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Abstract

We prove a large deviation principle for
the occupation time of a site in the two

dimensional symmetric simple exclusion
process.
Keywords: symmetric simple exclusion

process, occupation time, large deviation
estimate
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Consider  the  nearest  neighbor
symmetric simple exclusion process on two
dimensional lattice Z°. This is a continuous
time Markov process representing the
evolution of random walks on Z* with a hard
core interaction which prevents more than
one particle per site. The configurations of
this process are denoted by the Greek letter
7 so that 7 (x) 1s equal to 1 or 0 if site x in
Z? is occupied or not for 7.

For each ain [0,1], denote by v (a)
the Bernoulli product measure on the

configu-ation space (2 with marginals given
by
vial n, n(x)=1}=a
for x in Z*. A simple computation shows that
{v(a), 0=a =1} is a one-parameter
family of reversible invariant measures. In
this project we study the nearest-neighbor
symmetric  simple  exclusion  process
accelerated by T starting from the reversible
measure ¥ (@) for a fixed « in(0,1).
Consider the occupation time of the
origin:

Vi=(§ noma) /t.

A law of large numbers and a central
limit theorem for this additive functional of a
reversible Markov process can be proved
along the lines of [3]. It can be shown that V,
convergss in probability to gas t - oo
and that c(t)}(V,-a ) converges in distribution
to a non-degenerate mean zero Gaussian
variable. where c(t) is equal to the square
root of tlog t. Landim [4] proved a large
deviatioas principle for V, in dimension d#2
and that in dimension 2 the correct order is
t/log t.

In this project we establish the large
deviations of V, in dimension d=2. The rate
function will have a rather explicit form.
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The results stated in this report are taken

from a joint work with C. Landim and T.Y.
Lee [1].
Let @ = {0,1}* be the configuration

space of the exclusion process. Given T >
{), the generator Ly of the accelerated sym-
metric simple exclusion process is given by

(Lt = 5 Z fFm],

z,yeZd

flo™¥n) —

where the summation is carried over all
edges {x,y} of Z2. In this formula, f is
a local function and o™¥n is the configu-
ration obtained from 1 by exchanging the
occupation variables n{z) and n{y):

n(z) fz#zy,
(c™¥n)(z) = ¢ n(z) ifz=y,
nly) ifz=z.

For each 0 < a < 1, denote by v,
the Bernoulli product measure on 2 with
marginals given by

va{n, n(z) =1} =

for € Z2. Clearly, {v,,0 < o < 1}
is a one-parameter family of reversible in-
variant measures. For 0 < o < 1, de-
note by P, = P, the probability on
the path space D(R4,2) corresponding to
the nearest-neighbor accelerated symmetric
simple exclusion process generated by Lp
starting from v,.

Define the occupation time of the origin:

1 T
Vr = = L 0)ds .
T T/U”'?()S

The purpose of this project is to establish
the large deviations of V¢ under P, = P,
as T — oo in dimension d = 2.

It is known (see [2] for example) that
in the investigation of large deviations of
Markov processes, a major ingredient is to
find the relevant perturbations that create
the fluctuations. It turns out that in di-
mension ¢ = 2 the correct perturbations in-
volved in the investigation of the large devi-
ations of the occupation time have an inter-
esting log scale. To describe these pertur-
bations we introduce some notation, mainly
for scaling.

Dencte by | - | the Euclidean norm in R®:
for z = (x1,2,), |z|* = 2? + £3. For each
T > 1 define the projection or : Z° —
[0, 00) 2y

log |z
logT ~

We shall see that a scaling involving or is
just right for our interest in dimension d =
2.

For any a € (0,1), let C3(R.) be the
space of twice continuously differentiable
functions v @ [0,00) — (0,1) such that
~' has & compact support in {0, 5) and such
that y(u) = o for w > 1/2. Thus there ex-
ists 0 <0 < 1and 0 <& < 1/4 such that
v{u) = B for all 3 < ¢, and ¥{u) = « for all
u > 1~ e Foreach v in CZ(R;), denote
by I' = I', the function

Yu)[L-a]
1= y@la

Notice that ['(or{z)) vanishes for |z

T1/2-¢ for some € > 0. It turns out that
the relevant perturbations in studying the
large deviations of the occupation time are
the inhomogeneous exclusion process gener-
ated by Lt of which a particle jumps from

ztoy et r‘ate exp{L(o7(y)) — I'(or(z))}:

(Lﬂr,rf)(n)=§ > al@){1-n(y)}

|z—y|=1
e eF{UT{y})_F(UT(r)) [f(o—mvyn)

or(z) =

Fu) = lg (3.1)

= f(n)l-

Let A be the set of all measurable func-
tions from [0, 1/2] to [0, 1] endowed with the
weak tcpology so that a sequence -, con-
verges to v if and only if

1/2
lim (4,,G) = lim Ynl(u)G(u) du
n—00 T— O 0
= (7: G)

for evers continuous function G : [0,1/2] —
R whicl vanishes at the boundary.

For T > 0, let u’ be the empirical mea-
sure on R? in polar coordinates defined by

T( 1 773( )

phs,v) = loaT  Taf? Slog |1/ log T,0(2) (1),
fw]



where v = (r.8) = (|v|,0(v)), ¢, is the
Dirac measure concentrated on v, and ©(v)
is the argument of v. Note thatif H: R, —
R depending only on the radius r then

wraty = [ Heute)
_ 1

— = " Hor(@) i)
°7 zez?

Recall from (3.1) the function I' = I,
associated to any v € C2{R,). For f in M,
and v in C2(R.), let I{f:~) be the bilinear
functional defined by

{fiv) = —(f,0°T,)

and let I,: M; — R, be the rate function
defined by

I(f)=m sup
YEC2(Ry)

Denote by Au” € M, the average of u”
over the angle and the unit time interval,
namely

b 1
(Auh)(r) = %/L dH/O dsuT(s;r,6).

Here we state a basic super-exponential
estimate which will be needed later. In fact,
such estimates in much more complicated
forms are needed in deriving the large devi-
ations upper and lower bounds of Ap”.

Theorem 3.1 (super-exponential esti-
mate) For anyd > 0 andt > 0,

logT

lirn sup lim sup {(3.2)
z—0 T—oo
[
logIP’a[ / dsW (n,, T%) >5] = —oo,
M

where

I/V(ns: TE) = ns(o) -

and B(r) is the ball of radius r centered at
the origin.

{Uhim-ra-s). erh ).

We establish the large deviations esti-
mate for Ap® first. Below is the large devi-
ations pper bound result.

Theorem 3.2 For any closed set C' of My,

lim sup
T—oo

logT T :
o £ V< =
T logP,[Au" € C] < }gé I.(f).

In fast, [.{f) is precisely computable for
smooth f, as stated in the following lemma.

Lemma 3.3
o U2

4y

fi{r)y?dr
F=fr))

where the right hand side is 0o whenever it
does nct exist or f{1/2) # a.

Iw(f) =

With the help of the above lemma, we

can derive the large deviations lower bound
of AT

Theorem 3.4 For any open neighborhood
O of a given p € M,

log T

lim sup g_, log P, (ApT € 0) > —I,(p).

T—oo

Once having the large deviation result of
Ap®, we may apply the contraction prin-
ciple tc deduce the large deviations esti-
mate fcr the occupation time of the origin

Ve =T [ ,(0) ds.

Theorem 3.5 Consider the two dimen-
stonal symmetric sumple exclusion process
Pyr as T — oo. The occupation time Vp
obeys a large deviation principle of order
T/logT', and the rate function Y is given

by

¥
T(8) ==

which 12 00 when 5 <0, or 8> 1.

[sm—l(zﬁ — 1) ~sin}(2a — 1)]2,

Proof: This follows from Theorem 3.1, the
contraction principle, and the explicit cal-
culation that

inf

I
yeCE (R4 ),v(0)=3 ™)

T(3).
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The large deviation results obtained in

this project are, in my opinion, quite nice and
the paper [1] will be submitted to the best
journal.
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