
*
※不平行极小的面线给的建接机

計畫類別: ☑個別型計畫 □整合型計畫
計畫編號:NSC打-2115-M-002-020-
執行期間: 2~~年 8月 1日至 20~1年 10月31日
計畫主持人: 王 落 裳
共同主持人:
I
本成果報告包括以下應繳交之附件:
□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份
執行單位: 公大教育系

行政院國家科學委員會補助專題研究計畫成果報告

中

華民國《1年記月30日

行政院國家科學委員會專題研究計畫成果報告

計畫編號:NSC 89 - 2115-14-002-020

執行期限: 31年刊1日至21年10月3日

主持人: 工 范次 共同主持人:

計畫參與人員:

中文摘要 Colding 炒 Nimmoogsi 面化了凌雨

尼采精明的证明设证加贴

些 Rosenbery 元色 hebrord 特例

两者皆霉用到

關鍵詞: 写色的 Restanting 存件

Abstract Bolt in the proofs of generalized

Nitsola conjecture and helicoid

enjecture, our needs

Keywords: one-stided Reifenberg conditions

ONE-SIDED REIFENBERG CONDITION

AI-NUNG WANG

The most general form of the one-sided Reifenberg condition is given by Tobias H. Colding and William P. Minicozzi II in [1]:

Definition: A subset Γ of M^n is said to satisfy the (δ, r_0) -one-sided-Reifenberg condition at $x \in \Gamma$ if for every $0 < \sigma \le r_0$ and every $y \in B_{r_0 - \sigma}(x) \cap \Gamma$, there corresponds a connected hypersurface, $L_{y,\sigma}^{n-1}$, with $\partial L_{y,\sigma} \subset \partial B_{\sigma}(y)$,

$$B_{\delta\sigma}(y)\cap L_{y,\sigma}\neq \phi,$$

$$\sup_{B_{\sigma}(y)\cap L} |A_L|^2 \le \delta^2 \sigma^{-2},$$

and such that the connected component of $B_{\sigma}(y) \cap \tilde{\Gamma}$ through y lies on one side of $L_{y,\sigma}$.

In practical use, it is formulated as follows: cf. [2],[3]

Theorem: There exists an $\epsilon > 0$ such that the following holds. Let $y \in \mathbb{R}^3$, r > 0 and $\Sigma \subset B_{2r}(y) \cap \{x_3 > x_3(y)\} \subset \mathbb{R}^3$ be a compact embedded minimal disk with $\partial \Sigma \subset \partial B_{2r}(y)$. For any connected component Σ' of $B_r(y) \cap \Sigma$ with $B_{\epsilon r}(y) \cap \neq \phi$, one has $\sup_{\Sigma'} |A_{\Sigma'}|^2 \leq r^{-2}$.

We indicate the crucial steps of its proof from a lecture note at MSRI by Minicozzi.

Lemma: Given $C, \exists \epsilon > 0$ so that if $\mathcal{B}_{9s} \subset \Sigma$ is an embedded minimal disk

$$\int_{\mathcal{B}_{9s}} |A|^2 \le C \quad and \quad \int_{\mathcal{B}_{9s} \setminus \mathcal{B}_s} |A|^2 \le \epsilon$$

then $\sup_{\mathcal{B}_s} |A|^2 \le s^{-2}$

Corollary: Given C_1 , $\exists C_2$ so that if $\mathcal{B}_{2s} \subset \Sigma$ is an embedded minimal disk with $\int_{\mathcal{B}_{2s}|A|^2} \leq C_1$, then $\sup_{\mathcal{B}_s} |A|^2 \leq C_2 s^{-2}$.

Proof of the Lemma: By an estimate of Choi and Schoen

$$\sup_{\mathcal{B}_{8s}\backslash\mathcal{B}_{2s}}|A|^2\leq C_1\epsilon s^{-2}$$

We will show that $\int_{\mathcal{B}_{9s}} |A|^2 \leq C$ implies

$$L(2s) \le 4\pi s + Cs$$

2

indeed,

$$\begin{split} L'(t) &= \int_{\partial \mathcal{B}_t} \kappa_g = 2\pi - \int_{\mathcal{B}_t} K = 2\pi + \frac{1}{2} \int_{\mathcal{B}_t} |A|^2, \\ L(t) &= 2\pi t + \frac{1}{2} \int_0^t ds \Big[\int_{\mathcal{B}_s} |A|^2 \Big], \\ 2(Area - \pi r_0^2) &= \int_0^{r_0} dt \int_0^t ds \Big[\int_{\mathcal{B}_s} |A|^2 \Big] \\ &= \int_0^{r_0} ds \int_s^{r_0} dt \Big[\int_{\mathcal{B}_s} |A|^2 \Big] \\ &= \int_0^{r_0} ds \Big[(r_0 - s) \int_{\mathcal{B}_s} |A|^2 \Big] \\ &= \frac{(r_0 - s)^2}{-2} \int_{\mathcal{B}_s} |A|^2 \Big|_{s=0}^{r_0} + \frac{1}{2} \int_0^{r_0} (r_0 - s)^2 \Big[\int_{\partial \mathcal{B}_s} |A|^2 \Big] ds \\ &= 0 + \frac{r_0^2}{2} \int_0^{r_0} (1 - \frac{s}{r_0})^2 |A|^2 \end{split}$$

In particular, $\forall x, x' \in \mathcal{B}_{8s} \backslash \mathcal{B}_{2s}$ can be joined by a path of length $\leq C_2(1+C)s$. Since $|\nabla \vec{n}| = |A|$, we conclude that over $\mathcal{B}_{8s} \backslash \mathcal{B}_{2s}$ it is a graph (at least locally).

If $x \in \partial \mathcal{B}_{2s}$, let $\gamma_s =$ outward normal geodesic, then $|\kappa_g^{\mathbb{R}^3}| \leq \sqrt{C_1 \epsilon}/s$, so it stays close to its initial tangent ray. In particular dist(end points of γ_x) is almost 6s. Since it is a graph with small gradient, the cylinder $\{x_1^2 + x_2^2 = (2s)^2\} \cap \mathcal{B}_{8s}$ does not intersect $\partial \mathcal{B}_{8s}$. Therefore we get a collection of graphs. Finally using embeddedness we see the the intersection is a collection of disjoint embedded circles, and by maximum principle we know one of these bounds a disk containing 0 in Σ . The proof is finished by recalling

Theorem: (Rado) If Σ is minimal and $\partial \Sigma$ is a graph over boundary of convex domain, then Σ is a graph.

REFERENCES

- [1] Colding, T. H., and Minicozzi, W. P., II, *Minimal Surfaces*, Courant Lecture Notes in Mathematics 4 (1999).
- [2] Colding, T. H., and Minicozzi, W. P., II, Complete properly embedded minimal surfaces in \mathbb{R}^3 , Duke. Math. Jour. 107 (2001), 421-426.
- [3] William Meeks III and Harold Rosenberg, The uniqueness of the helicoid and the geometry of properly embedded minimal suraces with finite topology, pre-print.