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A Natural Framing for Asymptotically Flat
Integral Homology 3-Sphere

Su-Win Yang

Commaunicated with W. H. Lin

Abstract

For an integral homology 3-sphere embedded asymptotically flatly
in an Euclidean space, we find a natural framing extending the stan-
dard trivialization on the asymptotically flat part.

Suppose M is a 3-dimensional closed smooth manifold which has the
same integral homology groups as the 3-sphere S%. z, is a fixed point in
M. Embed M in a Euclidean space R™ such that zo is the infinite point
of the 3-dimensional flat space R® x {0} of R™ and a neighborhood of zg
contains the whole flat space R® x {0} except a compact set. Precisely, for
any positive number r, let B, denote the closed ball of radius r in R® and
N, = (R® — B,) x {0}; there exists o, a positive number, such that N,, is
contained in M and N,, U {z} is an open neighborhood of z¢ in M.

Let M = M — {zo}, it is an asymptotically flat 3-dimensional manifold
with acyclic homology. The main purpose of this article is to define a
natural framing for M. If we identify the tangent spaces of points in the
flat part N,, with R’ x {0}, then the tangent bundle of M can be thought as
a 3-dimensional vector bundle over the closed manifold My = M /N, where
s is a number greater than ro and N, is the closure of N,; we shall call this
vector bundle the tangent bundle T(Mp) of Mp. And our natural framing
is just a trivialization of T(My), which corresponds to a trivialization of
the tangent bundle T(M) whose restriction to the flat part is the standard

trivialization on R?. Because Mj is a closed 3-manifold, there are countably




infinite many choices of framings associated with the infinite elements in
(Mo, SO(3)]. ( When H.(Mo) ~ H.(S3), [Mo, SO(3)] = [S®,S0(3)| = Z. )
Therefore, our natural framing is a special choice from the infinite many.

On the other hand, this natural framing for T(Mj) can also provide a
special one-to-one correspondence between the infinite framings of S° and
that of M. ( Note: Here, we do not think that M and My have the same
tangent bundle. Conversely, we may think that the tangent bundle of M
is equal to the connected sum of the tangent bundles of M, and S°. )

There are two main steps to the natural framing on T'(My).

Step 1 A special map from Cy( M) to S?

We define C,(M) at first.

For any set X, A(X) denote the diagonal subset {(z,z) € Xx X,z € X}
of X x X and Cy(X) = X x X — A(X). Thus Co(M) is the configuration

space of all pairs of distinct two points in M.
Fix some large number s such that M C (B, x R""B) U Ns.

Foranyr > s,let B, = {z € R’ : |z| < r}, N, = (R®* ~ B,) x {0} and
M, =M ~N,.

Let Y denote the union of the following three subsets of Co( M ):
(i) Yo = Ca(N,)
() Yi = Uppo(Noy x M)
(i) Yy = Upss(M, X Npys)
Let 7 : R* — R?® denote the projection

’/T(tl,tg, Tt ,tn) = (t17t27t3)
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and f:Y — S? denote the map
_ m(y—1z)
o) =52

for (z,y) €Y, z,y € M.

For the well-defining of the map f, we should check that [x(y — )| is
a non-zero value. When (z,y) is in Yy, |7(y — z)| = |y — z|, it is non-zero.
When (z,y) is in Y3, (z,y) is in N,p, X M, for some r > s; thus #(z) is
outside of B,y and 7(y) is in B,, and hence n(y —z) = 7(y) — 7(z), it has
also a non-zero norm. It is similar for the case that (z,y) is in Y5.

The following proposition describes some homology properties for the

space Y and the map f.
Proposition 1
(i) HJ(Y)=~ H.(S?)
(i) fu; Ho(Y) — H,(S?) is an isomorphism.
(iii) Let j : Y — C2(M) denote the inclusion map.
Jut Hi(Y') — Hi(Cao(M))
1s 1somorphic, for all integer ¢ > 0. B

In the proof of the proposition, we strongly use the assumption that
H.(M) is acyclic.

Remark: All the homologies in this article are with integral coefficients.

By Proposition 1, the continuous map f : ¥ — 52 uniquely extends
to a continuous map f : Co(M) — S? up to homotopy relative to the
subspace Y. ( That is, if both f, and f, are the extensions of f to the whole
space Cy( M), then there is a homotopy F : Co( M) x [0,1] — S? such that
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F(£,0) = [1(6), F(E,1) = f5(€), for all € € Co(M), and F(£'.t) = f(€') for
all ¢ € Y and t € [0,1]. )

Usually, the homotopy class of a map from Cy(M) to S? can not give
any framing on T(Mjp). But the extension of f does give a framing on
T(My) as shown in Step 2.

Step 2 The framing determined by the map f on Cy( M)

The normal bundle of A(M) in M x M can be identified as the tangent
bundle T(M) of M. Consider a suitable compactification of Cy(M ), the
spherical bundle S(T'M) become a part of boundary of Co(M). Let A :
S(TM) — S? denote the restriction of f to S(TM). On the flat part N,
of M, the spherical bundle S(T'N,) = N, x 5% and h on S(T'N,) is equal to
the map restricted from f which is exactly the projection from N, x S? to
S?. Thus h induces a map hg : S(TM,) — S2.

S(TMp) is a SO(3)-bundle over Mp.

Can hg : S(TMy) — S? determine uniquely an orthogonal map, that
is, a fibrewise orthogonal map? ( An orthogonal map is exactly a framing
for the vector bundle. ) There is also an interesting question that can hg
be homotopic to an orthogonal map; if such an orthogonal map exists, is it
unique up to homotopy? We shall answer the questions partially.

Choose a framing for S(TMy) and we may think hg as a map from
My x S? to S?. Let y, denote the point in M, representing the set NN,.
Then the restriction of hg to yo x S? is the identity map of S2. Thus the
restriction of Ag to each fibre 2 x S?, x € My, is also a homotopy equivalence:
and hence, hg induces a map ho from M to G(3), the space of all homotopy
equivalences of S? to itself. Choose a base point z in S?, and consider the
subspace F'(3) of G(3) consisting of all the homotopy equivalences which
fix the base point z9. Then F(3) is the fibre of the fibration G(3) over 52,
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it 1s the key fact for the homotopic computations.

For any two spaces X; and X, with base points z; and z,, respectively,
[X1, X>] denotes the set of homotopy classes of continuous maps from X,
to X, and sending z, to z;. In the following, Mjis with base point yg
representing the set N,; SO(3), G(3) and F(3) are with the base point
the identity of S%2. We shall consider only the maps sending the base point
to base point and consider only the homotopies which keep the base point
fixed.

M, has the same homology as S®. Usually, we can not expect they
also have the same homotopy behavior. But we still have the following

proposition.

Proposition 2 Suppose ¢ : My — S% is a degree 1 map. Then the
homotopy classes [My, SO(3)], [Mo, G(3)], [Mo, F(3)] are all groups, and
the group homomorphisms induced by ¢,

[$%,50(3)] ——— [Mp, SO(3)]

"
H

[S2, G(3)] —— (Mo, G(3)]

ha

[S°, F(3)]

{A/-[Oa F(3)]
1S3, 8% ——— [My, S7
are all isomorphisms of groups. |

There are further relations between these homotopy classes.

Proposition 3 Let p: SO(3) — G(3) and ¢ : F(3) — G(3) denote the

inclusions. Then, for any integral homology 3-sphere My, the homomor-

phism

p. @ ¢ : [Mo, SO(3)] ® [Mo. F(3)] — [Mo, G(3)]

Ecabied s - i b s A KR A0l e 25 et e




Eatanmal e S,

1s an isomorphism.

Especially, when My = 52, we have

m3(G(3)) = 73(S0(3)) & m3(F(3)) -

Furthermore, the group isomorphism
gt [Mo, G(3)]/p-([Mo, SO(3)] — [Mo, F(3)]
induces a group homomorphism

Q : [Mo, G(3)] — [Mo, F(3)] ~ Zo

For a continuous map g : My x S — S?, let § denote the map from
M, to G(3) defined by §(z)(y) = g(z,y), for z € My and y € S? and let

Q(g) = Q{g])-

Theorem 4 A continuous map ¢ : My x S? — S? is homotopic to an
orthogonal map, if and only if, Q(g) = 0 in [Mo, F(3)]. |

Now, hq still denotes the map from S(T'My) to S? given by the map
f: Co(M) — 52, Choose a framing for TMy, ¢ : S(TMy) — My x §?,
it is a fibre map and fibrewise orthogonal. Then hg o =1 is a map from
My x S? to 5? and the value Q(hoo™!) is independent of the choice of the
framing 1. Therefore, Q(hg 0 1™!) is an invariant of the integral homology
3-sphere M, it is the obstruction for hy to be homotopic to an orthogonal

map. We hope that this is not really an obstruction.
Conjecture 5 Q(hoo¢~') = 0, for any integral homology 3-sphere M

On the other hand, the group isomorphism

pot [ Mo, G(3))/¢-([Mo, F(3)] — [Mo, SO(3)]




induces a group homomorphism

P (Mo, G(3)] — (Mo, SO(3)] -

For a continuous map ¢ : My x S? — 52, let P(g) = P([g])-

For the map kg and the corresponding element P(hqoyp ") in [My, SO(3)).
choose an orthogonal map go : My x S? — 57 such that the associated
map §o is in the homotopy class P(hg o ™). Then we get an orthogonal
map goo ¥ : S(T My) — S? which represents a homotopy class of framings
determined by Ao, also by the map f : Co(M) — S2. This framing can

also be characterized by the following theorem.
Theorem 6 There exists a framing o : S(T M) — Mo x S? unique up
to homotopy such that P(hoo ¢g') = 0. |
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