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1 Main Results

In this project, we study the following nonlinear elliptic equation on a com-
pact Riemann surface (M, ds).

h(z)e*
Jo B(z)erdp
where A{z) is a positive C%# function on M, p a positive constant, du the

volume form and A, stands for the Beltrami-Laplace operator on {M, ds).
Throughout the paper, we normalize the volume |M| of M by

(1.2) M| =1.

(1.1) Agu—l—p( 1) =0 on M,

Equation (1.1) or its variants often appear in many different disciplines of
mathematics. In the conformal geometry, (1.1} is called the Nirenberg prob-
lem when (M, ds) is the standard sphere $2 and p = 8=, or Kazdan-Warner
problem in general. The Nirenberg's problem, a subject under extensive
study in recent years, is to determine which function A(zx) on 5% can be the
(Gaussian curvature of a metric which is pointwisely conformal to the stan-
dard metric of S, For the recent progress made on this problem, see Moser
[29], Kazdan and Warner [22], Chang and Yang [8], Chang, Gursky and Yang
[9], Chen and Li (14], Cheng and Lin [15, 16] and the references therein. For
spheres or bounded domains of R?, (1.1) can be obtained from the mean
field limit of point vortices of Euler flows or spherical Onsager vortex the-
ory, as studied in Caglioti, Lions, Marchioro and Pulvirenti [4, 5], Kiessling
(23], Chanillo and Kiessling [6], and the references therein. Recently, it has
drawn a lot of attention because it also arises from self-dual condensate solu-
tions from some Chern-Simoens-Higgs model when some parameter tends to
zero. For recent developments of these subjects or related Liouville systems
in more general settings, we refer the readers to Spruck and Yang [36], Caf-
farelli and Yang [3], Chanillo and Kiessling [6], Chipot, Shafrir and Wolansky
[17], Tarantello [39], Nolasco and Tarantello {32, 33], Riciardi and Taranetto
[34, 3], Struwe and Tarantello [37], Ding, Jost, Li and Wang [19, 21], Chen
and Lin {11], Lin [26], and the references therein.

Clearly, (1.1} is the Euler-Lagrange equation of the nonlinear functional
Jp
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for ¢ € H'(M), where H'(M) denotes the Sobolev space of L? functions with
L2-integrable first derivatives. For p < 8m, J,(¢) is bounded from below and
the infinimum of J,(¢) can be achieved by the well-known inequality due
to Moser and Trudinger. For p > 8, however, the existence problem of
{1.1) is more difficult. By using some special variational scheme, Struwe
and Tarantello [37] was able to obtain non-trivial sclutions of (1.1) for 87 <
p < 47? when h = 1 and M is the flat torus with the fundamental domain
[0,1] x [0,1]. Also by using the similar approach, Ding, Jost, Li and Wang
[20] proved the existence of solutions to (1.1) for 87 < p < 167 when M is a
compacat Riemann surface with genus ¢ > 1. For the case M = 5% and 87 <
p < 167, the second author [26] proved nonvanishing of the Leray-Schauder
degree to equation (1.1}, and consequently, the existence of solutions follows
for the case of genus 0. In spite of the success for solving (1.1) in the range
of (8, 167), the existence problem generally remains open for p > 16x. This
is the main issue we are going to address in this paper and the subsequent
one [13).

In [24], Y.Y. Li initiated to study the existence of solutions to (1.1) by way
of computing the Leray-Schauder topological degree. Obviously, equation
(1.1) is invariant under adding a constant. Hence, we can seek solutions in
the class of functions which are normalized by

(1.3) fMu(:r)du = 0.

Li proved, among other things, that for any integer m > 0 and for any
compact set I in (8mir, 8(m + 1)), solutions of (1.1) which are normalized
by (1.3), are uniformly bounded for any positive £ function # and p € 1.
Thus, the Leray-Schauder degree d(p) of (1.1) can be defined in the space of
functions with vanishing mean value for p # 8rm. Furthermore, he proved
that d(p) is independent of the function A{x) and the parameter g when-
ever p € (8m=, 8(m + 1)x), and showed that d{p) = 1 for p € (0,8%). The
main purpose of this and the subsequent project is to complete, among other
things, the following theorem.

Theorem A. Let 8mm < p < 8(m + 1}x and d(p) be the Leray-Schauder



degree for equation (1.1}, Then

!

d(ﬂ)z{ 1 (—=x(M}+1)...(=x(M} +m) for m>0
1 for m=10,

where x(M) is the Fuler characteristic of M.

As a consequence of Theorem A, equation (1.1) always posseses a solution
for p # 8mn whenever the Euler characteristic x(M) < 0. The complete
proof of Theorem A will be given in [13], the second part of this series of
papers.

Set d}, = d(p) as p | 8mr and d, = d{p) as p T 8m=x. One of the main
steps in the proof of Theorem A is to calculate the gap d}f — d, for any
integer rn > 1. Once it is known, d{p) can be computed inductively on m.
Clearly, the gap of &}, — d. is due to the occurrence of blowup solutions when
p tends to &mm, that is, there are a sequence of solutions u of (1.1} and (1.3)
with p = p;, such that Tax Uy — +oc, and gy tends to 8ma. Thus, one of

fundamentally important questions is to determine the sign of p, —8m#z. Our
main result of this article is to answer this question. After adding a constant
¢, we consider a sequence of blowup solutions v, (still denoted by u;) of with
p = pr and kETm pr = 8mx. Then by a result of Y.Y. Li, u; blows up at

exact m points {p1,...,Pm}. Let & be a small positive number such that
the distance d{p;, p1) > 4d; for any j # . Set pg; to be the local maximum
point of u; near p;,

1.4 Api =1 = max wulz
( ) kg k(pk,a) By 1.00) k( )

Then our main theorem is the following.

Theorem 1.1. Let h be a positive C* function on M end ux be a sequence

of blowup solutions with p = pp. Assume 8mm = lim py. Then
k—+oco

(1.5) pr— 8mm = - D h7Hpes)[(Aclog h(pe ;) + 8mr

=1

— 2K (pi )| Ak g9 + Oe™)



where Ay =  nax Ak, Ak 18 the local mazimum of uy in (1.4} and K de-
<j<m
notes the Gaussian curvature.

Clearly, Theorem 1.1 implies

Corollary 1.2. Suppose h(z) is o C? positive function and satisfies
(1.6) Aglogh(x) + 8mr — 2K(z) >0 for z € M.

Then for any compact interval I C (8(m — 1), 8m], there ezists a constant
C > 0 such that
(1.7) u(z)}| < C for ze M

for any solution u of (1.1) with p € L.

When p < 8, the nonlinear function J, has 2 minimizer by the Moser-
Trudinger inequality. As p 1 8, Ding, Jost, Li and Wang [18] and Nolasco
and Tarantello [31], independently, proved that minimizers u, are uniformly
bounded in M as g T 8 provided that

Aglogh(p) + 87 — 2K(p}) > 0

for all maximum point p of . However, their results do not have the explicit
expression of (1.5) even for m = 1. Note that for the case of the standard
sphere 52, Ag log h(p) + 87 — 2K (p) = Lglog A{p). Thus, their result can not
be applied in this case with A = 1. For 52 and p = &, the uniform bound
of (1.7} has been proved by Chang, Gursky and Yang [9].

Theorem 1.1 is the crucial result for us when we come to compute the
Leray-Schauder degree. As mentioned before, the gap dt —d, is indepen-
dent of . Thus, we might choose some C? positive function Ay, satisfying the
condition (1.6) for all z € M. Then for such Ay, by Theorem 1.1, d(8mn)
is also well-defined, and d, = d(8m=). Therefore, the gap dy, — d,, is equal
to the sum of Morse index of all possible blowup solutions of (1.1} with the
parameter p tending to 8mm from the above. QOur job in the subsequent
paper [13] is, first, to construct solutions with exact m blowup points and
compute its Morse index, and secondly, we should be able to prove that all
possible blowup solutions have been already constructed in our previous pro-
cess. In order to complete the last step, we have to show a sharp estimate



for the error term, which is the difference of solutions uy and its approxi-
mation. For the nature of our problems here, we approximate our bubbling
solution w4 by using different forms in two different regions of M. By aresult
of Li, u, converges to a sum of Green'’s functions with their singularities at
Diy. .. Pm € M. Choose a small & > 0 and By, (p;) is the ball for radius 8o

m
and center p; in M. For z ¢ | By, (ps), those Green’s functions are smooth.
=1
Hence we approximate uy b;r this smooth limiting function. Inside of each
ball Bs,(p;}, ux should be approximated by the standard bubbles, although
those bubbles should be carefully chosen. In Bg,(p;), we denote m ; to be
the error of u; and the approximated bubble. Then it is very important io
prove the following pointwise estimates for ;.

Theorem 1.4, Let By ; = afﬂ"rsﬂ'ﬂ—j e*vi. Then the error term i ; between
the standard bubble and the solution satisfies

g .
mes(z) = ———[Alogh(py,;) + 8mm — 2K (py. ;))& [log( Ry 51z + 2)]°
prh{Dr 5)
+O(log{ By ;x| + 2))e

on Bs,(pr ), where |z| stands for the distance of z and py ;.
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