll D Ve CUL (U Ben)) = CUB).

n=1 k=1 n=1 k=1
Since pg(z) < 1,Va <z < b; pia, pyy(z) =1, Va <z < band pg(z) =0 = pg, (), Yz <aor

z > b, therefore pg(z) < pa, by(2), ¥z; ie. B C [a1,b1). By (Cs) and (Cy), CU(B) C {a1, by).
Therefore CI(B) = (a1, by].

Similarly, we have
(4) If C = (b,b,c) in Fg, then CU(C) = [by, c1].
(5) If A= (a,b,c)=BUC, by (Cs).

Cl(A) = C{BUC) = ClUB)UCIC) = [a1, ci]

Also from Property 2.4, we have

CUML) = [ay, by], Cl(i\:fﬁ> = (b1, c1], CZ(M) = (a1, c1]-

Definition 2.17 (Pu and Liu [6], definition 4.1; Azad [1], §3 ) In FTS (R, T¢), let A be a fuzzy set

in Fy, the union of all open fuzzy sets contained in A is called the interior of A, denoted by Int(A)

or Int 4. Evidently Int A is the largest open fuzzy set contained in A; i.e.
Int A=sup{O|0Cc A,0ecTr}= {O|0C A0 ¢eTs}
Property 2.14 Let A, B, A;, Ay, -- be fuzzy sets in Fl, then
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(I,) Int AC A
(I,) A is open iff Int A=4

(I3) Int(Int A) =Int A

([) AcB=1Int ACIntB

(I;) Int(ANB)=1Int ANInt B

(Is) U 22, Int(A,) C Imt((22, A,) (see Azad [1], §3)

Proof: Similar as Property 2.13.

Example 2.4
(1) (a) (ax.b)) 2 (@a,ba) ¥V 0 <a <A <1, therefore Int (ax,by) = (ax, ba).

(b) I(ay,b1) 2 (ay,by), therefore Int I(a;,b;) = (a;,b). This is a level 1 open fuzzy interval,
coincide with the fact Int I(a,b) = (a,b) in (R, Tg).

(2) By Property 2.3 (a), B = (a,b,b) and

[p(/c 1,n) _(kn) ) k=12, ,n—1 n= L2,

Xk—1,n pCtk 1,n

Bnn [pg;t: pg;n“]- n=12" -

By (1) (a), we have
Int Bk,n = (pgf“k 11”\ p(k‘”> ) C Bk,n; k=1,2,n n=12 -

Ge—1.n

Let,

(p(ak;c i: ‘pt(xi‘:lzn) - Bk,n - van; k= 112:" N n= 1'2 :



then
> f'L - o< n -
U UE e yeBc U U BX™
n=1 k_.l n=14i=1
Since
0 n. ¢ n ~k
( k 1 k B
U (e pen) ) and (U BE
n= lk 1 n=1 k=1

are open fuzzy sets, by ([7) and (Iy). we have

-8

Kt

JpEt Y pEm Yot B U U BET

1k n=1k=1

II

Let ¢ — 0, we have

20 n
Int B=(J) ) (5. p50)
n=1 k=1
Similarly, if C = (b,b,c), then
s _ 0 k-l (k,
. n n
Intc:uu(qﬁkn qﬁkn)
k:

i

n=1 1

and if A = (a,b,¢), then

n n (k—=1,n) (k.,n)
Int A= U U (Pt plEm™ YU (g5, ™ a50n) -

n=1 k=

Also we can find the Int My, Int Mg, Int M accordingly.

Definition 2.18 (Pu and Liu [4], Definition 4.4) A fuzzy point z, is called a boundary fuzzy point
of a fuzzy set A(€ Fy) iff

z, C Cl(A)NCIA).

The union of all the boundary points of A is called the boundary of A, denoted by b(;&)‘

Property 2.15
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(By) and (B») follows by definition.

(B3) In Puand Liu [4]. Proposition 4.1 has proved that C{(4) D AU b(A) and CUA) # 4 _b(A).
but we shall show that ”=" does hold in our Example 2.5 given in the following. The reason is

that because Tr is an extension of Ty as seen previously in this paper.
Example 2.5 Supposea <b<c<d . 0<a<1.0<3<1.
(a) Let 4 = (aq, by] U [c3,d3) then

A= (=<, a1} U (a1-0,.b1_4] U (b1, ¢1) U [c1-5,d1-3) U [d1, ).

From Example 2.1, we know that [a,,bs] is not closed if 0 < & < 1, and [a;.b;! is closed,

therefore C1(4) = [a),b1] U [c1,d] and Cl{A")=R. So
b(A) = CUA) N CUA) = [ag,by) Uer,dy) = (U z)U( U 1)

and AU b(A) = CI(A).

(b) Let 4 = (ay,b,]U[cy, d) then A’ = (—o0, a1]U(by, c1)U[dy, o). Therefore Cl(A) = [ay. b1 Ulcy, di]
and Cl(A") = (~o0,a1] U [by, ¢1) U [dy, o). So

b(-i) = C({(‘Z‘) N CZ(A:V) = U bl ) Cy U dl, AU b(;l) = [al, bl] U [Cl,dl] = Cl(."i)

Definition 2.19 Two fuzzy sets A, B in Fy are said to be separated iff

(ClAYN B=AN(CLB) =0
Property 2.16
(a) If A, B are separated then 4N B = ¢
(b) If A, B are closed, and AN B = o, then A, B are separated.
Proof:
(a) Since A C Cl(A),sothat ANBC (ClA)NB=¢=ANB =0
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(b) If 4 and B are both closed then by (C,) of Property 2.13. we have
(ClA)n B=ANn(CIB)=4nB=
Therefore A. B are separated.

Property 2.17 Let A and B be separated. If 41U B is closed, then A and B are both closed fuzzy
sets.

Proof: Let AU B be a closed fuzzy set, then

Cl(A)UCIB)=CIl(AUB)=AUB.

,Ln

So Cl(A) € (AU B) and CI(B) c (AU B). However

(ClAYN B=AN(Cl B) =¢

Since pg, ;(z) < pile) pa(z) Vo and for each z either g, ;(z) =0 or pg(z) = 0. So Cl(A) C A.

Similarly C1(B) ¢ B. By Property 2.13 (Cy) and (C,), we have A, B are closed fuzzy sets.

)

Example 2.6 By Property 2.3 (a), (b) and Example 2.3, we have

B (abb) ne1 k=1 Bkn é=(C,C,d)= el Z:lék,n
= [plEtm, plem ), k=1,2,--,n—1, n=1,2---

B = [pGm), o) s n=12"

cm—[qé‘i’:’,qéi’jl, n=12

Con = (g5 "™, 5™, k=2,3,---,n; n=12,-

p(kn)__a_}__%ﬂ_’ q(k,n)=b+£(£;_bl! k=0,1,---,n; n=1,2,-

Cion = =L Ben = 22K k_1,2,-~ n, n=1,

n

2,
Assume a < b < ¢ < d, from Example 2.3, we have CZ(B) = (a1, b1], Cl(C) = [c1.dy]. Tt is clear
that

CH{B)NC =BnClC) =

Therefore B, and C are separated.



a p(Ln) p(2,n) p(3.n) o p(n —1.n)

Fig.1 Fuzzy number A and fuzzy set UZ_, By,
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