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§0 Abstract

This research is originated from the study of the K-equivalence re-
lation in a birational class of smooth complex projective varieties. The
main goal of this note is to formulate the Main Conjectures in this
theory. Three different proofs of the equivalence of Hodge structures will
also be surveyed.

§1 Definitions

Let X be an n dimensional complex normal Q-Gorenstein variety.
Recall that X has (at most) terminal (resp. canonical, resp. log-terminal)
singularities if there is a (hence for any) resolution ¢ : Y — X such that
in the canonical bundle relation

Ky =q ¢"Kx + »_a;E;,

we have that a; > 0 (resp. a; > 0, resp. a; > —1) for all .. Here, the
E;’s vary among the prime components of all the exceptional divisors.
For two Q-Gorenstein varieties X and X', we say that X and X' are
K-equivalent, written as X =g X', if there is a smooth variety Y and a
birational correspondence (¢, ¢') : X «— Y — X', such that

¢* KX :Q ¢I* KX/-

Notice that this property do not depend on the choice of Y.
The following are some typical geometric situations that lead to
K-equivalence. They indicate the scope of applications of this theory.

Fact 1.1 Any composite of flops is a K-equivalence.
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Fact 1.2 Let f: X --— X' be a birational map between two varieties
with at most canonical singularities such that Kx (resp. Kx:) is nef
along the exceptional locus Z C X (resp. Z' C X'), then X =g X'.
Moreover, f extends to an isomorphism in codimension one if X and X’
are terminal. This applies, in particular, if both X and X' are minimal

models.

Fact 1.3 All cohomologically small resolutions of a singular variety, if
they exist, are all K-equivalent to each other.

Fact 1.1 follows directly from the definitin of flops. Fact 1.2 is
proved in [Wangl]. Fact 1.3 was essentially proved by [Totaro], he actu-
ally showed that cohomological small resolutions are all relative minimal
models. Then one may apply 1.2 to obtain 1.3.

§2 Main Conjectures

Just as in the case of birational minimal models, we expect that any
K-equivalence can be decomposed into composite of some “nice flops”.
However, this “rigid decomposition” is too hard to deal with. Instead,
we would like to state a series of conjectures on K-equivalent varieties.
With the hope to eliminate the necessity of a rigid decomposition result.

Conjecture I (Canonical Isomorphism) Fix a birational map f: X --—
X’ between two smooth proper complex varieties and let T := ¢/, o ¢*
be the cohomology correspondence induced from a birational correspon-
dence (¢, ¢’) : X «— Y — X’ which commutes with f and with smooth
Y. If X and X’ are K-equivalent, then T induces an canonical isomor-
phism on cohomologies

T:H(X,Q)— H' (X", Q),
which is compatible with the rational Hodge structures.

Notice that T is determined by the closure of the graph I'y C X x X’
through the Kiinneth formula, hence is independent of the choice of Y.

Conjecture II (Quantum Cohomology/Kéhler moduli) Under Conjec-
ture I, T also induces an isomorphism on the big quantum cohomology
rings of X and X'.



Conjecture III (Birational Complex Moduli) K-equivalent smooth va-
rieties have canonically isomorphic (at least local) moduli spaces. More-
over, the compactified polarized moduli spaces are again K-equivalent.

All these conjectures are known in dimension three through classi-
fication results on flops in the minimal model theory. More precisely,
I is proved in [Kolldr] with the help of Saito’s theory of mixed Hodge
modules. III is in [Kolldr/Mori] where a theorem on the existence of
simaultaneous flops of threefolds are established. II is announced re-
cently in [Li/Ruan], where besides classification of three dimensional
flops, they further proved a glueing formula of holomorphic curves in
order to compute the Gromov-Ruan-Witten invariants that define the
quantum cohomology ring. All these techniques involved are very un-
likely to possibly be pushed toward higher dimensions. On the other
hand, a result in [Wangl] shows that K-equivalent smooth varieties do
have the same Hodge numbers in all dimensions.

Inspired by recent work of [Totaro] and [Wang3] on complex elliptic
genera, we state the following even more ambitious conjecture:

Conjecture IV (Soft Decomposition Structure) K-equivalent smooth
varieties admit symplectic deformations such that the K-equivalence re-
lation deformed into copies of classical flops.

Basically, Totaro proved that “Complex bordism ring modulo clas-
sical flops = complex elliptic genera”. The author generalizes this to
“Complex bordism ring modulo K-equivalece = complex elliptic gen-
era”. That is, inside the complex cobordism ring of stably almost com-
plex manifolds, the ideal generated by classical flops are indeed the same
as the seemingly much larger ideal generated by all K-equivalent pairs.
In other words, Conjecture IV is true up to cobordism. We believe that
Conjecture IV will be the key to understand Conjectures I, II and III.
In fact, results in [Wang3] already give strong evidence of III. Namely,
x(X,Tx) = x(X', Tx’) for K-equivalent pairs X and X'.

§3 Noncanonical Equivalece of Hodge Structures

The first proof of this statement is essentially in [Wangl] using the
theory of motivic integration developped by Denef and Loeser. This
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proof has been explained in my NSC report of last year [Wang2], so will
not be repeated here.

The second proof is a continuation of [Wangl], which will appear
in a joint work with J.-K. Yu. Basically in [Wangl] we already know
that K-equivalent smooth varieties have the same local zata functions
for almost all primes. These will also be the local zeta functions for
Crystalline cohomologies by the argument of Katz and Messing. Now a
standard density argument will implies that the étale cohomologies of X
and X’, when regarded as Galois representations of the defining (char-
acteristic zero) field of X and X', have isomorphic semi-simplifications.
A straightforward refinement of Faltings’ resolution to Fontaine’s con-
jectures, which explain Grothendieck’s “mysterious functors” to equate
p-adic étale cohomology and Crystalline cohomology after tensoring the
Barsoti-Tate groups, we may coclude that the Q, Hodge strcutures of
the p-adic étale cohomologies of X and X’ are isomorphic — basically
because the category of pure Hodge structures are semi-simple. This
proof does not gives equivalence of Q Hodge structures. But it shows
that the original p-adic integral argument contains much more than just
the equivalence of Betti numbers.

The third proof to be explained here is conceptually the simplest
one. But it also contains some difficulities to be put in a rigorous proof
for a while, until recently when proofs of the long-waiting “Weak Fac-
torization Theorem” were announced.

Let M be the Grothendieck ring of algebraic varieties over a field
k. For X a variety over k, we use [X] to denote its class in M. Now
assume that X is smooth and let ¢ : ¥ — X be a blow up of X along a
smooth center Z C X of codimension r, with exceptional divisor £ C Y.
Then we have the well-known motivic equation for projective bundles
E=Pz(Nz/x)— Z:

[E] =20 +L+---L""Y) = [Z]I;Jr:ll.
Sicne [X]| — [Z] = [Y] — [E], one gets
L-—




We call this a “nice” change of variable formula since the “Jacobian
factor” here depends only on the class [E] instead of the precise structure
of the normal bundle Nz, x.

According to the Meta Theorem formulated in [Wangl], we will be
able to deduce that two K-equivalent smooth varieties have isomorphic
Q Hodge structures if we can prove such a change of variable formula
for any birational morphism ¢ : ¥ — X. Because the Hodge structure
realization functor commutes with the formation of Grothendieck rings
— thanks to Deligne’s Mixed Hodge Theory.

The above simple computation can be performed inductively to
show that, for ¢ : ¥ — X a composite of blowing-ups along smooth
centers with

Ky =¢"Kx +) ekl
The change of variable from X to Y reads

o L-1
[X]= ZIC{I,...,n} [E7] HiEI Lei+l —1°

where [E7] := (,c; £\ U, Ej- This is exactly the formula occuring
in the formula for motivic volume. The power for motivic integration
allows one to have this formula in a suitable completed localized ring
M for arbitrary birational morphism ¢. But if we are interested in the
study of K-equivalence only, we may in fact conclude the more stronger
equality that [X] = [X'] in M using the Weak Factorization Theorem
whose proof was announced recently by Wlodrasczyk in [Wlod].

'
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This report is to summarize the work that was initiated during my
visiting Professor Ching-Li Chai at University of Pennselvania during
September 1999. Some of it was carried out later after my coming back
Taiwan in a joint work with B. Hassett and H.-W. Lin [HLW] when we
were visiting National Center for Theoretic Sciences in the summer of
year 2000. I am very grateful to NSC for supporting me this research.

1. Introduction

Let X be an (n+ 1)-dimensional smooth complex projective variety
and let D be a (n-dimensional) smooth ample divisor of X with inclusion
map i : D — X. The well known Weak Lefschetz Theorem (see [GrHa))
asserts that the restriction map i* : H*(X;Z) — H*(D;Z) is an isomor-
phism for £ < n — 1 and is compatible with the Hodge decomposition.
For n > 3 one deduces from these results that i* : Pic(X) — Pic(D) is
also an isomorphism (Grothendieck has shown that this statement is true
over any algebraically closed field [Hart]). While an ample line bundle
on X always restricts to an ample line bundle on D, it is not at all clear
whether * Amp(X) = Amp(D).

During the visiting, Chai and me worked out several positive ex-
amples — eg. product of projective spaces of dimension at least two.
However, further investigation shows that this “Weak Lefschetz Princi-
ple for the ample cone” fails in general. We found two types of coun-
terexamples. One is of blow-up type and another is of product type with
P! factors. Also during this research we provide some partial positive
results generalizing those obtained with Chai earlier, notably the one
about Mori cones. Though we not yet have a complete picture of how
the ample cone behaves under the Weak Lefschetz isomorphism, we pose
the question that whether it holds if X admits no birational extremal
contractions nor smooth curve fibration structures.



2. A Product Example With P! Factors

The simpler examples was found for X being of product type. Take
X = P! xP? (for d > 3) and let D be a divisor of type (d, b) with b € N.
It is very ample and generic D will be smooth. It has defining equation

a:dfo + :I:d_lyfl + ...+ fdyd =0,

where z, y are coordinates of P! and the f;’s are polynomials of degree
b in P9 The projection p : D — P? has positive dimensional fibers
exactly when fy = f1 = ... = fg = 0. This has no nontrivial solutions for
general f;’s since there are more equations than variables. However, if p
is a finite morphism then each ample divisor L on P? pulls back to an
ample divisor on D (this follows from either Nakai-Moishezon’s criterion
or Kleiman’s criterion), yet this pull back divisor is the restriction of the
divisor P! x L on X = P! x P9, which is evidently not ample. This
gives a simple counterexample to the Weak Lefschetz Principle.

The presence of one dimensional factors has rather special feature,
as will be seen in the following section.

3. A Positive Result

It is trivial that the Lefschetz Principle :* Amp(X ) = Amp(D) holds
if X has Picard number one and dim X > 4. One may generalize this in
a straightforward manner to obtain:

Theorem 3.1 Let it : D — X = [[ X, be a smooth ample divisor in
a finite product of smooth projective varieties such that each X; has
Neron-Severi rank 1, dim X; > 2 and with Pic(X) = p; Pic(X}),
(p; + X — X is the projection map). Then i*Amp(X) = Amp(D) if
dim X > 4.

Proof. Let H; be an ample class on X; and let h; = pjH;. Notice the
following fact: If n; = dim X, then Hh;nj is an effective cycle if and
only if m; < nj for all j and p =[] h?’ is a positive integer. It is then
easy to see that > ajh; is an ample class on X if and only if that a; > 0
for all j: simply intersect it with h?"wl. Hk# hp* to get a;p > 0.

Now let D be given by the ample class > d;h; with d; > 0. Since
dim X > 4, a divisor on D takes the form L|p = )" ajh;|p. We need to
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show that L|p is ample implies that a; > 0 for all j. For this, since n; >
2, we simply intersect L|p with the effective cycle hjfg_2. [Tix, Pl
on D to get

0<hP2 Hk;éj hik. > ajhy. Y dihy = a;d;p.

That is, a; > 0. Q.E.D.

Remark 3.2 The condition Pic(X) = € p; Pic(X;) holds if all but one
X; satisfy h'(X;,0x) = 0 or if X;’s are all non-isomorphic and their
Jacobians are all non-isogenous to each other.

This condition is clearly satisfied by projective spaces of dimensions
at least two. In this case the result was obtained earlier in a joint dis-
cussion with C.-L. Chai.

4 A Blow-Up Example

We describe here our second counterexample (X, D), which is more
involved than the first product one. The details and proofs will be re-
ferred to the forthcoming publication work [HLW].

Let ¢ : X — P* be the blow-up of P* at two distinct points p;
and py. Let ¢ be the line spanned by p; and p, and D’ a general
smooth cubic hypersurface (threefold) containing p; and ps but not the
line ¢ — in reality we need to make precise the conditions satisfied
by D’. We take D to be the proper transform of D’ in X. We then
show that D is a very ample divisor in X but i*Amp(X) # Amp(D).
More precisely, we know that Amp(D) is strictly larger than i* Amp(X)
if and only if the Mori cone (the closure of the real cone generated by
numerical classes of effective one-cycles) NE(X) is strictly larger than
i.NE(D) (by Kleiman’s criterion for ampleness [Hart]). Let ¢ be the
proper transform of ¢ in X, which is an effective one-cycle in X. By
Weak Lefschetz, ¢ = i, A for some one-cycle A on D. Our main task is
to show that A ¢ NE(D). This was done through a detailed study of
Del Pezzo surfaces and making use of a strengthening of its classification
theory.

In fact we have determined both the ample cones and the Mori cones
of X and D.



5 A Partial Theorem on Mori Cones

The counterexample we found in last section suggests the following
equality on the negative part of Mori cones of D and X. The proof relies
on Mori’s theory of extremal rays [Mori] and is essentially contained in
[Wis] and [Kollar].

Theorem 5.1 Let i : D — X be a smooth ample divisor in a smooth
variety X with dim X > 4. Then i.NE(D)g,<o = NE(X)k<o-

Proof. Since Kp = Kx|p + Dl|p, which is numerically strictly more
positive than K x, we know by Mori’s theory that NE(X )k, <o is a finite
polyhedral cone generated by extremal rays. Let R = RC with C = P!
be such a ray and ¢ : X — Y the corresponding contraction. We want
to show that the class of C is also an effective class in D. To see this,
if ¢ has a fiber F' of dimension at least two, then D N F will be such an
effective class in D and we are done. If all fibers are one dimensional,
Wisniewski’s Theorem shows that Y is smooth and either ¢ is a blow
up of Y along a smooth codimension two subvariety Z or ¢ is in fact a
conic bundle. These cases are ruled out when dim X > 4 by results of
Kollar in [Kollar]. Q.E.D.
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