,	行	政	院	國	家	利	十學	委	員	會	補	助	專	題	研	究	計	畫	成	果:	報台	当
*	※	(%	*	※	※	X	;; ;	*	(×	*	※	※	※	X	※ >	< >	(<u> </u>	※	※	※ >	(<u>)</u>
※				14	(- 2	-	つ フ		ζ	,	1		414	_	1	É	7.	7 V				*
※			_	2,	F	7)	ころ	+	5	/2	-)		1	_	J	Ŧ	/	1				※
※																		•				※
※	×	*	※	※	※	※ ?	※ >		()	*	*	*	※ ?	X	※ }	% >	< >	() <u>/</u>	※	※ }	※	:

計畫類別:☑個別型計畫 □整合型計畫

計畫編號: NSC84-2115-M-002-010-

執行期間: 88年8月1日至89年7月31日

計畫主持人: 楊枝之

共同主持人:

本成果報告包括以下應繳交之附件:

□赴国外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

□出席國際學術會議心得報告及發表之論文各一份

□国際合作研究計畫國外研究報告書一份

執行單位:國立台灣大學數學子

中華民國89年9月26日

摘 要

南一三维对件一流形其同意图题
书三流机同程序,我們不可见 有一個自私的生業業
有一個自然的生物染

關鍵詞: 三年流刊。坐掉菜.

A Natural Framing for Asymptotically Flat Integral Homology 3-Sphere

Su-Win Yang

Communicated with W. H. Lin

Abstract

For an integral homology 3-sphere embedded asymptotically flatly in an Euclidean space, we find a natural framing extending the standard trivialization on the asymptotically flat part.

Suppose \overline{M} is a 3-dimensional closed smooth manifold which has the same integral homology groups as the 3-sphere S^3 . x_0 is a fixed point in \overline{M} . Embed \overline{M} in a Euclidean space \mathbb{R}^n such that x_0 is the infinite point of the 3-dimensional flat space $\mathbb{R}^3 \times \{0\}$ of \mathbb{R}^n and a neighborhood of x_0 contains the whole flat space $\mathbb{R}^3 \times \{0\}$ except a compact set. Precisely, for any positive number r, let B_r denote the closed ball of radius r in \mathbb{R}^3 and $N_r = (\mathbb{R}^3 - B_r) \times \{0\}$; there exists r_0 , a positive number, such that N_{r_0} is contained in \overline{M} and $N_{r_0} \cup \{x_0\}$ is an open neighborhood of x_0 in \overline{M} .

Let $M = \overline{M} - \{x_0\}$, it is an asymptotically flat 3-dimensional manifold with acyclic homology. The main purpose of this article is to define a natural framing for M. If we identify the tangent spaces of points in the flat part N_{r_0} with $\mathbb{R}^3 \times \{0\}$, then the tangent bundle of M can be thought as a 3-dimensional vector bundle over the closed manifold $M_0 = M/\overline{N}_s$, where s is a number greater than r_0 and \overline{N}_s is the closure of N_s ; we shall call this vector bundle the tangent bundle $T(M_0)$ of M_0 . And our natural framing is just a trivialization of $T(M_0)$, which corresponds to a trivialization of the tangent bundle T(M) whose restriction to the flat part is the standard trivialization on \mathbb{R}^3 . Because M_0 is a closed 3-manifold, there are countably

infinite many choices of framings associated with the infinite elements in $[M_0, SO(3)]$. (When $H_*(M_0) \approx H_*(S^3)$, $[M_0, SO(3)] \approx [S^3, SO(3)] \approx \mathbf{Z}$.) Therefore, our natural framing is a special choice from the infinite many.

On the other hand, this natural framing for $T(M_0)$ can also provide a special one-to-one correspondence between the infinite framings of S^3 and that of \overline{M} . (Note: Here, we do not think that \overline{M} and M_0 have the same tangent bundle. Conversely, we may think that the tangent bundle of \overline{M} is equal to the connected sum of the tangent bundles of M_0 and S^3 .)

There are two main steps to the natural framing on $T(M_0)$.

Step 1 A special map from $C_2(M)$ to S^2

We define $C_2(M)$ at first.

For any set X, $\Delta(X)$ denote the diagonal subset $\{(x, x) \in X \times X, x \in X\}$ of $X \times X$ and $C_2(X) = X \times X - \Delta(X)$. Thus $C_2(M)$ is the configuration space of all pairs of distinct two points in M.

Fix some large number s such that $M \subset (B_s \times \mathbb{R}^{n-3}) \cup N_s$.

For any $r \ge s$, let $B_r = \{x \in \mathbb{R}^3 : |x| \le r\}$, $N_r = (\mathbb{R}^3 - B_r) \times \{0\}$ and $M_r = M - N_r$.

Let Y denote the union of the following three subsets of $C_2(M)$:

(i)
$$Y_0 = C_2(N_s)$$

(ii)
$$Y_1 = \bigcup_{r \geq s} (N_{r+s} \times M_r)$$

(iii)
$$Y_2 = \bigcup_{r \geq s} (M_r \times N_{r+s})$$

Let $\pi: \mathbb{R}^n \longrightarrow \mathbb{R}^3$ denote the projection

$$\pi(t_1, t_2, \cdots, t_n) = (t_1, t_2, t_3)$$

and $f: Y \longrightarrow S^2$ denote the map

$$f(x,y) = \frac{\pi(y-x)}{|\pi(y-x)|}$$

for $(x, y) \in Y$, $x, y \in M$.

For the well-defining of the map f, we should check that $|\pi(y-x)|$ is a non-zero value. When (x,y) is in Y_0 , $|\pi(y-x)| = |y-x|$, it is non-zero. When (x,y) is in Y_1 , (x,y) is in $N_{r+s} \times M_r$ for some $r \geq s$; thus $\pi(x)$ is outside of B_{r+s} and $\pi(y)$ is in B_r , and hence $\pi(y-x) = \pi(y) - \pi(x)$, it has also a non-zero norm. It is similar for the case that (x,y) is in Y_2 .

The following proposition describes some homology properties for the space Y and the map f.

Proposition 1

- (i) $H_*(Y) \approx H_*(S^2)$
- (ii) $f_*; H_2(Y) \longrightarrow H_2(S^2)$ is an isomorphism.
- (iii) Let $j: Y \longrightarrow C_2(M)$ denote the inclusion map.

$$j_*: H_i(Y) \longrightarrow H_i(C_2(M))$$

is isomorphic, for all integer $i \geq 0$.

In the proof of the proposition, we strongly use the assumption that $H_*(M)$ is acyclic.

Remark: All the homologies in this article are with integral coefficients.

By Proposition 1, the continuous map $f: Y \longrightarrow S^2$ uniquely extends to a continuous map $\overline{f}: C_2(M) \longrightarrow S^2$ up to homotopy relative to the subspace Y. (That is, if both \overline{f}_1 and \overline{f}_2 are the extensions of f to the whole space $C_2(M)$, then there is a homotopy $F: C_2(M) \times [0,1] \longrightarrow S^2$ such that

 $F(\xi,0) = \overline{f}_1(\xi)$, $F(\xi,1) = \overline{f}_2(\xi)$, for all $\xi \in C_2(M)$, and $F(\xi',t) = f(\xi')$ for all $\xi' \in Y$ and $t \in [0,1]$.

Usually, the homotopy class of a map from $C_2(M)$ to S^2 can not give any framing on $T(M_0)$. But the extension of f does give a framing on $T(M_0)$ as shown in Step 2.

Step 2 The framing determined by the map \overline{f} on $C_2(M)$

The normal bundle of $\Delta(M)$ in $M \times M$ can be identified as the tangent bundle T(M) of M. Consider a suitable compactification of $C_2(M)$, the spherical bundle S(TM) become a part of boundary of $C_2(M)$. Let $h: S(TM) \longrightarrow S^2$ denote the restriction of \overline{f} to S(TM). On the flat part N_s of M, the spherical bundle $S(TN_s) = N_s \times S^2$ and h on $S(TN_s)$ is equal to the map restricted from f which is exactly the projection from $N_s \times S^2$ to S^2 . Thus h induces a map $h_0: S(TM_0) \longrightarrow S^2$.

 $S(TM_0)$ is a SO(3)-bundle over M_0 .

Can $h_0: S(TM_0) \longrightarrow S^2$ determine uniquely an orthogonal map, that is, a fibrewise orthogonal map? (An orthogonal map is exactly a framing for the vector bundle.) There is also an interesting question that can h_0 be homotopic to an orthogonal map; if such an orthogonal map exists, is it unique up to homotopy? We shall answer the questions partially.

Choose a framing for $S(TM_0)$ and we may think h_0 as a map from $M_0 \times S^2$ to S^2 . Let y_0 denote the point in M_0 representing the set N_s . Then the restriction of h_0 to $y_0 \times S^2$ is the identity map of S^2 . Thus the restriction of h_0 to each fibre $x \times S^2$, $x \in M_0$, is also a homotopy equivalence; and hence, h_0 induces a map \hat{h}_0 from M_0 to G(3), the space of all homotopy equivalences of S^2 to itself. Choose a base point z_0 in S^2 , and consider the subspace F(3) of G(3) consisting of all the homotopy equivalences which fix the base point z_0 . Then F(3) is the fibre of the fibration G(3) over S^2 .

it is the key fact for the homotopic computations.

For any two spaces X_1 and X_2 with base points x_1 and x_2 , respectively, $[X_1, X_2]$ denotes the set of homotopy classes of continuous maps from X_1 to X_2 and sending x_1 to x_2 . In the following, M_0 is with base point y_0 representing the set \overline{N}_s ; SO(3), G(3) and F(3) are with the base point the identity of S^2 . We shall consider only the maps sending the base point to base point and consider only the homotopies which keep the base point fixed.

 M_0 has the same homology as S^3 . Usually, we can not expect they also have the same homotopy behavior. But we still have the following proposition.

Proposition 2 Suppose $\phi: M_0 \longrightarrow S^3$ is a degree 1 map. Then the homotopy classes $[M_0, SO(3)], [M_0, G(3)], [M_0, F(3)]$ are all groups, and the group homomorphisms induced by ϕ ,

$$[S^{3}, SO(3)] \xrightarrow{\phi^{\sharp}} [M_{0}, SO(3)]$$

$$[S^{3}, G(3)] \xrightarrow{\phi^{\sharp}} [M_{0}, G(3)]$$

$$[S^{3}, F(3)] \xrightarrow{\phi^{\sharp}} [M_{0}, F(3)]$$

$$[S^{3}, S^{2}] \xrightarrow{\phi^{\sharp}} [M_{0}, S^{2}]$$

are all isomorphisms of groups.

There are further relations between these homotopy classes.

Proposition 3 Let $p: SO(3) \longrightarrow G(3)$ and $q: F(3) \longrightarrow G(3)$ denote the inclusions. Then, for any integral homology 3-sphere M_0 , the homomorphism

$$p_* \oplus q_* : [M_0, SO(3)] \oplus [M_0, F(3)] \longrightarrow [M_0, G(3)]$$

is an isomorphism.

Especially, when $M_0 = S^3$, we have

$$\pi_3(G(3)) \approx \pi_3(SO(3)) \oplus \pi_3(F(3))$$
.

Furthermore, the group isomorphism

$$q_{\star}^{-1}: [M_0, G(3)]/p_{\star}([M_0, SO(3)] \longrightarrow [M_0, F(3)]$$

induces a group homomorphism

$$Q: [M_0, G(3)] \longrightarrow [M_0, F(3)] \approx \mathbf{Z_2}$$
.

For a continuous map $g: M_0 \times S^2 \longrightarrow S^2$, let \widehat{g} denote the map from M_0 to G(3) defined by $\widehat{g}(x)(y) = g(x,y)$, for $x \in M_0$ and $y \in S^2$ and let $Q(g) = Q([\widehat{g}])$.

Theorem 4 A continuous map $g: M_0 \times S^2 \longrightarrow S^2$ is homotopic to an orthogonal map, if and only if, Q(g) = 0 in $[M_0, F(3)]$.

Now, h_0 still denotes the map from $S(TM_0)$ to S^2 given by the map $\overline{f}: C_2(M) \longrightarrow S^2$. Choose a framing for TM_0 , $\psi: S(TM_0) \longrightarrow M_0 \times S^2$, it is a fibre map and fibrewise orthogonal. Then $h_0 \circ \psi^{-1}$ is a map from $M_0 \times S^2$ to S^2 and the value $Q(h_0 \circ \psi^{-1})$ is independent of the choice of the framing ψ . Therefore, $Q(h_0 \circ \psi^{-1})$ is an invariant of the integral homology 3-sphere \overline{M} , it is the obstruction for h_0 to be homotopic to an orthogonal map. We hope that this is not really an obstruction.

Conjecture 5 $Q(h_0 \circ \psi^{-1}) = 0$, for any integral homology 3-sphere \overline{M} .

On the other hand, the group isomorphism

$$p_*^{-1}: [M_0, G(3)]/q_*([M_0, F(3)] \longrightarrow [M_0, SO(3)]$$

induces a group homomorphism

$$P: [M_0, G(3)] \longrightarrow [M_0, SO(3)]$$
.

For a continuous map $g: M_0 \times S^2 \longrightarrow S^2$, let $P(g) = P([\widehat{g}])$.

For the map h_0 and the corresponding element $P(h_0 \circ \psi^{-1})$ in $[M_0, SO(3)]$, choose an orthogonal map $g_0: M_0 \times S^2 \longrightarrow S^2$ such that the associated map \hat{g}_0 is in the homotopy class $P(h_0 \circ \psi^{-1})$. Then we get an orthogonal map $g_0 \circ \psi: S(TM_0) \longrightarrow S^2$ which represents a homotopy class of framings determined by h_0 , also by the map $\bar{f}: C_2(M) \longrightarrow S^2$. This framing can also be characterized by the following theorem.

Theorem 6 There exists a framing $\psi_0: S(TM_0) \longrightarrow M_0 \times S^2$ unique up to homotopy such that $P(h_0 \circ \psi_0^{-1}) = 0$.

References

- [1] A. Dold and R. Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles, Illi. J. Math. 3 (1959), 285-305.
- [2] M. Fuchs, , Verallgemeinerte Homotopie-Homomorphismen und klassifizierende Raume, Math. Ann. 161, (1965), 197-230.

Department of Mathematics
National Taiwan University
Taipei, Taiwan

E-mail: swyang@math.ntu.edu.tw