MHiE @K
THRRARHEL A ¢ip) GUA R £ 4 2 s
XX%%%%%%%%%%%%%%%%%%%%X%%%
ZS S
K agAE . D9 Zf ???( Gutois Hf 2, ZS
ZS S
XXXXX%%%%%XXXXXXXXXXXXX%X%

F

TEHS Dy Oxsnss

% + NSC ”—&Uf—l M — ool —-o/%—
AP EL B BE P75 2 B3/ g

1*5;

*

¥
¥

gl Je
%ﬂ

A
&
-

EET Y AN A
T iE A

AR R & 31 TR 2 g4
Dﬁ@%ﬁéﬁmgmﬁﬁ%—@
Dﬂk%%@&éi%@@ﬁﬁ%—%
D&ﬁ@%%%?%cﬁﬁ%&%ﬁz%x@—@
D@%%ﬁm%#%@%%%ﬁ%%»%

AT E A % ﬁ(ﬁ)’f%

T %2 R A 705 X g ;4 g




TRIVIAL IDENTITIES WITH SKEW DERIVATIONS

BY
CHEN-LIAN CHUANG

Abstract. Assunie that  is an expansion closed word set. Let € be a subset of Q such that
the expansion formula of each A = Q' involoves only words in €. So €' is also an expansion
closed word set. We prove that 3'Q') = (') N 3(Q), where ©(€') is the set of polynomials
with words in Q' and where (') and 3(Q) respectively are the ideals of trivial identities
with words in ' and in Q respectively. We also prove that any basis of Q' modulo () can
be extended to a basis of 2 modulo J(Q).

This paper is a continuation of [3]. Our aim here is to prove something we promised
there. We will keep the notations of [3]: Throughout here, R is always a prime associative
ring and U is its left Utumi quotient ring. The extended centroid C of R is defined to be
the center of U. (See [1] or [8] for a definition.) We let I/~ denote the set of all invertible
elements in U. Objects of our investigation are the following generalization of products of
(higher) skew derivations:

Definition: ([3], pp. 294) By an ezpansion closed word set, we mean a set ) of symbols
satisfying the following three conditions:

1. There exist two disjoint subsets QF, Q= of Q such that Q = QT U Q~. There exist
two increasing sequences of subsets of QF and Q= respectively

QS QICQ, S C0, 0 C 0 CO,, S C O
such that Q% = J,5, QF and Q= =, ., Q7.

2. Each symbol g € Qf is associated with an automorphism ¢ € R — z9 € R and the
polynomial my(x,y) = z9y9. Each symbol h € {15 is associated with an antiautomorphism
£ € R— " € R and the polynom:al mj(z,y) = yhzh.

3. Let n > 1. Each symbol A ¢ Qf \ Qf is associated with an additive map A :zx €
R 22 € U and a polynomial 7 (z, y) in the form

!/

(%) male,y) = oyt 429y + ) atibytie,
i

with g, h € Qg’, each a;,b;,¢; € U and each A;, Al € Q,f_l, such that for all z,y € R, the
identity (xy)® = ma(x,y) holds. Each symbol A € Q7 \ Q7 is associated with an additive

map A:x € R— 22 € U and a polynomial Ta(z,y) in the form

(1) Tale,y) =3t +yva +Zaiyﬁ“’biwé‘:'cu
) 1

with g, h € Qy, each a;,b;,¢; € U and each A, A} € Q,_;, such that for all z,y € R, the

identity (ry)® = ma(w,y) holds.
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Symbols of © are called words and the polynomial ma(x.y) 1s called the ezpansion
formula of the word A € (2. Set ©, "= QFUQ;. We define Qo = Q) and Q, = Q,\2_,
for n > 1. Words in Q,, are said to be of order n. For g, h € Qff (or g, h € Q] respectively),
let Q,(g,h), n > 1, be the set consisting of all A € Q,, with 7a(x, y) described in the form
(Jy+) (or (17) respectively). We set Q(g, h) ot Uoe, Qu(g. k) and Qulg. h) aet Qg.h)NKQ,
forn > 1.

We will investigate two expansion closed word sets related in the following way:

Definition: Let Q be an expansion closed word set. A subset ' of Q such that 75(z,y) €
(') for any ¢ € Q' is also an expansion closed word set. We indicate this by simply
saying that Q/Q' are ezpansion closed word sets.

We fix an infinite set X = {z1,x,,...} of noncommuting indeterminates zy,z2,.... For
any subset ¥ of 2, let (X)) be the set of all generalized polynomials with coefficients in U
and in the indeterminates 2, where z € X and A € &. We will regard p(T) as a subset
of p() in a natural way. Elements of p(Q) are simply called polynomials for brevity.
To avoid confusion, the zero element of p() is called the zero polynomial instead of the
trivial polynomial, which has a technical meaning below:

Definition: ([3], pp. 298-299) Let Q be an expansion closed word set.
1. Let  be an ideal of p(Q). For g, h € QF or g,h € Q7 , a polynomial () € p(Q), in
the indeterminate x € X only, is celled a basic (g, h)-polynomial modulo , if

ole+y)—p(2) ~o(y) €T and  play) —Fe(f) - p(£)7" €3,
where & & z,y def. y for g, h € QF and 7 det Y,y 4L 4 for g, h € Q.
2. The ideal of trivial identities cf R, denote by 3(§2), 1s defined to be the minimalideal

S of p(§2) such that I contains all the basic identities modulo 3. An identity of R is said
to be trivial or nontrivial according it is in J(2) or not.

Our main aim here 1s the following:

Theorem 1. If Q/Q' are expansion closed word sets, then J()') = p(Q2') N I(Q).

If each 2; are expansion closed word sets, then so is their union def U, Qi in a natural
way. Theorem 1 above say that <(Q;) = p(Q;) N I(Q) for each 2. This coherence of
trivial identities justifies their appropriateness. This problem is not encountered in [6] or
its extensions [1], (2], and [7], becatse there is essentially only one word set involoved. As
the word set © of our theory can be various in applications and also as our notion of trivial
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identities is rather complicate, we need Theorem 1 to assure that our theory does nicely
generalize all old ones, such as [1], 2], [4], [5], [6] and [7].

Since our understanding of the iceal 3(Q) of trivial identities mainly comes from bases
of & modulo J(§2), we will deduce this from the following result, which is both important
and interesting in itself:

Theorem 2. If Q/Q are expansio closed word sets, then any basis of Q' modulo J(Q')
can be extended to a basis of ! modulo J(2).

In our further researches, we often have to extend the given expansion closed word set
' to a bigger one  and most results of our investigation can be stated in terms of bases
or reduced forms. This theorem will enable us to push such results of Q back to the given
V. Granted Theorem 2, we now give

Proof of Theorem 1: Let Q/Q' be expansion closed word sets. Obviously, p(2)NI(Q) is
an ideal of p(Q'). Firstly, if o € p(Q') is basic modulo p(Q')NF(Q), then, as a polynomial in
p(£2), it is also basic modulo F(2), tince p(Q')NI(R) C (), and hence ¢ € P(Q)NS(Q)
by the defining closure property of <i(). So the ideal p(Q')NF(Q) of p(Q') also enjoys the
defining closure property of I(2'). We hence have p(2') N 3(©2) D I(N') by the defining
minimality of I(Q'). For the other inclusion, we assume the validity of Theorem 2. Fix a
basis = of )’ modulo 3(Q') and ext>nd it to a basis ZU L of Q modulo (), where ¥ is a
subset of Q\Q'. Given ¢ € p(Q2')N(Q), let 1 € p(Z) be its =-reduced form modulo F(Q').
So ¢ —1p € F('). Since we have shown F(Q') C (), we also have ¢ = ¥ modulo IJ(Q).
So 1 1s also the = U T-reduced form of ¢ modulo (). Since ¢ € p(Q') N F(Q) C H(Q),
the = U X-reduced form 1 of v must be the zero polynomial. Hence ¢ = ¢ — ¢ € ('),
as asserted.

We introduce the following generalized notion of bases modulo ideals:

Definition: Let Q/Q be expansion closed word sets. Let 3, 3’ be ideals of p(f2), p(Q)
respectively such that 3 2 3'. (We indicate this by simply saying that 3/3 are ideals
of 2/Q'.) By a basis of Q/Q modulo 3/3, we mean a subset T of Q\ Q' satisfying the
property: For any given ¢ € p(Q), there exists 1 € p(Q'UX), which is unique up to within
equivalence modulo the ideal generated by 3’ in p(Q), such that ¢ = v modulo 3. That
is, any given ¢ € p(§2) is equivalent to some 1 € p(Q'UL) modulo  and any two such v’s
are equivalent modulo the ideal gererated by 3’ in p(2). The polynomial 1 is called the
Y-reduced form of ¢ modulo I/3’. We also observe the equivalence: A subset ¥ of Q\ @/
forms a basis of /0" modulo 3/3" if and only if p(Q'UI)+3 = p(R) and INp(Q'UL) is
included in the ideal generated by 3. The first condition is equivalent to the existence of
i € p(Q'UT) which is equivalent to a given ¢ € p(Q) modulo 3. The second condition is
equivalent to the uniqueness (modulo the ideal generated by $') of such 1, if there exists
any.
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If O = 0. then p(') is just the ring U and we can merely let 3’ be the zero ideal. By
taking Q' = § and 3’ = 0, bases of Q/Q" modulo J/3’ are merely bases of 2 modulo J as
defined in [3]. In this sense, owr notion of bases here generalize the old one in [3]. This
generalized notion of bases are related to our problem via the following:

Theorem 3. Let 3/3' be ideals of expansion closed word sets /Q'. If Q' possesses a
basis modulo 3', then the followirg are equivalent for a subset ¥ of Q \ ':

(1) The set T forms a basis of (!/Q" modulo 3/3'.

(2) For any basis = of Q' moduio 3. ZU X forms a basis of Q modulo 3.

(3) There exists a basis = of Q' modulo 3 such that =UY forms a basis of Q modulo S.

In view of this, Theorem 2 1s equivalent to the existence of bases of Q/Q' modulo
J(Q)/3(Q'), since we have alread;s shown (') C J(Q) in the proof of Theorem 1. Our
construction of bases thus generalized essentially follows the line of [3]. But, because of
the complexity of the argument, it seems rather difficult to indicate merely where and how
such modifications should be mad:. For the sake of clarity, we will supply all the details.
For convenience of reference, we will also recall all important notions of [3]. Actually, we
intend to make this paper self-contained so that corresponding results of [3] can be read
off here as special instances by lesting ' = 0 and 3’ = 0. We start with the following
generalization of Fact 1 [3]:

Fact 1. Let 3/3' be ideals of espansion closed word sets 2/Q' and let ¥ be a subset

of Q¢ & \ . Assume that for each A € Q°\ I, there is assigned a polynomial

Aa(z) € (' U X) in the indeterminate x only. Then the set ¥ forms a basis of Q/Q
modulo §/3' with Aa(z) being ths S-reduced form of 22 for each A € Q°\ ¥ if and only
if § is the ideal of p(2) generated by 3' together with all z® — Aa(z) for A € Q°\ .

Proof: The sufficiency (=) 1s sinple: Assume that ¥ forms a basis of /2 modulo
/3" and that Aa(z) is the Z-reduced expression of z® for A € Q°\ £. Then each
z® = Aa(z) € 3. Set 37 to be the ideal of p(Q) generated by 3’ and all such 24 — Az (z).
Then 3T C 3. For ¢ € p(Q), let ¢’ € p(' U T) be the expression obtained from ¢ by
replacing every occurrence of z2, where A € Q°\ £, by Aa(z). We have ¢’ € p(Q' U L)
and ¢ — ¢’ € ST C 3. Hence ¢’ is the S-reduced form of ¢ modulo 3. Suppose ¢ € 3.
By the uniqueness of reduced forms, the E-reduced expression ¢’ of ¢ is equivalent to the
zero polynomial modulo the ideal generated by $'. Since ST D §', we also have ¢ =
modulo JF, that is, ¢’ € 1. So ¢ = (¢ — ') + ¢’ € 3T, Since p € I is arbitrary, 3 C $t
follows. So 3 = 3T, as asserted.

To prove the necessity (<), we define A\ () . Aa(z) for A € Q°\ E. Assume

that 3 is the ideal of p(Q2) generated by § and all such My (z). Then 22 = Ax(z) modulo
S for A € Q°\ T, Given p € p(R2), let ¢ be the expression obtained from ¢ by replacing
every occurrence of r2, where A = Q°\ T, by Aa(x). Then ¢’ € p(Q' UZT) and ¢ = ¢’
modulo 5. To show the uniqueness of such ¢', we must show that SN p(Q'UX) is a subset
of the ideal generated by 3 in p(£1). Let p € SN (' UT) be given arbitrarily. Since the
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3 is generated by 3' and the set of A\ (), where A € 2°\ &, we may write

(0) Z O+ S AL,

AEQ\T

ideal

where (.1, 0.0 € (). where the first summation ranges over 8 € 3’ and where the
second summation ranges over all ossible v € X, A € Q°\ Z. In (, n, ¢ and v, we first
replace every occurrence of 2, where A € Q°\ T, by Ma(2) + Aa(z). We then substitute
expressions of Aa () as polynomials i p(Q2'UX) into the resulting expression but we leave
all the occurrences of A, () unaltered like indeterminates for a moment. That is, in (, 7,
¢ and ¢, we replace every occurrence of 22, where A € Q°\ I, by

where the dots denote the expression of Aa(z) as a polynomial in p(Q' U X) and where
A\ (z) is treated like indeterminates ‘or a moment. The final expression thus obtained from
(0) can be expanded as a generalized polynomial in the “indeterminates” Al (z), where
A € Q°\ T, in the “indeterminates” =2, where A € Q'UY and also in the “indeterminates”
6 € §'. Observe that terms resulting from the first summation of (0) always contain one
factor 9 € J' and also that terms resulting from the second summation of (0) must involve
at least one factor A (z). We may incorporate all terms containing AL (z), A € Q°\ X,
into the the second summation of ({) and express all occurrences of § € J' in such terms
as polynomials in p(2'). By doing s, we may hence rewrite (0) as

(1) © = Z Con + Z/Lg/\A (z1)p1 - Aa, (@r)per,

k21

where all {,n,ui € (' UX). The second summation ranges over all k& > 1, over all
z; € X (not necessarily distinct) and over all A; € 2°\ £ (not necessarily distinct). Fix
any arbitrarily given Ay (z1),... ’/\ILW (zg) (not necessarily distinct) in this order. Let

(2) ,“o’\ oy Ay (@)
k

denote the sum of all terms in the second summation of (1) with Ay (z1),... . Ay, (zx)
occurring in this order. We want tc show that this summation (2) is equal to the zero
polynomial in the “indeterminates™ ;5 («). That is, we want to show that

!
Z /16 &0 ,“/1 RNV ,ul., =0,

where the tensor product 9 is over the extended centroid €. Assume on the contrary
that there exists such a nonzero summation. Without loss of generality, we may assume
that our &' is chosen to be the largest possible among all such nonzero summations in (1).
We hence assume that (2) is such a nonzero summation for the £’ so chosen. In the two

t




expressions (1) and (2). we first rep ace each “indeterminate” Ap(ir). where A € Q°\ T, by
the polynomial expression £ — A5 ') and we then expand the expressions thus resulted.
Observe that the expansion of (2) in p(Q) gives rise to the following sum

!
S AL AV
oy ey

All'¢. 5. #in the first summation of 1) fall in p(Q'UY) and hence cannot contribute to give
such terms. By the maximality of ' in the second summation of (1), this sum consists of
all terms in the expansion of (1) with the factors z2', ... | ;r,kA,"' occurring in this order. But
there are no such terms in ¢ since ¢ € P(Q'UT) and Aq,... ,Ap € Q° \Z=Q\(Qux).
By comparing the expressions on both sides of (1) as polynomials in ©(§2), we thus obtain

!
Y Hhyph @ e =0,

This says that the summation )’ foAa (z1)ph o Aa, (Zk )y given in (2) is the zero
polynomial in “indeterminates” A, (2), a contradiction to our assumption. Hence the
second summation on the right hard side of (1) is really equal to the zero polynomial in
the “indeterminates” A (x). It follows that ¢ = > pcs COn. Thus ¢ falls in the ideal

enerated by &', as asserted.
g 3 ,

We are now ready for

def. \ ' and let 3T denote the ideal

Proof of Theorem 3: For brevity, we set Q¢
generated by 3’ in p(Q).

(1) = (2): Assume that ¥ is a basis of Q/Q modulo $/3'. For A € Q° \ &, let
Aa(z) € p(Q' U ) be the T-reducel form of 2. Given any basis = of Q' modulo ¥, we
also let As(z) € p(Z) be the Z-reduced form of z° for § € Q'\=. By replacing all occurrences
of 2%, 6 € Q', by their Z-reduced forms (modulo '), we may assume Ap(z) € p(=U )
for A € 2\ Z. Since = is a basis of Q' modulo &, the ideal 3 of ©(§Y') is generated by
2% — As(z), 6 € '\ Z, by Fact 1. Similarly, since ¥ is a basis of 2/ modulo §/3', the
ideal 3 of p(Q2) is generated by 3’ and +® ~ Aa(z), A € Q°\ T, by Fact 1 again. Therefore,
3 is generated by 2 — A (x) for A € Q°\ T and 2f — As(x) for & € Q' \ = altogether. By
Fact 1 again, the set ZU T forms a basis of  modulo 3.

(2) = (3): Trivial.

(3) = (1): Let = be a basis of Q' modulo 3’ such that ZU S forms a basis of Q modulo
3. Let Aa(z) € p(ZU T) be the Z U T-reduced form of 2 for A € Q \ (EUX). By Fact
1, 3 is generated by these 2% — Ay (). For 6 € Q' \ Z, if As(x) is the Z-reduced form of
z° (modulo 3'), then this A(x) is also the = U B-reduced form of (modulo J), since
As(2) € p(Z) € p(ZUE) and 2° — Ny(z) € 3 C 3. So the = U S-reduced form As(x) of
2? for & € Q' is also its =-reduced form. By Fact 1 again, Q' is generated by r® — \4(z),
0 € '\ Z. So Jis generated by § end 22 — Ax(z), A € Q° \ £. By Fact 1 again, ¥ forms
a basis of /9 modulo J/3".
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Fact 1 and Theorem 3 are actually valid for any arbitrary operator sets Q/Q. as can be
seen from their proofs above. Since our word sets are inductively defined, we need notions
with ordered structures to allow soine sorts of induction:

Definition: Let /Q' be expansion closed word sets.

1. A polynomial ¢ € p(Q)\ p(Q') is said to be of Q/Q'-order n if n is the least integer
> 0 such that ¢ € (' UQ,). That is, the Q/Q"-order of ¢ € pP(N) \ P(Q') is the least
n > 0 such that all words involovad in o fall in Q' U Q,,. By a leading Q/Q'-word of
0 € () \ p(Q'), we mean a worl A € Q\ Q' of highest possible order which occurs
nontrivially in . By the leading Q/Q'-part of ¢ € p(2)\ p('), we mean the sum of terms
of v which involove leading Q/Q'-words of ¢. Obviously, ¢ € p(Q)\ p(Q') is of Q/Q'-order
n if and only if all its leading /Q'-words are of order n. We postulate that p € p(Q') is
of Q/Q-order —1 and has no leading Q/Q'-words. It is also convenient to set Q_, g
We then have that ¢ € p(Q) is of 2/Q'-order n if n is the least integer > —1 such that
v € (' UQ,).

2. Let 3/3' be ideals of expansion closed word sets /9. A basis T of Q/Q' modulo
J/3' is said to be ordered, if for any given ¢ € p(Q), there exists ¥ € p(' U L), whose
Q/Q-order is < the Q/Q -order of ¢, such that ¢ = ¢ modulo . By the definition of
bases of /2" modulo $/3’, such v is unique up to within equivalence modulo the ideal
generated by ' in p(Q).

Again, if Q' = @ and I’ = 0, then ordered bases of /9’ modulo §/S' defined above
reduce to ordered bases of 2 modilo J as defined in [3]. We have the following simple
characterization of ordered bases:

Fact 2. Let 3/3' be ideals of expansion closed word sets /Q'. A basis T of Q/Q' modulo
3/3' is ordered if and only if for each A € Q\ (Q' UZ), the S-reduced form of 2 has
Q/Q-order < the order of A.

Proof: Let Aa(x) be the Z-reduced form of 2 for A € 2\ (Q'UZT). The sufficiency (=)
1s obvious. For the necessity (<), the Z-reduced form of ¢ € p(2) 1s merely the expression
obtained by replacing every occurrence of 2 in ¢ by Aa(z) for those A € Q\ (2 U Z).
If the Q/Q-order of Aa(r) 1s < th2 order of A for each A € Q\ (' U T), the resulting
reduced form also has the Q/Q-orcer < the order of .

In [3], ordered bases are analyzec in terms of basic polynomials, which we have recalled
above. We define our generalization of simple basic polynomials of [3] in the following:

Definition: Let Q/Q' be expansicn closed word sets and let 3 be an ideal of (). A
basic (g, h)-polynomial o(r) (modulo J) of Q/Q-order n > 0 is called Q/Q'-simple if it

assumes the form
L

ple) = Zaigzr‘\“b,- + p(x),

1=1



where A; € Q,L(gi. hi)\ Q" are distinct, where a;,b; € U~ are such that a; 79 —rda; € 3,
b, — b € 3 for each i, and where ple) 15 a linear polynomial in p(Q' U Q:_l) or 1
P(QUQ ) according as ¢, h € Q7 or g.h € Q) respectively. Equivalently, a basic (g, h)-
polynomial ¢(r) (modulo J) of Q/Q-order n > 0 is called 2/ -simple if it is a linear
polynomial in p(Q'UQ) or in p(Q' JQT). according as ¢, h € QF or g, h € 1y respectively.
and if its leading Q/Q'-part assumes the form Yo @™, where A, € Qulgi. hi) \
are cistinet and where a;,0; € U™} are such that a;x? — xda; € 3, xh‘bi —bzh e 3 for
each i. If p(x) happens to be an ‘dentity of R, then we call ©(x) an Q/Q'-simple basic
(g, h)-identity modulo 3.

Intuitively, a basic (g, h)-polynomial ¢(z) is Q/Q-simple if, modulo S plry)—290(y) —
@(x)y" is of lower Q/Q'-order in a simple way. To be precise, we actually define the (/Q'-
simplicity so that the following holds:

Fact 3. Let /Q' be expaunsion clcsed word sets and let S be an ideal of ©(2). For given
p(z) € p(Q) of Q/Q-order n > 0. ¢(x) is Q/Q-simple basic modulo the ideal 3 if and
only if it is /Q'-simple basic modilo the ideal generated by 3N p(Q' U Q, _;).

Proof: The necessity (<) is obvious. We show the sufficiency (=): Suppose that () 1s
an 2/Q'-simple basic (g, h)-polynornial modulo 3 in the form:

ple) = Z a; 2 b; + p(z),

1

where a;,b; € U™, A; € Q%(g4, k) def. Qu(gi, hi) \ Q" are such that a;x9% — z9a; € 3,

zhib; — b € 3, and where p(z) s a linear polynomial in p(Q'UQL_ ) or in p(Q'U Q1)
. def.

according as g,h € QF or g,h € Q27 respectively. Set F e z,y =y for g,h € QF and

5 R o for g,h € ;. For each i, we let

de”

‘IL‘Ai(*/Evy) = 7TA,-(4L'JJ) - i,!ligAi - '%Ai i

Yy

So we have ¥ (z,y) € p(Q' U Qy-1) and 74, (z,y) = 39§ + FRgh 4 ba (2, y). We
compute:

pley) — #o(y) — p()5"

=D _ailey) i+ play) = 103 aid® b+ p(§)) - (3 aid by + p(2))"

1 12

= @l FGA + FA G 4y ()b + ply)

—E0 @i b+ p(§) = (3 ai® b + p(£))3"

t t

% i % ~ Ay ANV Py ¥ ~h
= Z(ai:zrj — Ba;) g b; + 2 a; &4 (yh b, — b ™)

1 1

+ Y acha (@, y)b + pley) — 3 p(f) — p(E)j.
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Observe that a, 2% — #%a;, 3", — b;j" and eley) —19o(g) — ()g" all fall in 3 by the
definition of being Q/Q'-simple basic modulo 3. So the expression . a,wy, (0, y)b; +
pley) — p(y) — p(2)g" also falls in 3 and hence in 3 N (U Q,-1). since each term
in this expression is of Q/Q'-order < n. But all a;#% — Ha,ghib; — bigh € 3 () C
SNP(Q'UQ, 1), since n > 0. The last equality displayed above says that p(ry)—I9p(y)—
()" falls in the ideal of ©(§2) generated by the polynomials a;#9 — i9a,. g, — bt
and Y aiwa ()b + pley) — 3 p(§) — p(£)g", all of which have been shown to be in
SN Q'UQ,_1). So pley) — 2'e(§) — ()" falls in the ideal generated by the set
SN PR UQ,1). Also. since oie) is linear in z, (e + y) — o(r) — o(y) is the zero
polynomial and trivially falls in the ideal generated by 3N (Q'UQp,_y). Thus w(z) is
an /Q'-simple basic (g.h)-identity modulo the ideal generated by SN p(QUQ,_1), as
asserted.

The crucial step of our argumen: is the following generalization of Fact 2 ([3], pp. 308):
Fact 4. Let ¥ be an ordered basis of expansion closed word sets /Y modulo the ideals
3/9". Let = be a basis of ' modulo . If the Z U S-reduced form of 29, g € §Qp, assumes
the form ux?u~" for some u € U™ and j € (Z2U )N Qy, then we have the following:

(0) Any basic polynomial () € p(ZU L) modulo ¥ of Q/V -order —1 falls in ©(Z) and
1s also basic modulo &7,

(1) Any basic (g, h)-polynomial o(z) € p(ZU L) modulo 3 of Q/Q -order 0 assumes the
form a(x9¢—cx™)b, where a,b e U™, 0 #c €U and §,h € Sy are such that az¥ — 19 €3,
ehb —beh e 3.

(2) Any basic (g, h)-polynomial p(x) € p(ZU ) modulo 3 of Q/Q -order > 0 is /-
simple.

Proof: By Theorem 3, ZU T forns a basis of Q modulo 3. We start with two claims:

Claim 1. For () € p(ZUZ) in x only, if o(z 4+ y) — e(r) —e(y) € 3, then p(z) is
linear in x: Assume on the contrary that ¢(z) involves a nonlinear term apz®tay - - - 2% a,.
where s > 1, ag,a1.... ,ay € U ard Aq,... ,A, € ZUS. Then wlz +y)—plr) — ply)
involoves nontrivially all terms in the form aosf‘ Yay -+ z5ay, where each z; is either r
or y and where there exist at least one z; equal to z and also at least one z; equal to y,
since all such terms do come from agz®'ay --- % a, and they cannot be cancelled with
each other. So p(x 4+ y) — ¢(z) -- ¢(y) is a nonzero polynomial of ©(=Z U X) and thus
ol +y) —p(x) —ply) ¢ 3, since ZU T is a basis of Q modulo 3. But this contradicts
the assumption that p(x +vy) — o) — @(y) € 3.

Claim 2%. For a linear o(z) ¢ pP(= U D), if p(zy) = 3, a;z%biyic; modulo 3 for
some d;. by, ¢c; € U and 65,0 € Q, taen p(x) € p(Z U 1), where S+ T NO*: Assume
on the contrary that some A € £ Q7 with m maximal possible, occurs nontrivially in
(). Let us consider the case that A € Q(g,h), where m > 0 and ¢,h € 1y . The

case that A € QF can be treated analogously. Let uydu~", vatv=1, where u,v € U~! and
g.h € (ZUT)NQy, be the ZU T-reduced forms (modulo J) of 7, ot respectively. By the

9



fact that T is an ordered basis of 2/Q" modulo J/3, the Z U S-reduced form of (ry)=
equal to

uyfu=te> + 4 '+ terms of Q/Q -order < m.

In the = U Z-reduced form of p(ey), terms with y. & oceurring in this order must come
from the expansion of (xy)® for some ¢ € (Z U 2)NQT. If o e = C QL then (ry)® falls
i p(Y') and hence its = U S-redaced form falls in p(Z). So such (ry)?, where 6 € =
cannot (‘ontIibute to give a term with y?, +® occurring in this order. If § € © N Q4.
then (2y)® also falls in gJ(Q,”_l) and its = U Z-reduced form consists only of terms of
Q/Q-order < m —1, since T is an ordered basis of 2/Q modulo 3/, Such (zy)°, where
6 € TN, _;, cannot contribute to give a term with y7, &2 occurring in this order either.
So we are left with the case 6 € & ﬂ Q,Tl For 6 € SN Q7 (¢', '), the only terms of Q/9)-
order m in (xy)? are 'ngz S and y® et To give terms with y9, 2 occurring in this order,
this 0 must be A itself. So it sufficas to consider terms mvoloving A. Let Z =1 x‘\‘b’ be
the sum of all terms of p(z) involving A. In the reduced form of p(zy), terms Wlth yd, 2
occurring in this order 11111st come from Z ., al (iy)Ab’ The sum of such terms is thus
given by Z ., al uyg u” Ab'] Th s must be the zero polynomial, since ¢(ry) is assumed
to be equivalent (modulo ) to a sum of terms with 2°, y% occurring in this order and
hence the = U Z-reduced form of p(zy) must also consist entirely of terms with b,y
occurring 1n this order. We thus have ijl aduuTl e b’ = 0, where the tensor product

J

is taken over C'. But this implies i nmediately Z -1 @ % b- = 0, a contradiction.

We have analogously:

Claim 27. For a linear ¢(x) € p(ZUZ), if p(zy) = > iy‘s’b 2% ¢; modulo 3 for some
a;,biyc; € U and ¢;,0; € Q, then p x) € p(ZU ™), where o= eno-.

We remark that if the basis Z of Q' modulo ¥ is ordered, then o(z) € p(QF) or
¢(x) € p(27) respectively, according as g,h € QF or g, h € §}y respectively: Let us say
g,h € QF . We have already shown p(z) € p(Q' U Q%) in Claim 2. If some A € 2N (Q')~
occurs nontrivially in (), then we pick such A with the maximal possible order and, now
using the ordered basis = of Q' modulo §’, we argue in the same way as Claim 2% of (3]
(pp. 308) to reach a contradiction.

Assume that p(z) € p(Z U I), in the indeterminate z € X only, is a given basic
(g, h)-polynomial modulo J. Let ns assume that ¢, h € QF. The case that ¢,k € Q
treated analogously. Since ¢(x + 1) — ¢(x) — o(y) € S, ,o(r 1s linear by Claim 1. Sll’l!,, e
o(ry) = x90(y) + e()y" modulo 3, ¢(r) € p(EUTH) by Claim 2. Let uziu-!. vyhy =1,
where u,v € U™ and .1 € (=UX)N€y, be the =ZU S-reduced forms modulo I of 29, y»
respectively. We divide our argum-nt into three cases according to the Q/Q-order of the
given basic (¢, h)-polynomial ¢(z) modulo 3:

Case 0. p(x) 1s of Q/Q"-order —1: By the definition of .Q/Q"()I(IPI —1, we have p(z) €
©(=). Let ¢(r,y) be the Z-reduced form of p(zy) modulo 3'. Since 3 O 3 R , o(z,y) 1s also
the = U S-reduced form of o(ey) mwodulo 3. The ZU - xe(lu( ed form of p(xy) — 290(y) —
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Py modulo 3 is thus given by

placy) = u”wup(y) — ey ot

This expression is the zero polynomial. since () is (g. h) basic modulo 3. If ¢ € S, then
u 11"1@((/) consists of all terms with +9, y®, where ¢ € =, oce urring in this order. There-
fore. w7 eIup(y) and hence o(y) also are the zero polynomial in this case. Analogously
he T also implies that @(r) is tle zero polynomial. Therefore, if § g€ Sorhes, then
p(r) is the zero polynomial and is hence basic modulo 3’ in a trivial way. So we assume
that §,h € =. But then we ()111'» reed identities in 3’ to obtain the above = U Y-reduced
form of p(ry) — 29p(y) — p(x)y". That is, e(zy) —290(y) — p(z)y* = 0 modulo I'. Since
plz) € p(=) C p(Q ), () is also (g, h)-basic modulo I, as asserted.

Case 1. () is of Q/Q-order 0: Write

=> iai,‘xg"bij + plx),

=1 j=1

where a,] sz €U, g; € SF and p'u r) € p(Z). Let p(z.y) € (=) be the =-reduced form
modulo 3 of p ¢y). Since &' C 3, p(z,y) is also the = U T-reduced form modulo I of
plzy). We compute modulo St

0 E“P('J/'y) —a%o(y) — o(a)y”

s s s s 8
D) IIIET) o) ST (2.2 aise?bi)y
=1 j=1 =1 j=1 =1 j=1
+p(xy) = =Ip(y) — p(x)y"

_ZZ 50y Dy llrgu(i:iaijy”‘bij)—(iiaijxg‘bij)vy;‘v—l

=1 j=1 =1 j=1 =1 j=1
+p(x,y) —u™ eTup(y) — px)oyto .
This last line above gives the = U Z-reduced expression of p(zy) — z9¢(y) — o(z)y" and

hence must be the zero polynomial. We first assume that all a; ; are picked from a C-basis
-1

of U which contains ©™!. Note that p(x,y)—u"! 2Iup(y)—p(x)vyhv=! cannot contribute to
give terms Wlth x9%, y9" occurring in this order, since g; € T but p(z,y), p(z), p(y) € p(=).
Ifa;; #u " ory, 76 g, then the tern a, ;29 y¥ b- i the first suunmation must be cancelled
by terms in the third summation aud, for these terms, we must have gi = h and b; j=06v7!
for some 3 € C. We can thus write p(z) = = '29b 4+ axhv~! + p(x) for some a,be U. A
direct computation shows that

wlzy) — 2le(y) — ple)y" = —u 129 (ua + bv)yilv—l ,
+ ple,y) —u " efup(y) — pla )Uy v ! modulo 3.

11



Being the leading Q2/Q"-words of (). both § and & fall in 4. In the = U S-reduced form

of plaey) —rfe(y) — o(r)y. all terms with 0yt where 8 € =, occeurring in this order fall

' and conversely, p(a )oy® vt consists of all such terms. So pleyey®e=1 and

hence p(r) must be the zero polynomial. It then follows that b + ua = 0. Set ¢ = pp =

~ua. Then g(2) = v efb+ achie =V =y~ pdep=l — = lephyp-1 = uHaIe ~ ety as

in plo)ey e~

asserted.

Case 2. p(r) is of Q/Q-order > 0: Set T,, & SN Q,, for m > 0. Let A € %, be a
leading Q/Q'-word of ¢(z). We vant to show that terms containing A in o(r) assumes
the asserted form. Consider a typical term 7(2) = az®b of p(z), where a,b e U, § € ZUT,
and define

we(z,y) et T(ay) — 297(y) — r(x)yt = ams(x,y)b — 29ay®hb — ax’ by

We want to find those terms 7(z) = ax®b such that the = U S-reduced forms of Vr(r,y)
modulo J involve the given A nortrivially. If § € = C Q' then Yr(2,y) also falls in p(Q')
and hence its Z-reduced form moclulo §' falls in p(Z). Since I’ C 3, the =-reduced form
of wr(x.y) modulo J' is also its = U S-reduced form modulo 3. The = U S-reduced form
of such w-(z,y) falls in p(Z) and cannot involve A. If & € &,,_; C Q—1, then v (r)
also falls in p(£2,_1) and hence ifs = U S-reduced form falls in p(= U Yy-1), since ¥ is
an ordered basis of 2/Q' modulo 3/3'. The = U S-reduced form of such Yr(x,y) cannot
nvolve A either. Since p(x) is of Q/Q-order n, we are left with the case that 6 € .
Since the basis ¥ of Q/Q" modulo J/3 is ordered, words of order < n in Q \ Q') when
expressed in terms of the basis & can only give rise to words in &,,_; plus some words
in Z. Therefore, for 7(x) = az®d, where § € Yy, the only word in £, \ ,,_; which can
possibly occur nontrivially in 9-(a,y) is § itself. If 6 # A, then 1, (z, y) cannot involve A
nontrivially. So we must have & = A. Assume that A € Q(¢', 1), For 7(z) = az®b, the
sum of terms involoving A in v, (a,y) is

a;L'g’yAb + (L;L’Ayh/l) —2lay®l — azPbyt = ((u:g’ — 9a)yth + axA(yh/b — by,
Let Y0, a;x®™b; denote the sum of all terms mvolving A in ¢(x). In ¢(zy) — 29(y) —
p(x)y", the sum of terms involving A is then given by

8

Z(a,ﬂ:g’ —2%a;)y™b; + Z (li:EA(yh/bi — biy").

=1 1=1

Let u;(r) and v;(y) be the ZU S-reduced forms of a;z¢ — r%a; and yhlb,* — by". In the
=UX-reduced form of p(zy) —x9¢ly) —p(x)y", the sum of terms involving A is then given
by

() Yo ulelythi+ > airtuily).

=1 =1
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Since 2(r) s a basie identity moddo 3. play) — e9e(y) — ¢l ey falls in 3 and hence its
=Z U S-reduced form (*) 11111st he the zero polynomial. Note that (). vi(y) are of Q/Q'-
order < 0 and that y=. r= arve of Q/Q-order 1 > 1 by our case assumption. From the
fact that (*) is the zero polynomial, it follows that both ) p () y=b;. >, a;r=vi(y) are
also the zero polynomial. Withou: loss of generality, we may assume that the expression
37 air=b; is so chosen with s minimal possible. Both the two coefficient sets {a;} and {b,}
are then C-independent. With this, from the fact that Y, i)y b;, > a;r=vi(y) are the
zero polynomial. we deduce that al p;(«) and all vi(y) are also the zero polynomial. This
implies a.,'.rg’ — Ya,. y"’lbl' — biy" € 3. We show that a;.b; € U~!: Let the = U S-reduced
forms of +9', yhl respectively be w8 (u')7! v't/h ( )= respectively, where §'. A’ € =N Q,
and u'.v' € U™, The ZU S-reduced form of a9 — x%a; is then a;u'z9 (u')™! — urfu=lq;
and this must be the zero polynomial, since aixd — x9%a; € 3. We hence have ¢ = g and
a; = a;u(u’)7! for some o; € C. Similarly, we have b; = S;v'v~! for some 3; € C. But
{a;} and {b;} are C-independent by taking s to be minimal. So s = 1 and a,x2b; is the
only term involoving A 1 (). This complets our proof of Fact 4.

Our proof of Fact 4 above follows pretty much the same line as that of Fact 2 [3]. But
our Fact 4 does not follow immediately from Fact 2 [3], since the leading Q/Q'-part of a
polynomial in p() 1s usually different from its leading part (that is, its leading 2/-part).
Also, as shown by the example below, it 15 not always possible to choose a basis = of
modulo J(£') so that the basis ZU £ of @ modulo J is ordered.

Just as in [3], we relate our generalized ordered bases to some generalized dependence
relation defined below:

Definition: Let 2/Q' be expansion closed word sets.

1. Let $o(£2/Q') be the ideal »f p(2) generated by J(Q') and Ip(2). (Recall that
So(Q) is the ideal generated by all identities in the form (z) = z9u — uz®, where u € U
and ¢g,h € QS’ or g.,h € Q5.) For n > 1, we define inductively 3,(2/Q') to be the
ideal generated by $,,_1(Q2/Q") and all Q/Q'-simple basic identities modulo 3, _;(Q'/Q)
of Q/Q’-()rder n.

def.

2. Set QU = QU and Q,, = Q, \ Q,_; for n > 1. A subset € of Q, \ € is said to be
Q/Q'-dependent if g ~ h for two d:stinet g, 7 € & or for some ¢ 6 Y and h € Q. (Recall
that g ~ h,if g, h € Q+ or g,h € ) and if there exists v € U~ such that z9 = uxhy !
for all x € R.) For n > 1. a subset © of Q,, \ Q' is said to be Q/Q'-dependent if there exists
an /Q-simple basic identity moculo 3,-1(2/Q") with all its leading Q/Q'-words in <.
(This basic identity must hence be of Q/Q-order n.)

3. A subset T of Q\ ' is said to be Q/Q’-(lt’pmdmﬁ if for some n >0, LN Q, is Q/Q'-
dependent. A subset & of 2\ Q' is raid to be Q/Q'-independent if it is not Q/Q'-dependent.

Roughly speaking, a subset of Q\ Q' 15 Q/Q'-independent if it does not destroy the
independence modulo 3(Q'). Agein, if ' = §, then the notions above reduce to the
corresponding notions of [3]. We have the following pleasant analogy of Theorem 1 ({3]):
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Theorem 4. Let Q/Q' be expansion closed word sets.

(1) 3(Q) =)~ 3.(8/Q").

(2) A subset T of Q\ Q' forms an ordered basis of /' modulo 3(Q2)/3(Q') if and only
if ¥ is a maximal Q/Q'-independeat subset of 0\ Q.

We recall the following:

Definition: ([3] pp. 308) Let © be an expansion closed word set. An ideal 3 of () 1s
sald to be ezpansion closed if for auy » € § and any indeterminate ¢ involved in @, by
writing @ = p(x), we have p(2 +3) € S and p(ay) € 3.

We collect some simple observations below:

Fact 5. Let Q be an expansion closed word set and 3, an ideal of ©(€2).

(1) A sum of basic (g, h)-polynomials modulo '3 is also a basic (g, h)-polynomial modulo
3.

(2) Given g,h € QF (or g,h € Qy ), let uyv € U™ and ¢' 10 € Qf (or ¢' b € Qy
respectively) be such that ux?d — 29 ¢ yhy — vyt € 3 If e(z) € p() is a basic (g, h)-
polynomial modulo 3, then up(x)v is a basic (g, h")-polynomial modulo 3.

(3) Assume that the ideal 3 is expansion closed. Ife(z) € p(Q) is equivalent (modulo )
to a basic (g, h)-polynomial modul» 3, then ¢(x) is also a basic (g, h)-polynomial modulo
R
Proof: (1) Trivial.

(2) Say, g.h € QF. Let p(z) € P(£2) be a basic (g, h)-polynomial modulo & Then
up(z +y)v = u(p(r) +9(y))v = up(e)v +up(y)o modulo 3. Also, up(ry)v = u(zdo(y) +
e(@)y")v = 9 up(y)v + up( o )oy? + (uz? —xglu)cp(y)v-{-ugo(x)(yhv —oy?') = 29 up(y)v +
up(x)oy"’ , where the last equivale:ce follows since ux? — 29 u, yho — vyt € 3. Tt follows
that up(x)v is a basic (¢', h')-polynomial modulo 3.

(3) Let () be a basic (g, h)-polynomial modulo 3 such that Y(z) = ¢(z) modulo 3.
Equivalently, w(x) —(x) € 3. By she expansion closedness of 3, we have Y(r+y)—p(z+
y) € 3 and Y(xy) — p(xy) € 3. So ol +y) — @lz) —p(y) = w(z + y)—v(z)—(y) €3
modulo 3. Also ¢(ey) — #90(g) - o(3)i* = y(xy) — #99(j) — Y(2)7" € '3 modulo I,
where & < xZ, 7 def y for g, h € QF and 7 et Y,y s for g,h € Q. Thus () is also a
basic (g, h)-polynomial modulo 3, as asserted.

We are now ready for

Proof of Theorem 4: We observe first by induction on n > 0 that 3,(02/Q) is ex-
pansion closed: The case n = 0 s obvious. As the induction hypothsis, assume that
In—1(2/Q) is expansion closed. 7o show that 3,(22/8') is expansion closed, it suffices
to check (e +y), pley) € J,(2/Q) for Q/Q'-simple basic identities @(x) of 2/ -order
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n modulo 3, 1(Q2/Q"), for these identities together with 3 n—1(82/Q") generate 3, (Q2/Q').
So let p(r) be an Q/Q-simple basic (¢, h)-identity of /Q'-order n modulo 3, _,(Q/Q).
Then w(r) € 3,(£2/2) by the detinition of 3,(2/Q'). Since w(r) 1s hnear, o(r + y) =

P(0) + wly) € 3, (/). To show pley) € I (/7)) set & e z,Y def. y for g.h € QGL

. def. def

and =y g = rfor g h € Q5. Since p(ary) — 30(g) — p(F)jh € Sn—1(2/92"), we have

Pley) € o) + 2B + 3,-1(/Q) C 3,.(2/9).

where the last inclusion follows since (F), 2(7) € 3 (§2/82') by the definition of 3,(Q/Q").

= def. = dof.
Recall that def Qy and Q,, @t Q,\ Q-1 for n > 1. For any subset ¥ of Q. we set

def. = def. = . . = def. . .
L, = SNQ,and &, = TNQ,. For brevity, we define Q,, = Q \ ©,,. Since we will often

. o . . def. def.
deal with complements of ', it is convenient here to define Q¢ “2 -
1 ;

= Q\Q, Q= Q,\Q,
Qe “oq, \ Q. Q(g. h) et Qul(.h)\ Q" and Q° o, \ . (The superscrit ¢ here
suggests the “complement” of Q') Throughout the rest of the proof, we fix an ordered
basis = of ' modulo J(Q').
Assume that T is a maximal /Y -independent subset of Q \ . By induction on n, we
proceed to define a polynomial Ax(x) € p(ZU E,) for each A € Q¢ \ T and to prove the
following three assertions:

(1) For A € Q5(¢g.h)\ =, n > 1), the polynomial 2 — Aa(r) is an Q/Q'-simple basic
(g, h)-identity modulo 3,,_1('/Q of Q/Q-order n.

(2) The set £,,UQ" forms an ordered basis of 2/ modulo 3,(2/Q')/I(Q') with Aa(z)
being the ¥, U Q¢ -reduced form of 22 for A € Q5 \ ©,,. Equivalently by Fact 1, the ideal
Sn(Q/€) is generated by J(Q') and 22 — Aa(z), where A € Q2 \ T,,.

(3) Any basic identity modulo <,,(2/Q") of Q/Q'-order < n falls in SR(02/Q).

We start with n = 0: Let ¢ € Q5 \ £y be given. By the maximality of ¥, the set
Yo U{g} is no longer Q/Q'-independent. So ¢ ~ o for some ¢ € Q0 U X distinct from g.
If o € ', then o ~ o' for some ¢ € =, and, replacing o by o', we have o € =0. So we
may always assume that 0 € =y U Sy. Let u € U™! be such that 29 — uru—! = 0 for all
r € R and define A (z) C e € p(Zo UZy). We have 29 — A\ (z) = 29 —uzu~! =

(2%u —uz®)u~l € Jo(Q). since the identity ¢9u — uz® falls in F0(2). This proves the

assertion (1) for n = 0. For converience, we also set Aglr) L 29 for g € =g UZg.
Consider an identity of 35(2/Q') in the form z9%¢ — ca®, where 0 # ¢ € U and where

g,h € QFf or g, h € Qy . Let Ay(a  we7u=t and Ap() def veTv!, where u,v € U™!

and 0,7 € =g U ;. We have

¢ —eal = (29 — Agl))e — ol — Ar(2)) + Ag(x)e — eAp(x)
(0¥ = Ag())e — e(xh - Ap(e)) +(
(¥ = Ag(a))e — cleh — An(x)

)+ (uxu"te — cvrTvT)
e)) +u(euev —uT e Tyt

Since u,v™! € U and since 29%¢ — cah, 29 — Ay(ar) and ok — Ap(x) are all identities, so is

r7u” v —uTleva ™. The identity o7 ! !

cv—u” cvx” 1mplies ¢ ~ 7. Since 0,7 € U S,



we have o = 7 and hence also =1 p € C. The identity +7u =" ep — ulevaT is thus the zero
polynomial. So we have p¥¢ — oph — (19 = A, (r))e = (e = An(2)). The ideal S (2/Q).
defined to be the ideal generated by 3(Q') and all identities of the form r9¢ — crh where
gh € QF or g I € 27 1s therefore also geuerated by 3(Q') and identities r* — Al
k€ Q. But o* — Ar(e) = 0% — ok = 0 for k€ Zy USy and also r* — () € 30(2))
for &€ Q) \ Z. The ideal S0/ 1s thus generated by 3(Q') and identities % — Ar(r).
ke s\ Sy, Observe that QNS =Q"\ (S, U S:Z{)) By Fact 1, ©, U Q{J forms a basis of
/9" modulo 3y(Q/Q)/3(Q) with Ay(r) g € Q5 \ Ty, being the To U Qg-reduced form of
9. Since each Ap(r). b € Q5\ Sy has Q/Q-order < 0. the basis £, U Q‘O of Q/Q" modulo
So(Q2/Q)/3(Q") is ordered by Facs 2. This proves the assertion (2) for n = (.

By Theorem 3. the set = U %, U Qf forms a basis of £ modulo 30(Q/Q'). Let () be
a basic identity modulo So(2/9) of Q/QV-order <0. The ZU T, U Qg—reduced form of
@(z) modulo J¢(2/Q") is still basic modulo 3,(2/Q") by (3) of Fact 5 and also has Q/Q-
order <0, since S, U Q{) 1s an ordered basis of Q/9Q" modulo So(2/Q")/3(Q). Replacing
e(z) by its ZU S, U Qg—reduced form, we may assume plr) € p(ZUZHU Qg) If o)
has Q/Q-order —1. then P(r) € piZ) 1s also basic modulo 3(2') by Fact 4 and we have
Plr) € 3(Q) C 3y(2/Q) by the defining minimality of 3(2'). We hence assume that
@(x) has Q/Q-order 0. By Fact ¥ again, w(xr) assumes the form a(rde — ca®)b, where
a,be U™, where () #celU and wlere g-heZforg he Xy . The identity a(rdc—cxh)b
inplies g ~ h. Since ¢, h € Yo, we have ¢ = h and hence ¢ €C. Soa(xdc—cah)bis merely
the zero polynomial and it follows elr) € I(2/Q"). We have thus shown that Jy(Q/Q")
contains all basic identities of /Q-order < 0 modulo S0(£2/9). This proves the assertion
(3) for n = 0. The induction basis for n =015 thus completed.

As the induction hypothesis. we as sume that /\A(Jt ) has been defined for A e Q9 \Z, -,
so that the assertions (1),(2) and (3) hold for n—1. By Theorem 3, the set Uz, Uflf‘,_l
forms a basis of Q modulo Sn=1(82/"). The assertion (1) for the induction step n follows
from the following

Claim 1. For each A € Qg.h) \ ., n > 1, there exists Aa(z) € p(ZU T,) such
that 22 — Ax(2) is an Q/Q"-simple Lasic (g, h)-identity modulo Su-1(Q/Q) of Q/Q -order
n: Given A € Q¢(g.h) \ T, the sot T, U {A}, being strictly larger than the maximal
£/Q-independent subset S, of Q0 is o longer Q/Q'-independent by the maximality of
Sn. Therefore, there exists an 2/ -simple basic identity o(2) modulo Sn-1(Q/Q) with
all its leading Q/Q'-words in S, U {A}

3

o) e Z agrih, + p(r),

=0

where a;, 0, e U™, A, € S U{AY and ple) € p(Q'UQ,_;) satisfy the defining properties of
/Q-simple basic polynomials modulo Su-1 (/). If A # A, for all 7, then all A €T,
contradicting the 2/ -independence of £, So some Aq, say Ay, must be equal to A.
But (LJIQA(.U)/)J] 15 also an Q/Q'-simple basic identity modulo Sno1(02/Q). Replacing

() by (’I,U_l\p(;z:)b(;' by (2) of Fact 5. we may assume ay = by =1 to start with. So @(r)
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assuies the form

cef. u ) .
ole) ‘E o™+ Z a; e+ ple),
=1
and 15 hence an Q/Q'-simple basic-(g¢. h) identity of order 1 modulo Sn-1(2/Q"). We may
assune that p(.r) is in the reducec form with respect to the basis ZU X, _, U Q,‘,_l by (3)
of Fact 5. Since p(r) is of Q/Q-crder < n — 1 and since AP Qf,_l forms an ordered
basis of Q/Q" modulo 3, _1(Q/Q")/3(Q). we have p(z) € P(ZUZ,,—). Define

8

Aalr) def. _ z<u.L'A"I)i —ple) € p(ZUL,).

=1

Then r2 — \a(x) = Yoy Gh + plr) = o) is an Q/§-simple basic (g, h)-identity
modulo 3,-1(2/Q), as asserted.

Claim 2. Any basic (g, h)-idertity o(x) of Q/Q-order n modulo Sn-1(22/Q') can be
written uniquely in the form

S

plr) = Z(Li(;I?A' — Aa, (@))b; modulo 3,1 (Q2/Q),

=1

where a;.0; € U™'. A; € Qfl(g,-,hi) \ ¥, are such that a;z% — x9a;, x2Mb; — bz €
Sn-1(2/Q'): By (3) of Fact 5, we may assume that @(x) is in the reduced form with
respect to the basis ZU ,,_; U Q%_, of Q modulo Sn-1(2/€"). Since ¢(z) is of Q/Q'-
order n and since S, _; UQ¢_, forris an ordered basis of /8 modulo $,,_1(2/0")/3(2),
we have p(z) € p(ZUE, _UQS). By Fact 4, the basic (g, h)-identity @(x) must be Q/Q'-

sumple:
8

o) = Z(Liw‘\‘ibi + p(x),
i=1

where p(x) € p(Z U, ) and where a;,0; € U™, A, € Qn(g,-, h;) are such that a;z9 —
9a;, 2, — bz € Jn—1(Q/Q). Since T, is Q/Q'-independent, not all the leading 2/Q/'-
words A; arein T,,. By reordering if necessary, we may assume that A, ¢ S, forl1 < <t
but A, € &, for t < 4 < 5. For 1 <4 < ¢, 28 — Aa;(z) is an /Q'-simple basic
(91, hi)-identity modulo 3,1 (2/Q') and hence a;(x® — Aa,(2))d; is an Q/-simple basic
(g, h)-identity modulo 3,,-1(2/Q') by (2) of Fact 5. Being the sum of basic (g, h)-identities
modulo I, -1 (2/Q").

t t
() def. olx) — Z a;(x™ — Aa, (2))b; = p(x) + Z a; A, (z)b;
i=1

=1

15 also a basic (g, h)-identity of Q/Q-order < n modulo 3, -1(82/22") by (1) of Fact 5.
In the expression of ¢'(x), all A,,..., A, are cancelled. Hence words of Q¢ occurring
nontrivially in @'(), if any, must be all in &,,. If o'(2) were of 2/Q'-order n, then all its
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leading 2/Q'-words would be in S, and. since @'(r) is also reduced with respect to the basis
ZUS, - UQ_, of Q modulo 3,_.(2/Q). the basic identity 2 () modulo 3, _,(2/Q")
must also be /Q'-simple by Fact 4 again.  This contradicts the independence of T,
Therefore. (i) is of Q/Q-order < n. By the induction hypothesis, '(r) € 3,1 (2/Q").
Hence o(2) = 377 a (= = A te ) modulo 3, ( Q/Q') as asserted. To show the
unicueness. 1t suffices to prove thet for distinet Ny € Q) \ S, and for any a;;.b;; € U.
ZLZJ (1”(1A — Aa ()b € 3,1 (2/Q7) implies ZJ a;j o> bi; = 0 for each 7. This is
immediate: The expression Z}. ag (0= = A, (@))b;;, being an element of In-1(2/Q")
and also being reduced with respect to the basis ZUS,,_, UQ;_I of £} modulo 3,1 (Q2/Q').
must be the zero polynomial. Bn‘( :11 the expression Zi Z]‘ a2 — Aai(2))bij, the sum
of terms involving A; 13 Z (1”1 . Hence Z a;j > bi; = 0 for each 2. Claim 2 is thus
proved.

The assertion (2) for the the indu-tion step n now follows from Claim 2 and the induction
hypothesis. So ¥, U )], forms an ordered basis of /Q" modulo $,(Q2/Q")/3('). By
Theorem 3. ZU X, U Q5 1s a basis of  modulo 3,(2/Q")

Claim 3. The ideal 3,,_1(£2/€Q") s generated by the set 3,,(Q/Q)Np(Q'UQ,_1): By the
induction hypothesis, 3,,_1(2/Q") is generated by J(Q') and 22 —Aa(x), A € Q5 \Sp_1.
By the definition of 3, (2/Q'), we have J(Q') C 3,(2/Q) N (' UQ, _1). Also, for A €
Q0 _ 1\ Shet1, we have 22 — M () € 3,(2/Q)Np(Q UQ,—1). So 3,_1(Q/) is included
in the ideal generated by 3,,(/Q") N o(Q' U Q,,_1). For the other inclusion, it suffices to
show Sn(Q/Q) N p(Q U Q,—1) C 5,1 (2/Q): Given ¢ € 3, (Q/Q) N p(Q' UQ,_1), let

" be the expression obtained by substituting Aa(z), A € Q5 \ Z,,, for all occurrences of
;EA n . Sin(e @ € (U Q,_1), we use only Aa(x) for Ae Q5_;\Z,_11in obtammg
@', Since 22 — Ma(z) € 3,1(Q/) for A € Q5 _, Sn 1, it follows ¢ = ¢’ modulo
1\91 (©2/Q"). Since 3,,_1(2/Q") C 3,(Q/Q") and since ¢’ € p(Q' U L,,_1), the expression

@' s also the reduced form of ¢ with respect to the ordered basis &,, U Q” of /9 modulo
‘\,, Q/QY/3(Q'). Since ¢ € 3,(2/Q), its T, U Qfl~w(111<.,e,(l form ¢’ is equivalent to
the zero pol_’y‘uomial modulo the id:al generated by 3(2'). That is, ¢’ falls in the ideal
generated by J(Q'). But the ideal 3,,_;(Q2/Q') includes J(2'). So ¢’ € F,-1(2/'). But
then ¢ € 3,-1(2/Q') also, since ¢ = ¢" modulo J,,-1(2/Q’). This is true for arbitrily
given ¢ € 3I,(Q2/Q") N (R U Q,—11. The asserted inclusion 3, (/) N p(Q' UQ,—1) C
Jn—1(2/Q") follows.

We now prove the assertion (3) for the induction step n: Let ¢ be a given basic identity
modulo 3,(Q/9Q) of Q/Q-order < n. Since T, U QF forms an ordered basis of 0/
modulo 3, (Q/Q) /). the T, U Q¢-reduced form of ¢ also has Q/Q'-order < n. By
(3) of Fact 5, we may thus assuune that ¢ is in the reduced form with respect to the basis
ZUT, UQS of Q modulo 3,,(Q). If the Q/Q'-order of ¢ is —1, then ¢ falls in (=) and is
basic modulo 3(') by Fact 4. So ¢ € (') C J,(2/Q') in this case. If the Q/Q -order
of ¢ 1s 0. then ¢ assumes the form a(x¥%¢ — c.’z:h)b for some a,b € UL, 0 # ¢ € U and
g.h € &y. But we have already shown in the induction basis that such identities are in
Jo(2/9). We hence assume that o has Q/Q'-order > 0. By Fact 4, the basic identity
@ must be Q/Q'-simple. By Fact 3, ¢ is also an 2/Q'-simple basic identity modulo the
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deal generated by 3, (Q/Q) N (UL, ). By Claim 3. the identity o is therefore Q/8-
simple basic modulo 3, (Q/Q). If & is of Q/Q-order n. then o falls in 3.(2/Q") by the
definition of 3,(2/9Q"). If » is of 2/Q-order < n. then o € S3,-1(2/Q) C 3,(2/Q" by
the induction hypothesis. This corapletes our induetion step of the assertion (3).

L def.

Since the sequence of ideals 3, (! L/} 1s increasing, the set § ‘= Unso S/ forms
an 1deal of (). Assume that o is a basic identity modulo 3. To verify this, we only
need finitely many identities of 3. So the identity ¢ 15 also basic modulo In(2/Q) for
n large enough. We may let n > the Q/Q-order of v Then p € 3,(02/Q") C 3 by
the assertion (3). We have thus shown that 3 contains all basic identities modulo 3
itself. By the defining minimality of 3(Q). 3 D 3(Q) or Uiz, 3.(Q2/9) D 3(Q). On the
other hand, we prove inductively that J(Q) 2 3,(2/Q") for all n > 0: We have already
shown 3Q) D 3J(Q') in the proof of Theorem 1. Let o(r) = 2% — ur?, where v € U
and g.h € QF. be an identity of R. We compute directly oz 4+ y) — p(z) — ely) =0
and @(ry) — 292(y) — o(x)y" = 0. Hewnce () 15 a basie (g, h)-identity modulo the
zero ideal of (). A similar computation shows that an identity of the form o(r) =
29u — ux”, where v € U and ¢.h € 2y is also simple basic modulo the zero ideal of
9(Q). Hence all such identities fzll in 3(Q2). But these identities together with 3(Q')
generate J3o(2/Q'). So J(Q) 2D Iy(Q/Q). Forn > 1. assumme, as the induction hypothesis,
that 3(Q) 2 3,1 (/). But then all identities basic modulo 35,21(02/Q") are also basic
modulo 3(§2) and hence must fall in J(Q) by its defining closure property. Particularly, all
1/ -simple basic identities modulo Sn—1(82/Q") of Q/Q'-order n must fall in 3(€2). Since
such identities together with Su-1(2/Q") generate 3,,(2/Q'). we have J(2) D 3,(02/Q).
So it follows that J(Q2) D U:;O 3,(02/Q"). Combining these two inclusions, we have
S(Q) = U0, Sa(Q/Q), as asserted.

Since each 3,(2/Q') is generated by J() and 22 — Az () for A € Q0 \ &, the ideal
S(Q) = Unzy Sa(2/Q) is generated by S() and all > — Aa(2), where A € Q° \ &. By
Fact 1, the maximal Q/Q'-indepenlent set ¥ forms a basis of Q/Q" modulo (Q)/3()
with Aa(x) being the S-reduced form of 22 for A € Q° \ Z. But Aa(2) has Q/Q-order <
the order of A for A € Q°\ T. The basis & of /9" modulo J(2)/S(R') is hence ordered
by Fact 2. We have thus shown that any maximal Q /€-independent subset of Q° forms

an ordered basis of 2/Q" modulo 3(Q)/3(Q).

We finally show that any ordered basis of Q /€2 modulo 3(Q)/3(Q) must be a maximal
Q/Q-independent subset of Q: Let © be an ordered basis of Q/Q modulo J(Q)/3(Q' ).
First. assume on the contrary that © is not Q/Q-independent. That is, ¥, is Q/Q-

dependent for some n. If n = 0, then ¢ ~ h for two distinct g.h € T or for some g € T.

def. - - o -
h € Q. and we set o(v) = %u — ur”, where v € ™! satisfies 9 — uzu=1 = 0 for all

r € R If n > 1, there exists an Q/Q-simple basic identit () modulo ,,_1(/Q') with
1 y ¥

all its leading Q/Q-words in ©,. 1 either case. there alwayvs exists a linear basic identity

g 7 ¥ 3

v modulo () with all its leading Q/Q-words in £. Since the leading Q/Q'-words of

v are already in &, the = U S-redvced form of w(r) modulo 3(Q) has the same leading

Q/V-part as ¢ and caunot be the zero polynomial. But the identity ¢, being basic modulo

3(Q), falls in 3(Q) by the defining closure of 3(Q) and its ZU S-reduced form must hence
be the zero polynomial. a contradiction. The ordered basis S is thus /' -independent.
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We now assume that £ is not a maximal Q/Q -independent set. We extend S to a mazimal
Q/-independent set T Pick arb trarily A € ©\ S and let Ay (0) € P(ZUT) be the ZUT-
reduced expression of = modulo 3(Q). Then o= =\a(2) € J(€2). But ¥, being a maximal
Q/Q-independent set. mmst also form an ordered basis of 2/Q" modulo 3(Q)/3(Q') and
hence the set = U T7 also forms a Hasis of € modulo 3(€2) by Theorem 3. The expression
2 = Aaf) is obviously not the zero polvnomial of o(Z U T, a contradiction to the
fact that «= — Aa(r) € 3(2). Therefore, any ordered basis of Q/Q modulo J(Q)/I(Q)
must be a maximal /Q-indepen lent subset of @\ Q'. The proof of Theorem 4 is thus
completed.

Theorem 2 now follows easily from Theorems 3 and 4:

Proof of Theorem 2: The unior of an increasing sequence of /Q'-independent subsets
of 2\ " obviously remains Q/Q'-ndependent. By Zorn’s lemma, there exists a maximal
Q/Q-independent subset £ of Q| @', By Theorem 4, this maximal Q/Q-independent
subset ¥ forms an ordered basis of Q/Q" modulo 3(Q')/3(Q). By Theorem 3, for any
basis = of Q' modulo J(Q'). the set ZU T forms a basis of © modulo 3(£).

One might expect that any ordered basis of Q' modulo 3(2') could also be extended to
an ordered basis of @ modulo J(2). This turns out to be false as shown in the following
somewhat trivial example:

Example 1: Let d,0 be two distinet symbols. both of which designate the same outer
derivation of a prime ring R. Define

fef.

0, = {1}, el {1,0} and Q def. Q, def- {1,¢6,d},

where 1 is the identity automorphism of R. Set Q' %2 \ {6} = {1,d}. Both Q and its
subset Q' are expansion closed word sets. The set Q' is an independent subset of Q' itself
and hence forms an ordered basis of Q' modulo 3('). But the set Q) = {d}, though being
an independent subset of ', is no! an independent subset of 2, since #¢ — £° is a simple
basic identity modulo 3(§2) with tae leading word d. So Q' is not an independent subset
of {1 and cannot be extended into an ordered basis of Q modulo J(Q).

The trouble comes from the fact that the word d above, designating a derivation, should
have been reasonably put in 2 insiead of ,. However, the following is a more complicate
example:

Example 2: Suppose that 6.0, are ordinary derivations of a prime ring R such that

- - def. def. | e .. . . . .
01,0y and 03 =" [01,05] = 810, — 6.0, are C-independent modulo inner derivations defined

by elements of 7. Define
def. def. . - def. def. . R . .o o
QU = {1}‘ 521 = {1*0“02*(8’3}* SZ = Q'Z — {1»(5%(52,(533(51(52’(5261}3
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where 1 is the identity automorpaismm of R, Set Q' g \ {03} = {1.07.00.0104. 050, }.
Both £ and its subset ' are expansion closed word sets. Note that the set Q' is an
independent subset of Q' itself and hence forms an ordered basis of ' modulo 3(Q'). But
the set Q) = {810,020 }. though helng an independent subset of Q. is not an independent
subset of 2. since o™ % —p"2% — 0% i asimple basie identity modulo 3(Q) with the leading
words 070, and d,0,. So 2’ 15 not an independent subset of Q and cannot be extended into
an ordered basis of € modulo J(€).

This time. all derivation words are appropriately put in the right ;. But Q' is lack of
83 def. [01.02] to destroy the independence of 610, and 6,01. Example 2 also shows a slight
difference between IKharchenko’s sheory and ours here: In order to apply Kharchenko's
theory [6] to identities m p(2') ebove, we must first extend Q' to © and then consider
regular words with respect to the basis {é; : 7 = 1,2,3} ordered by é; < ¢ < 93, say. But
our theory for identities in (') ompletely resides in the word set Q' itself. This slight
generality might sometimes simp.afy applications of the theory to analyze a particular
1dentity.

The problem on extension of ordered bases to ordered bases will be analyzed in our
later work. Let us conclude this paper with the following remark: Although ordered bases
are very useful in proving things I'y induction on orders, bases in general (not necessarily
ordered) are actually more intrinsic in the sense that results stated in terms of bases of
Q will automatically imply the corresponding results for expansion closed word subsets Q'
by Theorem 2.
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