附件:封面格式

行政院國家科學委員會補助專題研究計畫成果報告

※利用为限次接合传色极小曲面※

計畫類別:☑個別型計畫 □整合型計畫

計畫編號:NSC f⁰-2115-M-002-005-

執行期間: S 年 S 月 / 日至 F 年 T 月 T 月 T 日

計畫主持人:

王蔼農

共同主持人:

計畫參與人員:

本成果報告包括以下應繳交之附件:

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

執行單位: 红大袋等系

中華民國89年10月31日

行政院國家科學委員會專題研究計畫成果報告

計畫編號: NSC &f - 2(15-M-002-005 執行期限: &f 年 & 月 / 日至 &f 年7月31日

主持人:王花震 執行機構及單位名稱 化大郎 學系

共同主持人:

執行機構及單位名稱

計畫參與人員:

執行機構及單位名稱

一、中文摘要

本高额岩枯世 Glin. 型 Ranky 建横

Manualin 有看起小面面主物部

關鍵詞:

有号极小面面

Abstract

This report describes the ditails of collin and Resemberg construction of Nadional State of Suppose Nadional Suppose

Keywords:

(anded minimal sinfacts

NOTES ON NADIRASHVILI'S PROOF OF CALABI-YAU CONJECTURE

AI-NUNG WANG

This note is written upon the request of Professor Yi Fang and we thank him for notifying us the publication of [1]. To fix the notation for Nadirashvili's labyrinth, let $N \geq 3$ be an integer, $r_i = 1 - \frac{i}{N^3}$, $i = 0, 1, ..., 2N^2$, $S_r = \partial D_r$, $\mathcal{A} = D_1 - 1$ $D_{1-\frac{2}{N}}$ and

$$A = \bigcup_{i=0}^{N^2 - 1} D_{r_{2i}} - D_{r_{2i+1}} \qquad \tilde{A} = \bigcup_{i=0}^{N^2 - 1} D_{r_{2i+1}} - D_{r_{2i+2}};$$

$$A = \bigcup_{i=0}^{N^2 - 1} D_{r_{2i}} - D_{r_{2i+1}} \qquad \tilde{A} = \bigcup_{i=0}^{N^2 - 1} D_{r_{2i+1}} - D_{r_{2i+2}};$$

$$L = \bigcup_{i=0}^{N-1} l_{\frac{2i\pi}{N}} \cap A \qquad \tilde{L} = \bigcup_{i=0}^{N-1} l_{\frac{(2i+1)\pi}{N}} \cap \tilde{A} \qquad S = \bigcup_{i=0}^{2N^2} S_{r_i}.$$

Now we define the labyrinth $H = L \cup \tilde{L} \cap S$ and $\Omega = A - U[\frac{1}{4N^3}](H)$ with $2N^3$ connected components, here U[r](H) denotes r-neighborhood of H.

In the following we assume $N \geq 10$.

Assertion: Let $ds = \lambda |dz|$ be a metric such that

$$\begin{cases} \lambda \geq 1 & on \ D_1; \\ \lambda \geq N^4 & on \ \Omega. \end{cases}$$

then for all paths σ from 0 to ∂D_1 , $\int_{\sigma} ds \geq N$.

In fact one does not need to raise N to such a high power, Collin uses N^4 simply to avoid changing too much from Nadirashvili's notations.

Now we define recursively a sequence of minimal immersions $F_0 = X, F_1, ..., F_{2N}$ from \bar{D}_1 to \mathbb{R}^3 satisfying $(\phi^i = 2\frac{dF_i}{dz})$:

$$((\mathcal{H}_i)_{1 \leq i \leq N}) \qquad \begin{cases} ||\phi^i - \phi^{i-1}|| \leq \frac{\epsilon}{2N^2} & \text{on } D_1 - \omega_i' \\ ||\phi^i|| \geq \frac{\nu}{2}N^{3.5} & \text{on } \omega_i \\ ||\phi^i|| \geq \frac{\nu}{2\sqrt{N}} & \text{on } \omega_i' \end{cases}$$

where ω_i is the union of the line segment $l_{\frac{1\pi}{K}} \cap \mathcal{A}$ and the N^2 components of Ω intersecting it, and $\omega_i' = U\left[\frac{1}{8N^2}\right](\omega_i)$ thus D_1 is divided into 4N+1 disjoint sets:

$$\begin{cases} D_1 - \bigcup_{i=1}^{2N} \omega_i' \\ \omega_i' - \omega_i, & i = 1, ..., 2N; \\ \omega_i', & i = 1, ..., 2N. \end{cases}$$

Typeset by AMS-TFX

Collin adds two more controling parameters: $\mu = ||X||_{C^2} + 1$ and $\nu = inf_{D_1}||\phi||$. The idea behind Nadirashvili's construction is actually quite simple: using López-Ros transform, we can deform a minimal surface in the direction perpendicular to the radial direction. Therefore if we increase the metric by $\frac{1}{n}$ each time, the embedding increases at most $\frac{1}{n^2}$ hence remains bounded.

We further assume that $N \geq 10, \frac{2}{\epsilon}, (\frac{3(\rho+s)}{\nu})^2, (7\mu)^2, \frac{2\epsilon}{\nu}, \dots$

Construction of F_i . –Suppose that $F_1,...,F_{i-1}$ have been constructed satisfying $\mathcal{H}_1,...,\mathcal{H}_{i-1}$; and $G_k:D_1\to S^2$ denotes the Gauss map of F_k . On $\omega_i', ||\phi^{i-1}|| \leq \mu(\text{since }||\phi^0|| \leq \mu-1 \text{ and }||\phi^{i-1}-\phi^0|| \leq i\frac{\epsilon}{2N^2} \leq \frac{\epsilon}{N})$. Because the diameter $\delta(\omega_i') \leq \frac{7}{N}$, we have $\delta(F_{i-1}(\omega_i')) \leq \frac{7\mu}{N}$. On the other hand, by definition of μ , $\delta(G_0(\omega_i')) \leq \frac{7\mu}{N}$. Since on $\omega_i', ||G_{i-1}-G_0|| \leq \frac{2\epsilon}{\nu N}(\text{since }||\phi^{i-1}-\phi^0|| \leq \frac{\epsilon}{N})$, we also have $\delta(G_{i-1}(\omega_i')) \leq \frac{7\mu}{N} + \frac{2\epsilon}{\nu N}$.

There is a $q_i \in S^2$ such that:

(a) If

$$dist_{\mathbb{R}^3}(0, F_{i-1}(\omega_i')) \ge \frac{1}{\sqrt{N}},$$

then the angle

$$\angle(q_i, F_{i-1}(\omega_i')) \le \frac{7\mu}{\sqrt{N}};$$

(b)

$$dist_{S^2}(\pm q_i,G_{i-1}(\omega_i')) \geq \frac{1}{\sqrt{N}}.$$

In fact, if $dist_{\mathbb{R}^3}(0, F_{i-1}(\omega_i)) \leq \frac{1}{\sqrt{N}}$, then the condition (a) is empty and the condition (b) can be achieved by at least one q_i since

$$\delta(G_{i-1}(\omega_i')) \le \frac{7\mu}{N} + \frac{2\epsilon}{\nu N} \le \frac{1}{\sqrt{N}}$$

On the other hand, if $dist_{\mathbb{R}^3}(0, F_{i-1}(\omega_i')) \geq \frac{1}{\sqrt{N}}$, then $F_{i-1}(\omega_i')$ is in a cone of vertex angle $\frac{7\mu}{\sqrt{N}}$ whose axis q_i satisfies (a). Since $\delta(G_{i-1}(\omega_i')) \leq \frac{1}{\sqrt{N}}$, one can modify q_i by an angle $\frac{2}{\sqrt{N}}$ to make it satisfy (b) too.

Now we fix the coordinate of \mathbb{R}^3 so that $e_3=q^i$. The Weierstrass representation of F_i-1 determines through $\phi^{i-1}=(\phi_1^{i-1},\phi_2^{i-1},\phi_3^{i-1})$ two holomorphic functions $f=\phi_1^{i-1}-i\phi_2^{i-1}$ and $fg=-\phi_1^{i-1}-i\phi_2^{i-1}$. The metric is given by

$$\lambda_{F_{i-1}} = \frac{1}{\sqrt{2}} ||\phi^{i-1}|| = \frac{1}{2} (|f| + |fg^2|).$$

Let $T_i > 1$ and $h = h[T_i, D_1 - \omega_i', \omega_i, g]$ be defined by Proposition (4.3) [2]. The functions $\tilde{f} = fh$ and $\widetilde{fg^2} = \frac{fg^2}{h}$ determine a new minimal immersion F_i such that

$$\phi_3^i = \phi_3^{i-1}.$$

It remains to verify that \mathcal{H}_i hold for sufficiently large T_i .

• On $D_i - \omega_i'$:

$$|\tilde{f} - f| = |f(h - 1)| \le \frac{\sup_{D_i} |f|}{T_i} \le \frac{\epsilon}{4N^2}$$

and

$$|\widetilde{fg^2} - fg^2| = |fg^2(\frac{1-h}{h})| \le \frac{\sup_{D_i} |fg^2|}{T_i - 1} \le \frac{\epsilon}{4N^2}$$

thus $||\phi^i - \phi^{i-1}|| \le \frac{\epsilon}{2N^2}$. • On ω_i' :

$$\lambda_{F_i} = \frac{1}{2}(|f||h| + \frac{|fg^2|}{|h|}) \ge |fg| = \lambda_{F_{i-1}} \frac{2|g|}{(1+|g|^2)} \ge \frac{\lambda_{F_{i-1}}}{\sqrt{N}}$$

for by (b), $\frac{2}{\sqrt{N}} \le |g| \le \frac{\sqrt{N}}{2}$. Therefore, since $||\phi^{i-1} - \phi^0|| \le i \frac{\epsilon}{2N^2} \le \frac{\nu}{2}$ on ω_i' , we

$$||\phi^{i-1}|| \ge \frac{\nu}{2}$$

and

$$||\phi^i|| = \sqrt{2}\lambda_{F_i} \ge \frac{\nu}{2\sqrt{N}}$$

• On ω_i :

$$\lambda_{F_i} \ge \frac{1}{2} |f| T_i = \frac{\lambda_{F_{i-1}} T_i}{(1+|g|^2)} \ge \frac{\lambda_{F_{i-1}} T_i}{N}$$

Therefore, as above, $||\phi^i|| \ge \frac{\nu T^i}{2N} \ge \frac{\nu}{2} N^{3.5}$ for sufficiently large T_i .

The formula (16) in [2] was a mis-print, Nadirashvili actually meant our formula (a) above.

REFERENCES

- [1] Pascal Collin and Harold Rosenberg, Notes sur la Démonstration de N. Nadirashvili des Conjectures de Hadamard et Calabi-Yau, Bull. Sci. math. 123 (1999), p.563-575.
- [2] Nikolai Nadirashvili, Hadamard's and Calabi-Yau's conjectures on negatively curved and minimal surfaces., Invent. math. 126 (1996), 457-465.