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Abstract
Consider the generalized Emden-

Fowler equation
(*)y"+g(x)y” =0 I [0,),

where y =2n-1, with #>1 an integer
and g(x)>0. In this article we will give
. results about uniqueness of bounded
positive solution (corollary 10, 11 and
the remark) and nonoscillation
(Theorem 8 and 9) of solutions.
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On uniqueness and nonoscillation of second order nonlinear equation

By
CHIU-CHUN CHANG ( 3&#18)

Abstract. Consider the generalized Emden-Fowler equation
(*)y"+g(x)y" =0 in [0,0),
where y =2n-1, with n>1 an integer and g(x)}>0. In this article we will give results

about uniqueness of bounded positive solution (corollary 10, 11 and the remark)

and nonoscillation (Theorem 8 and 9) of solutions.
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1.Introduction
Consider the generalized Emden-Fowler equation
(1) y" +g(=)y” =0,z € {0,0),
where v = 2n — 1> 1 and g(z) is assumed to be positive and continuous on [0, co).

We also assume that the solutions of (1) are continuable to the entire non-negative real
axis ; say under the condition that g(z) is locally of bounded variation [4].

A solution of (1} is nonoscillatory if for every a > 0 it has only a finite number of zeros
in [a, 00). Equation (1) is said to be nonoscillatory if every solution is nonoscillatory. As
to the nonoscillation conditions of equation (1), we mention some important ones in the
follwing

Theorem 1. [1] Equation (1) has a nonoscillatory solution if and only if
(2) ;7 zg(z)dz < oo

Theorem 2. [1} If g(z) is continuous differentiable and g'(z) < 0,

(3) [y z7g(z)dz < oo,

then equation (1) is nonscillatory.

Theorem 3. [6] If £™F +%g(z) is nonincreasing in  ; for some £ > 0, then equation (1) is
nonoscillatory.

Theorem 4. [8] If (a:log:z:)rf& ¢(z) is nonincreasing in z for sufficient large z, then equation
(1} is nonoscillatory.

In [5], Coffman and Wong conjectured that the condition
4 5 ™ g(z)dr < oo

is necessary and sufficient for equation (1) to be nonoscillatory. In this article, we will
show that condition (4) is nearly sufficient for the nonoscillation of equation (1). That is,
equation (1) will be nonoscillatory if we have condition (4) together with a mild condition
that will be stated below.(Theorem 8)

2. A Pohozaev identity. We use the follwing slightly more general form of Pohozaev
identity {3] {8] :

For a > 0, ¥ any solution of (1) with y{a) = 0, then

(5) Gy(s) = (s — @)y (s) — y(s)/ (5} + 25 (5 — a)g(8)y"*!(s)
<=2 [P[1fR 4+ Loag Oy (1)de
= 33 [, Qtg(tyy™+ (t)dt.

It can be proved by direct differentiation.



In the following, we assume

(6) For each sufficient large a, the corresponding Q(t) = 3';‘—3 + gt;;%_’_@ is eventually of

one sign. Hence @}(t) is eventually negative under (4). For bounded positive solution
y with y{a) = 0, we have Gy(z) > 0 for all z in (a, 00}

Remark. Under (4) and that Q(¢) is eventually negative, then G,(z) will be positive in
(@, 00} if Q is decreasing from taking positive to negative values as examples (a) and (b)
considered below.

Corollary 52. If y2(t) is an oscillatory solution of (1) with ya(a,) = 0,» = 3,4---. Then
{{a, — a)y (a,)} is decreasing from some v on. Specially, lim, _s0¥3(a,) = 0

proof: By (5) and (6}, Gy, is decreasing from some so on. And Gy,(ay,) = (@, — a)y, (a)-
Theorem 6. Assume (4) and (6) are satisfied. Let y be a bounded positive solution of (1)

in (a,00) with y(a) = 0. Then w(z) = Em—*;%gﬂ is decreasing to zero.

Proof. By (6), we have
(s —a)y” (s) — ¥/ (s)u(s) + -2 (s — a)g(s)y?**(s) > 0 in (a, 00).
So, Dy(s) = (s — a)y’2 — ¥ (s)y(s) + (5 — a)g(s)y"1(s) > 0 in (a, ).

We have
Dy (3)

=0

<0in (a,o0},

so that w is decreasing.
It is well known that y is increasing and (z — a)y'(z) = (z - a) [ :G gyT < y¥(oc)
[° g(s) - sds. The last term tends to zero by (2) as  — co. Hence the theorem is proved.
3. A comparison theorem
We assume that y; is a bounded positive solution of
(7) i + q1(@)y] =0, 31(a) = 0,
where 0 < g1(z) < g(z ) and ¢i(z) < g(z) <O0ina <z <cc
{These imply —% < g(m) )

Theorem 7. Let y; be as in (7), ¥i(a) < ¥'{a), where y is a bounded positive solution
indicated in {6). Then

(8) Gy () = (z—a)i (&) 94 (2w () + 521 (z—a)gr(@)y] (=) < ZEH(L)(2) Gy (a)
as long as z > a and (5’371)’(:1:) > 0.

Proof. Consider
(9) Lt} = Gy, (t) — (Y)Y Gy ().
Then L{a) =0 and



(10) L'(8) = A {(H2 + (o2ilyg g7+t (143 4 Lol g g rtly
{2y + 1)y WG (1) 4 IR (171G (1))

= —{&(v+ (L)L - LG, ()}

~(£ - Bt — Q)] - L(L)HG, (1))
Write
a(s) = 735(s — a)g(sly1(s) — Gy(s).
Then a{a) = 0, a{cc) = 0 and
(11) o'(s) = 3 {gy™ + (s~ a)g'y"™ + (Y + 1) (s — a)gy"y'} — 27 (22 + (=28 gy

= gy M1+ G2 4 (y )ty (243 (emelgyy

= 2oy H{(y + Dw — B Hw(s) = L=zl

=gyt (2w ~ 1).

Since by Theorem 6, w is decreasing from 1 to zero, we have a(s) > 0 in (a,oc) and the
last term in bracket of (10) is positive.

By, assumption, Eg- - %L) is positive, hence

L'<0if (%5; - %) > 0. Hence L(s) < 0 for s > @ and as long as ﬂy-‘- is increasing.
4. The main Thecrem

Theorem 8. We assume (4) and (6) and that g'(z) is eventually non-increasing. Then
equation (1) is nonoscillatory.

Proof. Let y2 be any solution of (1), we want to show that y, is nonoscillatory. Suppose
there are infinite many zeros of y;. Assume g(t) and ¢’(¢) are non-increasing for ¢t > t,.
We consider those zeros larger than ¢y and labeled consecutively as a3, ¢4, Gy, Guy1 - -
Condition (4) implies the existence of bounded positive solution ¥, of (1} in [a., 00) with
y,{a,) = 0. From [2][7] we have

o)
zim:r-}coyu(x) =C, >0, y;(m) = / gy:ds

and hence lim, .2y, (z) = 0 by (4) or (2).
Therefore

(3 - av)g(s)y?-l—l( )

Gy (8) = (s — @)y (5) — (e, () + —

tends to zero as s tends to oo.



Under the conditions stated we shall show that

(12} y:;+1(‘f'u+1) > y:;(au): v=234,---

Otherwise, we assume ¥, ,{a,+1) < y,{a,). Notice that
y::+1($) + 9(-75)11'34-1(3:) =0in [g,41,00).

Let Y(z) = yppa(z + 8), § = apy1 — a». Then Y"(z) + g:(z)Y"{(x) = 0. with
gi{z) = g(x + J). For simplicity, denote a, = a, then with y;(z) = ¥ (x), »{z) = y.(z)

in Theorem 7, we have y1{a) =0, y(a) =0, ¥{a) < ¥'(a) and
(13) L(t) = Gy (t) — Z({L)H1(1)Gy(t) < O,

for £ > a and as long as (ﬂ) is increasing. This is true initially because from the equation

(14) (Yiy ~ v'un)z) = [ niyloy" ™ — gay] ™ Dds,

we have g > gy and y > y; initially as ¥{ (e} < y'(a). We shall show that () > 0allin
(a,00). If otherwise, let zo be the first point that (4} = 0, that is

(15) B (z0) = L (xo).

Then (with the notation in Theorem 7), L'(t) < 0 in (a, zo) and we have
(16) Gy, (2o} = (2o — a)yi* (20) - y1(zo)y1{zo) + .,,—+I(5L‘0 — a)g1(zo)y] " (o)

< Elfﬁﬂl(L}Hl (z0){(zo — @)y 2 (zo) — ¥ (zo)y(zo) + 2+ (z0 — a)g(o)y" (z0)},

FIEDY
that is

(17) (20 — @)y (w0} — ¥i(@o)yr (o) < LER(LYT+1(z0)[(zg — @)y (20) — ¥/ (@a)y (o).

We already know ¥y — y'y1 is positive at beginning. (yiy — ¥"y6)(2o) = 0 would imply by
(14) that

(18) g(mo)y?~*(xo) < g1(zo)y ™ '(20),
that is 95—:-(:50}(%1—)'7'1(%) > 1. (14), (15) and (17) imply that

(19) (2o — &)y} (z0) — ¥} (Zo)y1(wo) < L (z0) ()" (z0){(z0 — @)y} (%0) — ¥i(To)y1(0)]-
But this is a contradiction because 9;(:::0)(&)7 Yzg) > 1 and it is well known that
(zo — a)yi(zg) < y1(zo) and y] > 0. Therefore we have proved that

(20) Gy (o) < B(2)(B)H(@)C,y(2), a < 3 < 0.

We will postpone the proof and state some corollaries and remarks up to now we can
obtain.

We often need to use the case gi(z) = g{z). Then the results up to now can be stated



Corollary 9. Let y be the bounded positive solution indicated in {(6), ¥1 another solution
of (1) with y1(a) = 0, ¥{(a) < ¥'(a}). Then

(21) Gy, (2) < (L) (2)Gy(a),
as long as (Fj)’(x) > 0.
Proof: Theorem 7.

Corollary 10. The above inequality (21) holds for all z in {(a, oc) and in fact £ is increasing
all the way.

Proof. By theorem 7 and equations (13) through (20) with ¢;(z) = g(z).

With a similar proof we have

Corollary 11. y as in corollary 9, y; another solution of (11) with g1 (a) = 0, ¥ (a) > ¥'(a).
Then

(22) Gy, (z) 2 (L)HH(2)Gy(z),
as long as yy(z) > 0 and (£)(x) <0.

Remark. It is in the above character that we can prove the uniqueness of the bounded

positive solution as in [3]. However, in Theorem 1 of [3], the statement and proof was
incomplete. It should follow corollary 11.

5. Completion of the proof of the main theorem

Refer the poof of (20), with y,41 = 31 and y, = y, we have Gy, ()< gj(x}(%‘)"“

Gy(z)a <z < o0ify, (Gu41) < ¢,(a,). But this leads to a contradition since G,, (o0)=
0 =Gy(oc) as y1, ¥ are bounded positive solutions.

Hence we have
: (23) y:;-i-l 2 y:;(a'v)! v= 37 4: e

Now, at the beginning of the proof, we assumed that y; is oscillatory and as, a4, --

are the zeros of y2. corollary 5 asserted that y5(a,) tends to zero as ¥ — oc. Hence for
some v we would have

(24) va(av) <y (aw)
because of (23}.

But then by corollary (10), on [a,, oc), (f’f) is increasing all the way. That is from
some 1 on, 2 will not oscillate. Therefore the Theorem is proved.

We will give a more general result about nonoscillation.
Theorem 9. Under (4) and (6). Then equation (1) is nonocillstory.
Proof. y, and y, as in Theorem 8 Then since ¢’ < 0 eventually, we may assume

yhl{am) < yhla,) if m > v. (as is well known ¥52(s) + ;% g(s)y7 1 (s) is decreasing)



Since ¢ € O eventually, we have Gy, (z) is eventually decreasing and positive.
Hence: yé(a,)aé <C,v=3 4, -
From the equation

(25) 3 (2) = gulan) + [ (s — @)g(s)yl{s)ds + (z ~ @,y (2)

we have
(26) v (2a,) = 0+ [2™ (s — 0, )g(s)y2(s)ds + avy,(2a.)
27) [ (s — a)g()yd(8)ds < wu(20,) [2% (s — a,)g(8)[Wl{a ) (s — a,)]7~Yds
= 4.,(2a.) [, (s — a,) F g(s)[¥ (au)(s — a,) 3] 1ds
< 1 (20) - [yl (@) (200 — @) EP1 - [2% (s — a,)F g(s)ds.
(26) divided by y.(2a,), we have
1< [y(@)(@)s] ! [ g(s)s™F ds+ L or
3 <C-e=¢q,as v large.

This contradiction prove the theorem.

Example (3]

(a) ¥" + (zcschiz)?y® = 0.
Q(z) = 3 +2[1 — 2(z — a)cothz] — ?f-
It is easy to show that (4) and (6) are satisfied and the equation is nonoscillatory.

(b) Au+ oy = 0,1 <y < 242,
Consider the radial solution u(r) = u(| z |) and let y(s) = su(r),s = ™2, then y
satisfies
o2
v+ (g:li;.r%yq(s) =0.
Conditions (4) and (6) are satisfied and the equation is nonoscillatory.
(c) Au+uist = 0,u(r) =u(| z]). Asin (b),
1 b
v+ s =0

g(s) = s~(2+5%2) does not satisfy (4) and Q(s) is eventually positive. It has oscillatory
solutions. [7].
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