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Abstract. Let R bea prime ring with extended centroid C. By a generalized
derivation of R we mean an additive map ¢: R — R such that (zy)? =
z9y + zy° for all z € R, where § is a derivation of R. In this paper we prove
a version of Kharchenko’s theorem for generalized derivations and show some

results concerning identities of generalized derivations.
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§1. Introduction

Throughout this paper R always denotes a prime ring with extended
centroid C, @ its two—sided Martindale quotient ring and {’ its right Utumni
quotient ring. In [6] Hvala gave an algebraic study of generalized derivations
of prime rings. An additive map g: R — R is called a generalized deriva-
tion of R if there exists a derivation & of R such that (zy)? = 2%y + zy?
for all z,y € R. In [13} the author extended the definition as follows.
By a generalized derivation we mean an additive map g: p — U such that
(zy)¢ = z% + zy? for all z,y € p, where p is a dense right ideal of R and
4 is a derivation from p into /. The author proved that every generalized
derivation can be uniquely extended to a generalized derivation of /. In
fact, there exist & € U and a derivation d of U such that z¢ = az + z¢
for all z € U [13, Theorem 3|. Therefore, a generalized derivation ¢ can be
assumed ¢: U — U in this paper. For identities of derivations, Kharchenko
established the structure theorems of differential identities (see [8] and [9])
which are powerful tools for reducing a differential identity to a generalized
polynomial identity. Thus, to study identities of generalized derivations, it
seems reasonable to find a corresponding theorem for identities of generalized
derivations. Roughly speaking, we will prove that if f [..ij) 1s an identity
for R, where the I';'s are distinct regular words in generalized derivations,
then f(Zi;) is a generalized polynomial identity (GPI) for /. In section 3,
as applications to the structure theorem, we will prove some results con-

cerning identities of generalized derivations. In particular, we generalize (6,
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Theorem 1] and [6, Theorem 2] to prime rings without the characteristic as-
sumption. In section 4, we will prove an analogous theorem for prime rings

with involution.

§2. Reduced Identities

Let ¢: U/ — U be a generalized derivation. We write ¢ = az + z° for all
r € U, where a € U and 4 is a derivation of 7. Since g and ¢ are uniquely
determined by the generalized derivation g, we say ¢ to be the associated
derivation of g. A generalized derivation of I/ is said to be generalized inner
if its associated derivation is /-inner. Thus a generalized inner derivation
¢ must be of the form z* = az + zb for some a,b € U. We shall prove
the version of Kharchenko’s theorem [9] for generalized derivations. To state
the theorem we want to prove, we have to fix some notation. We denote by
Gder(l7) the set of all generalized derivations of /. Let g,A € Gder(U). If
8 € C, define z97 = z93. It follows that Gder(U'} forms a right C'—space.
Set Gin¢ to be the C—subspace of Gder(I') consisting of all generalized inner

derivations of /. Then the following statement holds:

Let g,h € Gder(U) and let § and d be the associated derivations of ¢
and k, respectively. Then [g, k] € Gder(U) with associated derivation [, d]

and g? € Gder(L’) with associated derivation §? if char R = p > 0.

The first part is easily checked. We prove the second part. Let z,y € U.
Then (zy)? = 2% + zy°. Since charR = p > 0, we see that (zy)? =

S (f)xﬂp_iy‘si =29y + 2y® . In particular, if we set z = 1, then g =
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19"y 4+ 4% for all y € U. Therefore, gP is still a generalized derivation of I/

with associated derivation 67,

By a generalized derivation word we mean an additive map I' from U
into itself assuming the form I' = g192... s, where g; € Gder(I'). If T is
empty, we define T = ¢ for # € U. A generalized differential polynomial
means a generalized polynomial with coefficients in {7 and with noncommut-
ing variables which are acted upon by generalized derivation words. Thus
every generalized differential polynomial can be written in the form ¢(X 1[‘ Y,
where ¢(Z;;) is a generalized polynomial over U in distinct variables Z;;, and
the I';’s are generalized derivation words. A generalized differential polyno-
mial ¢(X ;r ) is called a generalized differential identity (GDI) for a subset T
of U if (X 11" 7} assumes 0 for any assignment of values from T to its variables

X;. Recall the following basic identities:

(B1) (XY)¥ = X9Y + XY for ¢ € Gder(U} with associated derivation

(B2) X% = X9 ~aX for g € Gder(U) if 2? = az + 2% for all 2 € U,

where ¢ is the associated derivation of g.
{(B3) (X+Y)Y =X94Y9 for g € Gder(U).

{B4) X9 =aX + Xbif g is the generalized inner derivation defined by

¥ =agr+zbforall z e U.
(B5) X4l = (X% — (X*)? for g,h € Gder(U).

(B6) X9 = (... ((X9))...)9(ptimes) for g € Gder(I) and char R =



p> 0.
(BT) X#otR3 = X90 + X*3 for g,h € Gder(U) and o, € C.

Choose a fixed basis Gy for Gin; and augment it to a basis G for Gder(¥/)
over C. Fix a total order > in the set & such that go > g for gop € Gy and
g € G\ Gy, and then extend this order to the set of all generalized derivation
words by assuming that a longer word is greater than a shorter one and that
words of the same length are ordered lexicographically. By a regular word we

$1 32

mean a generalized derivation word of the form I' = g7 ¢;% ... g3 possessing

the following properties:
(W1) ¢; e G\ Gpforl<i<m,
(W2) g1 <g2<---<gm and
(W3) si<pforl<i<m,ifcharR=p>10

Applying the same viewpoint of Kharchenko’s papers ([8] and [9]) for dif-
ferential identities, each generalized differential identity can be transformed,

via the basic identities (B1)—(B7), into a form ¢(X|?) such that

(R1} ¢(Z;;) is a generalized polynomial over I/ in noncommuting vari-

ables Z;; and
(R2) the I';’s are distinct regular words.

A generalized differential polynomial is called reduced if it assumes the
form qS(Xf"] satisfyving (R1) and (R2). Now we are ready to state our main

theorem.



Theorem 1. Let R be o prime ring. If qﬁ(Xf’} 13 a reduced GDI for a

nonzero ideal of R, then ¢{Z;;) is a GPI for U.

We shall derive Theorem 1 from Kharchenko’s theorem (see [8] and [9]).
The key viewpoint of our proof is implicit in [12]. For convenience we give
the statement of Kharchenko's theorem here. We remark that Kharchenkeo’s

theorem holds for nonzero ideals.

Kharchenko’s Theorem. Let R be a prime ring. If $(Ai(X;)) is a differ-
entzal identity for a nonzere ideal of R, where A; are distinct regular words

and X; are distinct indeterminates, then ¢(Z;;) 1s a GPI for R.

Denote by Der(U) the set of all derivations of U/. Then Der(U) is a
C—-submodule of Gder(I’). Consider the set M, = {§ | ¢ is an associated
derivation of some g € G\ Gyp}. Then M,y is C-independent modulo /-
inner derivations. A canonical linear order can be defined as follows: For
g, h € G\ Gy with associated derivations 4, d respectively, we have g < h if
and only if § < d. Let My be a basis of the U~inner derivations over C. It
is clear that the union of M,,; and My forms a basis of Der(¥/) over C. For
I' =¢192 ... 9, a regular word in generalized derivations g; with associated
derivations 4;, we set [ = 0102 ...6,, which is called the associated word of
T. It is clear that I is a regular word in derivations §;. For a regular word
I' = g142...9n, by a subword of I" we mean a generalized word of the form
@, the empty word, or g;,gi, ... gi, with 1 <i4; < 13- < 1, <n. It is clear
that a subword of a regular word is still regular. For two subwords E =

GirGin---9i, and F =g, 95, ...9; of T, (E, ?] 1s called a pair of subwords of
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I'if s+t = n and these 14 and 7, are distinet. We are now ready to give the

Proof of Theorem I. Suppose that é(X:-rj) is a reduced GDI for [ with
distinct regular words T';, where I is a nonzero ideal of R. In view of [10,
Theorem 2], I and U satisfy the same differential identities (DIs) with coef-
ficients in U'. Thus they also satisfy the same GDIs with coefficients in /.
Hence, we may assume that / = U'. We proceed the proof by induction on
the largest regular word invalved in q‘)(XEj ), say I'y. Assigning Xo, X3, - to
fixed elements in U, we may assume that ¢ only involves one variable with
coefficients in U7. Write ¢ = ¢({XT7), where the I'y,..., T are all distinet

regular words occurring in ¢ and 'y > -+ > [,

Suppose that I'; is empty. Then ¢ is a GPI for I and there is nothing

to prove. Therefore we suppose that T'; is not empty. Let 2,y € I7. Then
£; ~

(1) (zy)ls =) Fmyfiv,
k=1

where the (Ejk,f:;)’s run over all pairs of subwords of I';. Moreover, let
E;; =T and so f; is empty for each j. Let z;,...,z4,41,...,4: € U. By

assumption we have qﬁ(zf:l[z,-yg)ri) = 0. In view of (1), we have

(2) é(iiwf""y,ﬁ) =0.

i=1 k=1

——

Applying Kharchenko's theorem to (2) by setiing yf * =0 for E}; # ﬂ, we

reduce (2) to



where, for 1 < ;7 <,

—

~ ¢ —

r FEin Fix r; Eon F;

Wi(X,7 0w ") =Xy + Z ZXiJ yi "
i=3+1 kEA,‘j

"

with Aij = {k | Fp. = T;,1 < k < &}, Fix i € U and set ¢ =
s(Wi(xB, yF)).

We remark that Ej; is not empty and Ej; < I'y if Ejx occurs in ¢
and, moreover, ¥ 1s a GDI for {/. Applying the inductive hypothesis, we
may replace X; with z; and X;Ej * with 0 for Ej nonempty to obtain that
$(z J-yjf;) =0 for all z;,y; € U. In view of Kharchenko’s theorem [9] again,
we see that &(mj-yj-) = 0 for all z;,y; € U. In particular, setting y; = 1 for

each j we see that ¢(Z;) is a GPI for /. This proves the theorem.

The following result generalizes (8, Corollary 2] to the case of algebraic

generalized derivations.

Corollary. Let R be a prime ring with eztended centroid C and right Utum:
quotient ring U, g a generalized derivation of U and ¢(X) e monic polyno-
mial over C of degree n > 1. Suppose that ¢(g) is a generalized derivation of
U and that either char R = 0 or p > n. Then both g and ¢{g) are generalized

tnmner.

Proof. Write ¢(X) = X"+ X" 13,1+ - + X5 + Bo € C[X]. Suppose,
on the contrary, that g is not a generalized inner derivation. By assumption,

we WrTite

(3) 28 L2 B 4 293 + 28 = 2?19
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for all x € U. If g and ¢(g) are C-independent modulo Gj,;, then
¢,9%,...,9"™ and ¢(g) are distinct regular words as either char R =0 orp > n.
Applying Theorem 1 to (3) we see that o+ Tn-1Fn_1+ - +z151 42050 =y
for all y,z; € U, a contradiction. This proves that ¢{g) = g3 + g for some
4 € C and u a generalized inner derivation. Thus z* = ar + zb, where

a, b € [V and hence
29 + 29 Bay 442981 + 280 = 28 + az + zb

for all z € U'. Since ¢ is not generalized inner, we can derive a contradiction
from the argument given as above. Thus ¢ is generalized inner. Now it is
clear that the associated derivation of ¢{g) is defined by a generalized linear
map. By Kharchenko’s theorem, the assoclated derivation of ¢(g) is inner

and so ¢(g) is a generalized inner derivation, as desired.

§3. Certain Identities of Generalized Derivations

Let R be a prime ring of characteristic not 2. In [15] Posner proved that
if d; and d2 are derivations of R such that its product d;d; is also a deriva-
tion, then one of d; and d; is zero. In [6] Hvala extended Posner’s theorem
by characterizing generalized derivations f; and f; of R when its product
f1 /2 is also a generalized derivation of R [6, Theorem 1]. On the other hand,
Hvala also proved that generalized derivations ¢; and g; are C-dependent if
[z9,292] = 0 for all ¢ € R. Applying Theorem 1, we will give a complete
description of Hvala’s theorems without the assumption that char R # 2. For

a € U7, we denote by a; and a, the left and right multiplications by a, respec-
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tively. Let £(U) (R{U')) be the set of all left (right resp.) multiplications of

U. We will prove the following two theorems.

Theorem 2. Let R be a prime ring with extended centroid C and let g1 and
go be generalized derivations of R. Then the product g1 g2 is alse a generalized

derivation if and only if one of the following holds:

(i) there exists A € C such that either g1 = A or go = Ag;y

(11) either g1,92 € L(U) or g1,9. € R(U);

(111) there exist A, p € C and a,b € U such that 29 = ax + 2b and
292 = Az + plaz — zb) for allzx € U;

(iv) char R = 2 and there exist A, u € C such that go = As + g1 4.

Theorem 3. Let R be a noncommutative prime ring with eziended centroid
C and let g1 and g2 be nonzero generalized derivations of R. Suppose that
[#9,292] = 0 for all x € R. Then there exisis A € C such that 292 = \z®

forallz € R.

To prove the two theorems we first state a preliminary result, which is an
immediate consequence of [14, Theorem 2 (a)] and [3, Theorem 2]. Therefore

we only give its statement without proof.

Lemma 1. Let R be a prime ming. Suppose that E:’;l a;zh; + E?___l c;rd; =
0 for all z € R, where a;,bi,¢;,d; €U, 1 <1 <m,1 <3< n Ifar,...,am
are C'-independent, then each b; 1s C-dependent on d4,...,d,. Similarly, if

bi,..., b are C-independent, then each a; 18 C'-dependent on cq,...,cq.
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We first deal with two special cases of Theorem 2.

Lemma 2. Let R be ¢ prime ring with extended centroid C, ab € U
and g a generalized derivation of U. Suppose that the map t* = az? + z9b
(z* = (az +2b)?) is also a generalized derivation of U. Then either a,beC,
or b€ Candge LU), ora € C and g € R(U), or there exist \,p € C

such that 9 = pz + Aaz — zb) for allz € U.

Proof. Suppose that the map z* = (az + xb)? is a generalized derivation
of U. Write 2¢ = uz 4 z° for some u € U and § a derivation of I/. Then
zh = (az + 2b)9 = 0¥z + az’ + 296 + ob® = a%z + a(z? - uz) + 96 + zb® =
(az9 + 29b) + ((a? — au)z + zb%). This implies that the map z — (az 4+ zb)?
is a generalized derivation if and only if so is the map z — az? + 2985, Hence

it suffices to prove the case that z* = az¥ + 2% for z € U,

Suppose first that g is not a generalized inner derivation. If g and % are
C-independent modulo Gin¢, then az + zb = y for all z,y € I/ by Theorem
1. This is a contradiction. Thus z* = 298 + cz + zd for some 3 € C and
c,d € U. Thus az? + 296 = 273 + cz + zd for all z € U. Applying Theorem
1 yields that ay + yb =y8 + cz + zd for all z,y € U. Then cz + zd = 0 for

all z € U and a,b € C, as desired.

Suppose next that g is a generalized inner derivation. Then there exist
c,d € U such that 2/ = cz + zd for all z € U. Thus 2" = a(cz + zd} +
(cx 4+ zd)b for x € U. This implies that the associated derivation of k is

a generalized linear map. In view of Kharchenko’s theorem, the associated

11



I3

derivation of k is inner and so # itself is generalized inner. Write 2" = wx+zv

for all £ € U, where u,v € /. Then we see that

(4) (u — ac)z — azd — cxb + z(v — db) = 0

for all z € U/. If a,¢,1 are C-independent, then, by Lemma 1, we have

d.b,v —db & C. Hence, b € C and g = (¢ + d)s € L(U), as desired.

Suppose next that a,c and 1 are ('-dependent. If ¢ € C, then g =
(¢ + d). € R(U) and hence we are done for the case that @ € C. Suppose
that ¢ ¢ €. Since c € C, (4) is reduced to (u —ac)z —axd+z(v~db—cb) =0
for all z € U, implying, by Lemma 1, that d € C. Set u =c+d € C. Then

¥ = uz for all z € U, as desired.

Hence we assume that ¢ ¢ C. If o € C, then (4) is reduced to (v —aclr —
czb+z(v—db—ad) = 0for all z € U/, implying, by Lemma 1, that b € C. We
are done in this case. So we assume that a ¢ C. Then ¢ = Aa+v, where A, v €
C and A # 0. Now we reduce {4) to (u—ac)r —ax(d+Ab)+z(v—db—uvb) =0
for all x € U. Since 1, a are C-independent, applying Lemma 1 yields that
d+Ab=vy€ C. Thus,forz € U, 2? = cx +2d = (v +v)x + Maz — zb). Set

4 =v++ € C. This proves the lemma.

Proof of Theorem 2. Let h = g1g2. Suppose that one of ¢g; and g; is
generalized inner. Then we are done by Lemma 2. Thus we suppose that
neither g; nor g, is generalized inner. If ¢; and g are C-independent modulo
G'int, applying Theorem 1 yields that y = z* for all z,y € U, a contradiction.

Thus 292 = 2% i1 + az + zb for some 0 # p € C and a,b € . Thus we have
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b = 29°) + gz + 29 for z € U. If charR # 2, then g2 is a regular
word of length two. Applying Theorem 1 yields that z* = yu + az® + 95
for z,y € U. Since p # 0, this is a contradiction. So we have char R = 2.
Then g2 is still a generalized derivation. Hence the map ¢ — az? + z%b
defines a generalized derivation of U/. Since g; is not generalized inner, by
Lemma 2 the only possibility is that 0,6 € C. Set A=a+5b € C. So we

have g3 = g1+ + A¢. This proves the theorem.

We next turn to the proof of Theorem 3. Let R be a prime GPI-ring
with extended centroid C. By Martindale’s theorem {14], RC is a strongly
primitive ring. For simplicity, we will fix some notations in this case. We
denote by F' the algebraic closure of € if C is infinite and set F = € if
is finite. Set R = RC ®@¢ F. Then R is a centrally closed prime F-algebra
[5, Theorem 3.5] with nonzero socle, denoted by H, and possesses nontrivial
. idempotents if R is not commutative. Moreover, applying [3, Theorem 2]
together with a standard argument proves that R and R satisfy the same
GPIs with coefficients in RC + C. In addition, 1 € H if and only if R =

Mﬂ(Fj for some n > 1.

We begin with some special cases. The first is a special case of [11,

Lemma 2].

Lemma 3. Let R be a prime ring and a,c € R. Suppose that [az,cz] = 0

for all z € R. Then a and ¢ are linearly dependent over C.

Lemma 4. Let R be a noncommutative prime ring and a,b € R. Suppose
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that az +zb € Z(R). Then a = —b e Z(R).

Proof. Let z,y € R. Then z[b,y] = (az + zb)y — (a(zy) + (zy)b) € Z(Ry +
Z(R), implying that [y,z[b,y]] = 0. That is, [y, R[b,y]] = 0 for all y € R.
This implies that b € Z(R). So (a+ bR C Z(R) andso a+ b = 0, since R

is not commutative. This proves the lemima.

Lemma 5. Let R be a prime ring, a,c,d € R and o # 0. Suppose that
[ax,cx+2d] =0 for allz € R. Thend € C and there ezists A € C such that

c+d = la.

Proof. If R is commutative, then the conclusion trivially holds. We assume
that R is not commutative. If ¢ ¢ Ca+ C, then [aX, cX + Xd] is a nontrivial
GPI for R. Suppose that ¢ = Aa + 3, where 0,3 € C. By assumption, we
have [az,z(d + 8)] =0 for all z € R. If a € C, then we are done by Lemma
3. Thus we assume that a ¢ C. If d+ 8 =0, then we see that ¢+ d = Aa, as
desired. So we also assume that d+3 # 0. It is clear that [aX, X{d+8)] is a
nontrivial GPI for R. In other others, we may assume that R is a GPI—riﬁg.

As noted, we have H # 0 and
(5) : [az,cx + zd] = 0

forall z € R.

Let e be an idempotent in H. Replacing z by ze in (5) and expanding
l[aze,cxe + zed](1 — €) = 0, we see that arered(l —e) = 0 for all z € R.
Thus, by [15, Lemma 2], we have ed(1 — ¢} = 0. Analogously, (1 — e)de = 0.

In particular, we have [d,e] = 0. Denote by F the additive subgroup of H

14



generated by all idempotents in #. Then [H, H] C E |7, Corollary p.19] and
hence, [d,[H, H]] = 0. By [3, Theorem 2}, we have [d, R, E]] = 0, implying
that d € C. It follows from (3) that [az,(c + d}z] =0 for all z € R. In view

of Lemma 3, there exists A € C such that ¢+ d = Xa, proving the lemma.

Lemma 6. Let R be a prime ring, 1R — RC o generalized linear
map, defined by = — 0| bize; where {by, - -,bn} and {c1,---,cn} are
C -independent subsets of RC. Suppose that f(z)za = 0 (axf(z) = 0) for
all 2 € R, where 0 # a € R. Then aRCua = Ca and ¢;RCc; = Ce; { resp.
b;RCb; = Cb;) for each i.

Proof. We only give the proof of the case that f({z)ra = 0 for all z € R.
The another case can be proved by an analogous argument. Linearizing the

GPI (3.7_, b:X¢;)Xa for R, we see that

(6) i b;xc;ya + 2": biyc;iza =0
=1 =1

for all z,y € RC. Replacing z by zaz in (6) we get

Zb,-(.raz)c,-ya -+ Zbiyci(maz)a = 0.
=1

=1

On the other hand,

(Z bize;ya + Z b,-yc,-s:a) za =0.
=] =]

Comparing the last two relations we arrive at

Z bizlaz, ciyla =0
i=1

15



for all z,y.2 € RC. Since {h,---,bn} is C-independent, by Lemma 1 we
see that [aRC, ¢;RC]a = 0 for each i. In particular, [aRC, ¢;RCaRCla = 0,
implying that ¢;RC[aRC,aRCla = 0. The primeness of RC implies that
[@aRC,aRCla = 0 and so [aRC,aRC]aRC = 0. An analogous argument
proves that [¢;BC, ¢;RC|e; RC = 0 for each i. Thus we get that aRCa = Ca

and ¢;RCc¢c; = Ce; for each i (see, for instance, the proof of [2, Lemma 3.1]).

Lemma 7. Let B = M,(F), the n X n matriz ring over a field F, and
e = 2 € R with rank 1, where n > 1. Suppose that az(cz + exd) = 0 for all

2z € R, where a,e,d € Randa#0. Thend € F.

Proof. Since e is of rank 1, we may assume, without loss of generality, that
e = e11. Let ¢ € R. By assumption, we have 0 = aze; (cze;; +epzend)(1—
e11) = azenzennd(l — enr), implying that e;;3d(1 — e11) = 0 [15, Lemma 2].
That is, e;;d = ejydey;. Thus there exists 4 € F such that the first row
of d —~ 3 is zero. Thus we can choose a nonzero element w € R such that

(d — )w = 0. By assumption, we see that
0= az((c+ Berr)z + enz{d — 8))w = ax{c + Jey )zw,
implying that ¢ + Se;; = 0 [15, Lemma 2]. Thus we have aze;jz(d ~ 3) =0
for all z € R. By [15, Lemma 2] again, d = 3 € F follows, a contradiction.
We are now in a position to give the proof of Theorem 3.

Proof of Theorem 8. By assumption, [z¥1,z%] = 0 for all z € R.
If g, and g; are C-independent modulo generalized inner derivations, by
Theorem 1 we see that [z;,z2] = 0 for all 21,2z, € R. S0 R is commutative,
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a contradiction. Suppose that one of g; and g, is outer, say ;. Then there
exist A € C and a,b € U such that 2% = Az% + ar + zb for all z € R.
By assumption, [£9, Az% + az + zb] = 0 for all z € R and hence for all
z € U (10, Theorem 2]. By Theorem 1, we have [y, Ay + az + zb] = 0 for all
2,y €U. Soar+zbe Cforallz € U and, by Lemma 4, a = —b € €. Thus

z92 = Az for all z € R, as desired.

From now on, we assume that both ¢; and g, are generalized inner.
Write 9 = az + #b and 292 = ex 4 zd for = € R, where a,b,¢c,d € I/, Since
R and U satisfy the same GPIs [3, Theorem 2], we may assume that R = /.
In particular, R is a centrally closed prime C-algebra. By Lemma 5, we may
assume that a,b,¢,d ¢ C'. By assumption, we see that
(7 [az + zb,cz + zd] = 0
for all z € R. To prove g2 = g1 A for some X € C, it is equivalent to claim
that d = 3 = Ab and ¢+ 8 = Aa for some 3 € C. Suppose not. Then
[aX + Xb,cY +Yd| + [a¥ + Yb,cX + Xd is a nontrivial GPI for R. As
noted, (7) holds for all € R. We claim that d = \b+ g for some A, 3 € F.

We divide the argument into two cases.

Suppose first that 1 ¢ H. In this case, we see that dimp B = oc.
Denote by E the additive subgroup of R generated by all idempotents in H
of rank 2. Note that if e is an idempotent in H of rank 2, then so are both
e+ ex(l — e} and e + (1 — e)ze for each r € H. In particular, [E.H|CE
and so E' is a noncentral Lie ideal of H. Thus, by Herstein’s theorem [7],

we have [H,H] C E. Since a ¢ C, then [a, E] # 0. Thus we can choose
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e = ¢2 € R with rank 2 such that either (1 —e)ae # 0 or ea(l — e} # 0.
Note that (1 — e}ﬁ(l —¢€) # F(1 - ¢) and eRe # Fe. We may assume that
(1—e)ae # 0. We remark that an analogous argument can be applied to the

case that ea(l — e} # 0. Substituing ez(1 — €) for = in (7), we see that
(8) [aez(l — ) + ez(1 — e)b, cex(]l — e) + ex(1 — e}d] = 0.
Multiplying (8) by 1 ~ e from the left obtains

{((1—e)aex(l — e)ce — (1 — e)cex(l — elae)z(l—e) =0

for all z € R. Since (1 - e)R(1 — e) # F(1 — e}, Lemma 6 implies that
(1—e)aez(1—e)ce—(1~¢)cex(l—e)ae = Ofor all z € R. By Lemma 1, there
exists A € F such that (1-¢)ce = A(1~¢)ae. Substituting ez for z in (7) and
then multiplying by 1 — e from the left, we see that (1 — e)aex(cez + ezd) =

(1 — e)cex({aex + ezb). Thus
(9) - (1 —e)aex((c — Aa)ez + ex(d — Ab)) =0

for all z € R. Since eRe # Fe, Lemma 6 implies that either (¢ — A)e € Fe
or d—Ab € F. If (¢ — A)e = —fe, where 3 € F, then, by (9), we have
(1—e)aezex(d—Ab— ) =0 for all z € R. Thus we have d — Ab— B8 =0 (15,
Lemma 2|. Thus, in either case, there exists 8 € F such that d — A\b— g =0.

Suppose next that 1 € #. Suppose on the contrary that d ¢ Fo+ F. In
this case, we see that B = M, (F),where n > 2. Write a = Yor .1 Bijei; and
¢ = Z?‘Fl pijeij, where B35, ui; € F. Suppose that g;; # 0 for some 1 # ;.
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Replacing z by e,z in (7) and expanding eiilae;;x+e;;xh, cejixtejizd] =0,

we see that
(10) Biseisz ((c = Ma)es;m + ej5a(d - ) =0,

where A = pgjﬁi;l € F. Applying Lemma 7 to (10), we have d—XbeF a
contradiction. Thus a is a diagonal matrix. For an invertible matrix u € R,

by (7) we have
(11) [uau"lx—l—xubu—l,ucu_lx—l—a:udu_l] =0

for all 2 € B. The above argument says that uau™' is a diagonal matrix.
In particular, for ¢ > 1 we compute {1 + eri)a(l ~ e} = a+ (B — B11)ewi,

implying that 3 = 811 This means a € F, a contradiction. Sod € Fb+ F.

Up to now we have proved the claim d — A\b = # € F. Replacing ¢, d
by ¢ + 8,d — [ respectively, we may assume that d = Ab. The rest is to
prove that ¢ = Aa. Suppose that ¢ # Aa. Let f = f* € H. Substituting
zf for z in (7) and then multiplying by 1 - f from the right, we see that
(Aa—c)zfrfb(l—f)=0foralz e R, where we also use d = Ab. Thus, by
[15, Lemma 2], f&(1 — f) = 0. Analogously, (1 — f)bf =0 and so [b, f] = 0
follows. As before, this implies that & € F, a contradiction. This proves

¢ = Ma. This proves the theorem.

§4. Rings with Involution

Throughout this section, let R be a prime ring with involution *, right

Utumi quotient ring I/ and two-sided Martindale quotient ring Q. It is well-
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known that the involution * can be uniquely extended to an involution on
). We denote this involution by * also. Denote by Der(U) the set of all
derivations of /. Thus Der(I') C Gder(L'}. Let D be the C'-submodule of

Der(l7) defined by
D = {§ € Der(U) | I* C R for some nonzero ideal I, depending on §, of R}.

We denote by GD be the C'-submodule of Gder(I7) consisting of all elements
g of the form z9 = az + z° for some a € Q and § € D. Let g € GD. Then
(¢ C @, and so one can define a generalized derivation, say g*,on . Forz €
Q. let 29 = ((2*)?)*. Write 2? = ax+ 2 forsomee € Qandé € D. Thena
direct computation proves that z% = a*z + 2% ~24(#") Thus ¢* € GD and
(g*)* = g. Moreover, if g1, -+,gn € GD, then (91929 }* = (g*}91929n

for all z € Q).

A *-generalized differential polynomial (*+~GDP) means a generalized
polynomial with coefficients in U and with noncommuting variables which
are acted by the involution * as well as generalized derivation words (in GD}.

Recall the following basic *—identities as given in [4):
(B3) (Xxy)=¥x-.
(B9) (X +Y) =X*4+Y*
(B10) (X9)* = (X*)¥") for g € GD.
(B11) (X919279n)* = (X*)91929a for g1,---,gn € GD.

Applying the basic identities (B1}-(B11), every *-GDP can be trans-
formed into the form qb(X,-F", (Xi-rj)*), where ¢(Z;;, Z:‘J) 1s a *-~generalized
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polynomial over U in distinct variables Z;; and the I[';’s are gener-
alized derivation words (in GD). A *-GDP $(X]7,(X;')*) is called
a x—generalized differential identity (*-GDI) for a subset T of @ if
(X7, (X T )*) assumes 0 for any assignment of values from T to its variables

X;. Bach *~GDI can be transformed, via the basic identities (B1)-(B11),

into a form qS(Xi-rj , (XI-F" }*) such that

(x-R1) &(Z;, Z;) is a *—generalized polynomial over U in noncommut-

ing variables Z;; and
(*~R2) the I';'s are distinct regular words.

Now a +-GDP is called reduced if it assumes the form qS(X zr (X :" ] )*)
satisfying {*~R1) and {*~R2). The following powerful result was due to
Chuang [4]. We remark that the theorem actually holds for +-DIs with

coefficients in U/,

Chuang’s Theorem. ZLet R be a prime ring with involution *. [f
qb(XiAj,(X;&j]*) 15 a reduced *-DI for a nonzero ideal of R, then qi')(Z;-j, Z,-"j)

s a ¥x-GPI for R.
We are now ready to state our result.

Theorem 4. Let R be a prime ring with involution *, might Utumi quotient
ring U and two-sided Martindale quotient ring Q). If qu(X,-F", (X,‘-rj)*) 15 @
reduced *-GDI for a nonzero ideal of R, then ¢(Zi;,2:;") is ¢ ~GPI for Q.
Proof. For its proof, we only give its outline. We apply the same argument as

given in the proof of Theorem 1 by replacing [10, Theorem 2] with Chuang’s
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theorem. Hence, we obtain that qﬁ(Z,-_,-, Z,-j*) is a *~GPI for R. In view of

[1, Theorem 1.4.1], R and @} satisfy the same *-GPIs with coefficients in U

Hence, (IS(Z,'}', Z,-J-*) is a *-GPI for . This proves the theorem.

)

[#s]
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