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ONE-SIDED REIFENBERG CONDITION

AI-NUNG WANG

The most general form of the one-sided Reifenberg condition is given by Tobias
H. Colding and William P. Minicozzi I in [1]:

Definition: A subset T' of M™ is said to satisfy the (4, r¢)-one-sided-Reifenberg
condition at z € I if for every 0 < o < ry and every y € B;,-o(z) N T, there

corresponds a connected hypersurface,L;;‘, with 9L, , C 8B, (y).

Bﬁﬂ(y) n Ly,o 7(" ¢,

sup |Ap|® < §%072,
B,y {yinL

and such that the connected component of B,(y) N T through y lies on one side of
Lya.

In practical use, it is formulated as follows: cf. [2],[3]

Theorem: There exists an € > 0 such that the following holds. Let y € B3, r > 0
and X C By (y) N {xs > z3{y)} € R® be a compact embedded minimal disk with
X C 8B, (y). For any connected component ¥/ of B, {y) NI with B, (y)N # ¢,
one has supsy|Ax |2 < 2.

We indicate the crucial steps of its proof from a lecture note at MSRI by Mini-
COZZ1.

Lemma: Given C,3e > 0 so that if Bg; C ¥ is an embedded minimal disk

/ A< C  and / |A|? < e
B‘Bs BQ&\B.?

then supg, |4]? < s72

Corollary: Given C1,3C) so that if Byy C T is an embedded minimal disk with
fiﬁ'z‘-jlzﬂll2 < {4, then Sups, |A,2 < 023_2.

Proof of the Lemma: By an estimate of Choi and Schoen

sup |A]? < Cres™?
885\325

We will show that [, |A4|* < C implies

L(25) < 4xs+Cs
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2 ALI-NUNG WANG

indeed,
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In particular, ¥z,x’ € Bs,\B2s can be joined by a path of length < C3(1 + C)s.
Since | V7| = |A|, we conclude that over Bg,\Bs; it is a graph (at least locally).

If v € 8Ba,, let v, = outward normal geodesic, then |rﬂ§3| < +/Ciefs, 50 it
stays close to its initial tangent ray. In particular dist(end points of 7,) is almost
Bs. Since it is a graph with small gradient, the cylinder {z? + 22 = (25)2} N Bs,
does not intersect 08s;. Therefore we get a collection of graphs. Finally using
embeddedness we see the the intersection is a collection of disjoint embedded circles,
and by maximum principle we know one of these bounds a disk containing 0 in X.
The proof is finished by recalling

Theorem: (Rado) If £ is minimal and 8% is a graph over boundary of convex
domain, then ¥ is a graph.
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