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Degree Invariant of Integral Homology 3-Spheres

Su-Win Yang

Abstract

The degree-theoretical approach provides a natural method to con-
struct the rational-valued invariants for the integral homology 3-spheres.
To do this, we need to embed the 3-manifold in the Euclidean space
such that the manifold occupies a flat 3-space except a compact subset.

1 Introduction

Suppose M is a 3-dimensional closed smeoth manifold whose integral
homology groups are the same as that of the 3-sphere 53. z is 2 fixed point
in M. Embed M = M — z; in a Euclidean space R® such that z, is the .
infinite point of the flat space R? x {0} in R and each open neighborhood
of z; contains the whole flat space R® x {0} except a compact set.

Let A(M) denote the diagonal subset {(z,z) € M x M : z € M} of
M x M and Co(M) = M x M ~ A(M), it is the configuration space of all
ordered pairs of distinct points. Compactify Ca(M) suitably such that the
compactification has the same homotopy type as Cy(M); also denote the
compactification by Co(M). Thus Cs(M) contains S(TM) as part of the
boundary, where S(T'M) is the spherical bundle of the tangent bundle TM

over M,

The “degree” invariant defined in this article is essentially dependent on a
canonical map f : Co{M) — S2, which is unique up to homotopy. Consider
" the restriction hg : S(TM) — 5% of f to S(TM). The obstruction of kg to
be homotopic to a fibrewise orthogonal map is an element @(hq) in 75({S?).
The value @(Ag) is an invariant of the integral homology 3-sphere M. ( For



the constructions of the map f and the value {hy), please see [14]. ) For
technical reason, we need the following assumption

Assumption (1.1): Q(hg) = 0, for the integral homology 3-sphere M.

Under the assumption, we shall construct a series of invariants from the
cocycles of the graph cohomology defined in Kontsevich [9}, more precisely
by Bott and Cattaneo [6]. The invariants defined in this article could be
understood as a degree theory formulation of the perturbative Chern-Simons
theory. The parallel theory of knot invariant is in the author’s paper [13],
also in Poirier [10].

Remark (1.2): We believe that the assumption holds for any integral ho-
mology 3-sphere, but we still can not prove it. If Q(hg) is not always zero, it
could be additive under connected sum and cobordant invariant.

1.1 The canonical map f from Cy(M) to 52

The construction of the series of invariant shall use the degree theory. To
fit everything into the degree theory, the map f : Co(M) — 52 should be
chosen to satisfy the following properties:

(i) On some flat neighborhoo;:l N of the infinite point 29, N C R? x {0}, and
a smaller neighborhood N of zy, closure(N,) C interior(N),

_ wly—x)
fev) = =)

for (z,y) € Co(N), (M — N) x Ny, or Ny x (M — N),
where 7 : R® — R? denote the projection

W(tl: tg, - :tn) = (th ta, t3} .

(ii) ho = f|s¢ran is a fibrewise orthogonal map, that is, for each z € M, the
restriction of Ay to the 2-sphere over z is an orthogonal map.
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The first property comes from the construction of f in [14]. For the
second property, we should use the assumption that Q(hg) = 0 and modify
the value of f on S(TM) to an orthogonal map.

Remark (1.3): For the point y in NV, the tangent space of M at y is exactly
the space R® x {0} and the spherical fibre of S(TM) over y is 5% x {0}. The
Property (i) implies that the restriction kg to such fibre is nothing but the
identity map of S2.

1.2 Graphs in a 3-manifold
Now, we should go to our main object: the trivalent graphs in the 3-
manifold M.

A graph I' in a space X has two kinds of objects, vertices and edges. A
vertex is a point in the space X. An edge is an abstract set of two distinct
vertices, the two vertices are said to be the end-points of the edge. A graph
is always assumed to have finite vertices and finite edges, but the edges are
admitted to have single, double, triple, or more multiplicities. We always
denote the set of vertices by V(I') and the set of edges by E(I).

A graph with multiple-edges sometimes makes ambiguity. If we assign
each edge an integer, everything shall become clear. The refined notion of
labelling of a graph, introduced by Poirier[10], is a convenient notation for
us.

Assume T has & edges ( counting the multiplicities ). A map 7: {1,2,--,
2k} — V(D) is said to be a labelling, if {r(1),7(2)}, {=(3),7(4)}, ---,
{r(2k=1), 7(2k)} are exactly all the edges of ", counting all the multiplicities
of the edges. (T, 7) is called the labelled graph.

Two labellings of the same graph are different by a special type of per-
mutation of {1,2,---,2k}. For preciseness, we describe these permutations
in the following.



For a positive integer p, let X, denote the group of all permutations of
{1,2,---,p}. A permutation & in Xy is said to cover a permutation ¢ in Ty,
if & sends the elements in {2¢ — 1, 2{} to the elements in {20(¢) — 1, 20(2)},
for each 7 = 1,2,---,k. It is easy to see that the number of permutations
in Ty, which cover a fixed permutation ¢ in I, is exactly equal to 2%. If
@; covers ¢;, 1 = 1,2, then &; - &> covers o, - 02. Thus the set G, of all the
permutations & in Iy such that there exists a permutation ¢ covered by 7 is
a subgroup of Ep¢. Furthermore, there is a group homomorphism Gy — I,
sending a permutation to the permutation covered by it; the kernel of this
homomorphism is isomorphic to @ Z3. Thus G}, has 2% x k! elements.

For a labelled graph (T',7) Wi:h k edges and a permutation & in Gy, let
o - 7 be o new labelling defined by (o - 7)(3) = 7(c7'(3)), ¢ = 1,2,---,2k,
and ¢ - ([',7} = ([',o - 7). This defines an action of G, on the labellings of
k edges, also on the labelled graphs with & edges. Therefore, we can think
that a graph I is a simplification of the orbit set G- (I, 7), for some labelled .

graph (T, 7).

Remark (1.4}: Using the notation of labelling, we can easily define the
trivalency of a graph as follows:

A labelled graph (T, 7) is said to be trivalent, if, for each vertex v € V(I'},
the inverse-images of v under r are exactly three integers in {1,2,---,2k}.
Thus if a trivalent graph has m vertices and has k edges then 2k = 3m.

1.3 Equivalence of graphs

Two labelled graphs (I'y, 71} and (I'y, 7} are said to be equivalent, if there
are a-bijection g : V(I'1}) — V(I';) and a permutation ¢ in Gj such that
mTao0 =go7. And (g,¢) is called an equivalence from (I'y, 1) to (I's, 72).
When (T'y,71) = (T'e, 72), (9,0} is called an automorphism of (I';, 7).

If (¢, ") : (Tg, m3) — ({3, m3) is also an equivalence, then {¢’,0") o (g, o)
= (¢’ 0 g¢,0' o 7) is an equivalence from (', 71) to (I's, 73).



It is easy to see that if " has k edges, all are single edges, then there are
2% x k! different labellings for I" and the graph " with these 2% x k! different
labellings are all equivalent labelled graphs.

We are interested in the graphs in the 3-manifold M.

Definition (1.5) Suppose (I,7) is a graph in M with labelling 7. Let
C(I, M) denote the space of all labelled graphs in M which are equivalent
to (T, 7). The space C(T, M) is independent of the labelling 7.

There is a canonical smooth map ¥ : C(I", M} — [[ C2(M) defined by:
&
For any (I, "} in C(T, M),

‘I’(r’: T’) = ((T’(l)! 7"(2))’ (T’(3): T’(‘l))r Tt (T’(Qk - l): ""(237))) .
Note: (7'(2¢ — 1), 7(2i)) is an element in Cy(M), foreachi, 1 <i< k.

We also need the map f : Co( M) — S? introduced above. Consider the
product map E[f : IEOQ(M) — l;[f;'2 and let & = (l;[f) o¥: C([, M) —
[157%, it is the map of our main concern in the degree-theoretical approach
gf 3-manifold invariants.

Main purpose and arrang'ements:

The main purpose of this article is to show that if some finite trivalent
graphs I'y, T, -+ -, T’ form a cocycle in the graph cohomology defined in [6]
then the degree of the map ® from the union of C{T';, M), i = 1,2,---,!,
into [T S? is a well-defined integer. For the purpose of “cohomology theory”,
we ngpd an orientation for the graphs. There are some well-known methods
for the orientation of trivalent graphs. But we need a “real” orientation for
the spaces C(I';, M) such that their codimension 1 boundaries shall cancel
effectively. Thus we arrange the paper as follows: In Section 2, we define
the orientability of the graphs and the coherent Gi-orientation for the spaces
C(T, M). In Section 3, describe the connected components of C(I', M) and

5



their codimension 1 boundaries associated with subsets of vertices of . In
Section 4, we describe a compactification of the configuration space EQ(I) to
introduce the “infinite part” boundaries and give the precise staements for the
degeneracy of such boundaries. In Section 5, we extend the compactification
in Section 4 to the one needed for the all kinds of boundaries and discuss the
degeneracies of some kinds of codimension 1 boundaries. In Section 6, we
give the proofs of the propositions stated in Section 4.

2 Orientation of the space C(I', M)

The orientation of C(I', M) is important for the degree theory and the
orientation of I' is also needed in the graph cohomology defined in {9, 6]. The
orientation defined in the following are related naturally to the orientation
of the graphs defined in [6] and [9].

At first, we discuss the orientability of a graph and we can delete the
non-orientable graphs.

G), also denotes the subgroup of Lz consisting of the permutations cov-
ering permutations in L.

For any permutation ¢ € I, let 6{c’) denote the sign of the permutation
o, that is, & is the group homomorphism from %, to {1, —1}, sending every
transposition to —1.

Suppose (T, 7) is a labelled graph and (g, o) is an automorphism of (T', 7},
that is, an equivalence from (T, 7) to itself. Consider g as a permutation of
the set V(I'), we have the sign é{g) of g.

Definition (2.1): A labelled graph (T',7) is said to be orientable, if, for
any automorphism (g,0) of (I',7), 8(g) = 8(c). A graph I is said to be
orientable, if there is a labelling 7 of I" such that (T',7) is orientable.

Remark (2.2): If (I',7) is orientable for some labelling 7, then (T',7') is
orientable for any labelling 7.



2.1 Gi-orientation on C(I', M)

An orientation on C(I', M) is said to be coherent with respect to the
Gy-action, if, for each permutation ¢ in G with §(¢) = —1, the map given
by the action of ¢ is orientation reversing. (Thus the ¢-action is orientation
preserving, if §(c) = 1.} For simplicity, such an orientation is also called a

G~orientation.

Proposition (2.3) If the graph I' is orientable, then the space C(I", M)
has exactly two different Gi-orientation. |

The proof of (2.3) is in Section 3, shortly after Definition (3.1).

The G-orientation is the orientation we need. We use the Gi-oriented
configuration spaces to define the degree for the map .

2.2 Degree of the map &

Now suppose I" is orientable and we fix a Gi-orientation on C(I', M). We |

also choose the standard orientation for S2. Then the map & = ([[ f)o ¥ :
k

C(I', M) — [[ 5? is a smooth map between two oriented spaces.
k

For a generic point y in [ 5%, let d(®,T,y) be the summation of signs of
inverse images of y under th;:e' map &.

Precisely, for each = in ®~1(y), let ¢(®, z) be +1, if the map ® is orien-
tation preserving on a neighborhood of z; let e(®,z) be —1, if the map P is
orientation reversing on a neighborhood of z; let ¢{(®, z) be 0, if otherwise.

And, d(®, T, y} is defined as the summation of (@, z) over all z in &~ (y).

THe following is our main theorem:
If some finite ( Gi-oriented ) trivalent graphs Iy, I'y, ---, T} form
a cocycle in the graph cohomology defined in (6], then the summa-
tion of d(®, Ty, y) over these graphs [;, 1 = 1,2,---,/, is an integer
independent of the generic point y in ];[ Se,



The proof of the above statement is to show that the boundaries of these
spaces C([;, M), ¢ = 1,2,---,{, are either degenerate into codimension 2
subspaces in [] S under the map ®, or cancel each other by the “cocycle”

k
condition. The precise statements are in Section 4.3 and Section 5.

3 Connected component of C(I', M)

To describe the connected component of C(T', M), we introduce the space
EQ(T).

An equivalence of two graphs is a simplicial isomorphism of the two
graphs.
Definition (3.1): Suppose I is a graph. Let EQ(I') denote the space of all

equivalences g : I' — I from I" to a graph [V in M.
Because an injective map g : V(I') — M determines an equivalence from

I' to a graph in M completely, EQ(T'} is diffeomorphic to the configuration .

space Cr(M) of m distinct points in M, where m is the number of vertices
in I'. Cr(M) is a subset of M™. Thus EQ(T') is path-connected.
For any labelling 7 : {1,2,---,2k} — V/(I"), there is a diffeomorphism
¢- : EQ(I') — C(T', M) defined by:
For g € EQ(T), ¢:(g) = (¢(T), g o 7).

The map ¢, sends EQ(T") diffeomorphically onto a connected component
of C(T', M). For different labellings 7 and 7/, the maps ¢, and ¢, are differ-
ent; they have the same image space, if and only if, there is an automorphism
(g1,01) of (I',7) such that 7 0 oy = 7' ( in this situation, we say that the two
labelli;gs 7 and 7’ differ by an automorphism ).

Let Aut(T',r) denote the group of all automorphisms of (I',7) and ||
denote the number of automorphisms in Aut(I',7). Then the number of

connected components in C([', M) is equal to 27?{"’.

Proof of Proposition (2.3):



Using the diffeomorphisms ¢,, we may define a G-orientation easily.
Suppose I is orientable. The space EQ(I') is always orientable, we fix
an orientation on E£Q(T'), also fix a labelling 7; of I'. Now we can define an
orientation on C(T", M) as follows:
For any labelling 7 = ¢+, we choose the orientation on the connected
component ¢.(EQ(I'}) such that ¢, is orientation reversing if 6(c) =
-1.
It is easy to see that the orientation defined above is a well-defined Gy-
orientation needed in Proposition (2.3) and there are exactly two G-
orientations dependent on the choices of the orientation on EQ(T).

3.1 The codimension 1 boundaries of C([, M)

As above, the space C(T", M) is a disjoint union of finite number of con-
figuration spaces. These configuration spaces have a well-known compact-
ification constructed by Fulton and MacPherson[8]. We shall assume that _
C(T', M) has been substituted by this compactification. The codimension 1
boundaries of C(I', M) can be described as follows:

(i) First we consider the boundaries of EQ(I"). For each subset A of V(I')
containing at least two ‘vertices, there is a codimension 1 boundary
EQ(T; A} of EQ(T) associated with the subset A; this boundary EQ(T; A)
is related to the collapsing of the vertices in A to a point in M, but not
to infinite point zo. The “finite part” codimension 1 boundary of EQ(T)
is the union of EQ(T'; A) for all subset A of V(I') containing more than
mle vertex.

(ii) For a labelling 7 of T, the connected component ¢,(EQ(T)) of C(T', M)
has codimension 1 boundaries ¢,(EQ(T'; A)), associated with each subset
A of the vertex set V(T').

(iii) Similarly, when B is a non-empty subset of V(T') and the vertices in B



approach to the infinite point zy of M, there is a codimension 1 bound-
ary ECI"; B, xp) of EQ(I") associated with B and z;. The “infinite
part” codimension 1 boundary of EQ(T") is the union of EQ(T"; B, zy) for
all non-empty subset B of V(I'). And, ¢,.(EQ(T; B,xy)}) is part of the
codimension 1 boundary of ¢,(EQ(I})) as above.

When the two labelling 7 and 7/ differ by an automorphism (g, o),
o-(BEQ(T, g(A))) = ¢ (EQ(L, A)); this space is a codimension 1 boundary
of ¢, (EQ(T)) ( = ¢~ (EQ(T)) ).

Remark (3.2): For a subset A of V(I'), let A(T') denote the subgraph of
I’ in A; precisely, A(I") has vertex set A and the edge set {{v,w}, which is
an edge of T, v,w € A } { the multiplicity of each edge is the same as that in
I' ). The purpose of choosing the Gy-orientation is to cancel the boundaries
¢-(EQ(T; A)) for the subset A satisfying that A(T) contains bivalent vertices.
( The cancellations happen in IkICg(M ). It is meaningless to say that the -

cancellation can happen in C(T, M). )

Remark (3.3): Suppose A is a subset of V(I') containing at least three
vertices and A(T") has a univalent vertex. Then the associated codimension
1 boundary is mapped by ¥ : C(I',M) — T[]C2(M) into a degenerate
boundary ( with dimension < 2k — 2, in case ffhat [’ is a trivalent graph.
). When A contains at least two vertices and A(T) is disconnected, the
associated boundary is also degenerate ( in I;[CQ(M 1)

4 Degeneracy of “infinite part” boundary

We describe the compactification in the infinite part at first. The method
we use is analogous to the compactification given by Poirier[10]. The essential
work is on the compactification for EQ(T).

For any finite non-empty set B, let (R%)F denote the set of all functions
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from B to R® which do not send every points in B to the origin 0 and
CF denote the quotient space of (R*)F quotiented by the rescaling relation,
that is, for A, &' € (R3)Z, b ~, I if there exists a positive number X such
that h(b) = AA'(b) for all & € B. Thus C® is a smooth compact manifold
diffeomorphic to the unit sphere in (R*)5. Also let 77° " denote the space
of all functions from V([) to M, it is also a compact smooth manifold. (
Note: M is the one-point compactification of M. )

We also need to extend C® to a similar space which contains C'8. That is,
for any finite non-empty set B, let (R*)Z denote the set of all functions from
B to R™ which do not send every points in B to the origin 0 and D? denote
the quotient space of (R™)2 quotiented by the rescaling relation. Here, we
identify R® as the subspace R® x {0} of R, and hence, C'8 is a subspace of
DB,

Furthermore, consider the set E(I") of all edges of I" and for each F =
{v,w} in E(T), let (R™)Z denote the space of all non-constant functions from _
E to R, and let D” denote the quotient space of (R™)F, quotiented by the
translation and rescaling relations, that is, for 2,4’ € (R™)Z, h ~,,. b’ if there
exist a positive number A and an element ¥ € R such that A(z) = AR'(z) +y
foralz € E. D° is diffeomorphic to the sphere $*~! of (n — 1)-dimension.
This space D” can be generalized to the space D for any set A containing at
least two points, that is, the space of all non-constant functions from A to R®
quotiented by the translation and rescaling relation; it is also diffeomorphic
to a sphere of suitable dimension.

" shall denote the space of all functions from F to M. The product
of 7% and D” can be thought as the quotient space of a space of functions
from E to M x R™.

Now, let

H=M"" x[]D? x [[(M® x D%),
B E

where B run over all non-empty subsets of V(T') and £ run over all the edges

11



of I.
Consider the embedding © : EQ(T) — M

©(g) = (9, {gl}5. {{9]z. g9|E)}£), forall g € EQ(T)

where g is thought as a function from V(I') to M, g|p is a function in (R*)&
and (g|g. glg) is a function from E to M x R™ ( the first g|g is considered as
a function to M and the second glg is a function to R™ ). Although M has
been embedded in R™, to get the condition that g|z € (R™)Z for all B, we
still need the following convention.

Convention (4.1): M is embedded in R" such that the origin is not in M.

4.1 Infinite boundary of EQ(T)

The boundary of @(EQ(I")) in # could contains the infinite part bound-
ary of EQ(T)}.

In the following, we try to find some “open” submanifolds which are -
boundary of @(EQ(T)) in H.

For any non-empty set B, let (B denote the open subset of CZ consisting
of all functions A : B — R® such that h(z) # 0for all z € B and h{v) # h(w)
for all edges {v,w} of I,

Furthermore, for any finite set Ay, let M4® denote the set of all functions
h: Ap — M such that h(v) # h{w) for all edges {v,w} of . If Ag is empty,
M4 is a set consisting of one point.

Z = (Ao, Ay, A, - -+, A;) is said to be an increasing family of V(T'), if
Agc A C---CA =V(D),and Ay # A; # -+« # A # A.. Ap could
be empty or not. We also consider the following sets associated with the
increasing family, A = A; — Ay, A=Ay — Ay, -+, AL = A, —~ A._; and

C(T) = M4 x C% x ... x 4 |

M is an open set of 3. Al is non-empty, for i = 1,2,---,7. The
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space C(Z) is an open manifold of dimension 3m — r, where m is the number

of vertices in I.

M,

There is a naturally defined embedding p : C{Z) — H as follows:
Suppose &€ = (g0, 91,92, * -, ¢-) i an element in C(Z), that is, g : 4y —
g A — B, g: A, — R} . g, A — R% and go € M,

g €C4 foralli=1,2,---,r. We define p(€) in the following steps:

(1)

(i)

Let G : V(I') — M be the map Go(v) = go{v), for v € Ay, and Fy(v) =
Tg, for v € V(T') —~ Ay, where z; is the infinite point of M.

For each non-empty subset B of V(I'), there is an integer 7, 0 < § < r,
such that B C A; and B — A;_, is non-empty; and we define gg : B -—
R" by: gg(v) = g;{v), if v € B— A;_y, and gg{v) =0, if v € 4;_, N B.
By the definition of &%, g; does not send any element of A} to 0, and
hence gg represents an element in D?, Note: When 7 = 0, A_; is the
empty set.

For each edge £ = {v,w}, we define gg : E — M x R™ by: As in (ii),
choose j such that £ C A; and E — A;_, is non-empty. If j =0 (v,w €
Ap), g2(v) = (90{v), 9o(v)) and gg(w) = (go(w), go(w)); if 1 < j < r and
v € A}, ge(v) = (%0, 95{v)); if 1 £ j < r and v € Ay, gs(v) = (go(v), 0);
ifl1<j<randve A;_; — Ay, ge(v) = {20,0); the same formula hold
for w. We can check that gg(v) and gg(w) do not have the same value in
the second component R". Thus gz represents an element in M° x D~.

p(,&) = (?0: {gB}B: {gE}E):
where B run over all non-empty subset of V(T'), E run over all edges of

T, and {gp}p represents an element in [[ D? ( similar for {gg}z ).
B

It is straightforward to find that p: C{Z) — H is a smooth embedding

and p(C(Z)) is in the closure of B(EQ()) in H.
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4.2 Extension of ¢ to the infinite part boundary

In the following, we fix a labelling 7 : {1,2,---,2k} — V(I") of T and
the diffeomorphism ¢, : EQ([) — C(T', M) onto a connected component
of C(T', M).

For each 7, 1 <1 <k, let E; denote the edge {7(2i — 1), 7(2{}}. There is
a natural diffeomorphism o : M= x D™ — 3 « B defined by: For
any map A : B; — M xR", ay(h)(1) = h(r(2i—1)) and e;(R)(2) = A(T(24)).

To study the closure of images of EQ(T) in ‘H projecting to M x D=,
it is enough to study the closure of image of £Q({1,2}) in M X Foluus
and it is the standard compactification of Cy(M).

Identify M x M with M2}, Thus Co(M) is a subset of "%, also
naturally embedded in 3% x D2 by the map, analogous to p. Let
CCy{M) denote the closure of Ca(M) in I x DI,

In the following, we shall use CC3(M) to denote the compactification of
Ca(M) and assume the map f to be a map from CCy(M) to S2.

We also consider the projection 7; : . —= M x D°*. Then the restric-
tion of l<ﬂ<k(a¢ o 7;) to O(FEQ(I')) is equal to ¥ o ¢,. Therefore, we succeed

in extending the map ¥ : C(I, M) — [I Ca(M) to the compactification of
k

C(T', M); the extension of ¥ is a map from the compactification of C(T', M)

to the space E{CC;(M).

4.3 Statements of degeneracy results

We should go to the main purpose of this section to study the behavior
of the map ® = ([] f) o ¥ on the boundary of C(T, M), and show that
the restriction of fI'k to the “infinite part” boundary has image of higher
codimensional in [T 52

By the dimens?onal reason, the only codimension 1 boundary associated
with the increasing family T = (Ao, A;,--, A;) is of the case that r = 1,
that is, Ay € A; = V(I') and Ay # V(I'). And, there are still two different
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situations as follows:

(i) There is no edge connecting a point in Ag and a point in A = A; — A,,
that is, I is & disjoint union of two subgraphs I'y and 'y, and, V([y) = Ay,
V(1) = A}. This case includes the situation that Ay is empty and
A = V(D).

(ii) There is an edge Ey = {vp, v1} such that vg is in Ap and v; is in A].

In Case (i), we can show the following property which implies the degen-
eracy of the associated boundary.

Proposition (4.2) Ifg,d, : A] — R? are equivalent under the translation
relation, that is, there exists an element y € R? such that ¢,(v) = g{(v) + ¢,
for all v € Aj, then

®(¢-(g0, 1)) = ®¢-(90,91)) »

for all gy € M4 and for all labelling 7 of T.
Therefore, the map o, : M4 x4 — [ $? lifts to a map on the quotient
k

space M40 x (C4i/ ~;), and hence, the dimension of &{¢, (M4 x C4)) is
less than or equal to (3m — 4), where m is the number of vertices in . |

( Note: ¢, : EQ(T") — C(T, M) originally is a diffeomorphism onto a
connected component of C([", M), and, here, we use the same notation ¢, to
denote the map extended to their corresponding boundaries. )

In Cese (ii), we also have the following propositions which are enough
to shew the degeneracy of the associated boundaries, when [ is a trivalent
graph.

A vertex v in a graph is said to be free, if v is not an end-point of any edge
of the graph. For a subset A of V(I'}, A{') denotes the subgraph of I" which
has vertices the points in A and has edges the edges of ' with end-points in
A, for details see Remark 3.2.
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Proposition (4.3) Suppose I' is a trivalent graph. Also assume that

'(T") has a free vertex or a univalent vertex. Then the image of the bound-
ary associated with the increasing family T = (Ao, A,), under the map
®:C(IM) — I;I.SQ, is of dimension < (2k — 2). |

Proposition (4.4) Suppose I is a trivalent graph. Also assume that A} (T')
has only the trivalent vertices and the bivalent vertices. Then the image of
the boundary associated with the increasing family 7 = ( Ay, A;), under the
map ®: C(C, M) — 1;[5”, is of dimension < (2k — 2). (]

It is obvious to see that if " is trivalent and the increasing family Z =
(Ag, A;) satisfies the condition in Case (ii), then A{(T') satisfies the assump-
tion of Proposition {4.3), or Proposition (4.4). Thus there is no boundary of
“infinite part” which has codimension 1 image in [J 5%

The proofs of the above three propositions wi’?ll be in Section 6.

5 Classification of codimension 1 boundary of C(T', M)

In the compactification described in Section 4, we consider only the edges
E of T for the part H(HE X 'ﬁE) in H. Now, we need to consider a more
general set, the subse?;s of V(T') which contain at least two vertices, and also
the nested families which is the generalization of the increasing families.

5.1 Nested family

As above, xo denote the infinite point of M. Let V(I')* denote the set
V(I'}U {zo}. A family A of subsets of V(I')* is said to be a nested family,
if any set in A contains at least two points and any two sets in A/ are
either disjoint or one of the two sets contains the other one. ( V(I'), or
V{[)* = V(I') U {z¢}, may be in A or not. )

For any nested family A/, there are two subfamilies, the infinite subfamily
No={A: A€ N and A contains the point zp } and the finite subfamily
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Ny ={A:Ae N and A is not a subset of any set in NV, }; both are nested
families. But the union of the two subfamilies may not equal to A; the set
contained in some set in A, and not containing zy is not in Ay UN,. The
sets in Ny have a linear order, and they are related to the increasing family
in Section 4.

A based nested family (A, 1} is & nested family A together with a function
7 : N'— M satisfying the following conditions:
(1) n(A) = (A", for any A, A"e N, A C A;
(2) n(A) isin M, if A e Ny;
(3) n(A) = =z, if A € N.
Such a function # shall be called a base function of A.

5.2 The boundary associated a nested family
For each based nested family (A7), we assign it the two sets C(A,7)
and C(N) as follows:

(i) For any A in A, or slightly general, not in A, a proper function A
agsociated with A is a function on A satisfying the following condition:

For any two vertices ay, a2 in A, h(a;) = h(az), if and only if, there
exists a set A’ in A/ such'that a;,a; € A’ and A’ is strictly contained in
A.

(ii) For any A in N, if it is not the minimal element in A, there exists a
unique set A € N, such that A is the largest set strictly contained in A;
if it is the minimal element in My, let A = {z;}. If 4 # V(I')*, a proper
function k associated with A is a function from V(I') — A to R? satisfying
the following: h(a) =0, fora € V([') ~ 4, k(') £ 0, for ' € A — A and
Rla1) # hay), for ay # a; € A — A.

If A = V()" € N, a proper function associated with A is a function
h: (V(I') ~ A) U {0} — R? satisfying the conditions above for the
proper function associated with A # V(I')* and an additional condition
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(iid)

(iv)

that A(0) = 0. ( The inclusion of 0 in the domain of % is quite artificial
and “uncomfortable”. )

For any point z in M, let 7, denote the tangent space of M at z. Ty,
is the space R® x {0}, or simply denoted by R®. For any set A in N,
let (Tya))2 denote the set of all proper functions A associated with A.
And let G4 denote the quotient space of (Ty4))2, quotiented by the
translation and rescaling relation, that is, A ~,,. A/, if there exist a
positive number A and a vector y in T} 4y such that A'(v) = Ah(v} +y.

Note: Let B = A — A, then C4% is exactly the same as CZ defined in
Section 4; the translation relation has no effect in this situation.

Consider all the spaces C4M, A € A, and the product of all these
spaces, HN CAm | denoted the product space by C'(N, 7).
A€

Let V5(NV) denote the set V([') — UN, where UA is the union of the -
sets in A; when there is no ambiguity, we just denote V4(N") simply by
Vo. And, let M}® denote the set of all functions g : V5 — M such that
g(z) # g(y), for all £ # y in Vp, and, g(z) # n(A), for all z € Vj and
AeN. .

(vi) Let C(WN,n) = M}® x C'(N,n) and C(A} denote the space of union of

C{N,n), for all possible proper base functions 7 of M. ( 7 is proper, if
it has different values on different maximal set in A/. ) Thus C(N) is a
fibre bundle over the space B{A/} of all proper base functions of A

The notion of nested family is a generalization of the notion of increasing

family. But there is no embedding of C({N) in H. We must extend the
structure of H.

For any subset A of V(I') with at least two elements, consider the space
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D*, similar to D” defined in Section 4, and let
H =8 x [15% = H(H‘Jl x D%,
8 A

where B run over all non-empty subsets of V(I') and A run over all subsets
A of V(I') which contain at least two elements.

We also have an embedding © : EQ(I') — M’ similar to © : EQ(T') —
H, and for each nested family A, we can define an embedding o/ : C(N) —
H' as the same way as in Section 4. Then the union of p/{C(N)), over all
nested families A, shall form the total boundary of EQ(T) in H'.

5.3 Definition of o/ : C(N) — M’

The definition of &' is exactly the same as that of © and we omit it. The
definition of ¢’ is also similar to that of p, but is more complicated.

We introduce some notations at first. Let A'¢ denote the family of sets,
(N =N )U{V(T)—A: A € N JU{V(D)}. N satisfies one of the properties -
for nested families that any two sets in A/ are either disjoint or one of the
two sets containing the other one. For any non-empty subset B of V(I'), let
Ap denote the smallest set in A’¢ which contains B.

As mentioned above, the sets in A, have a linear order, let A° 5 A! D
A? 5 ... D A™! be the all sets in My, Thus A° = UN,,. Furthermore,
let A_; = UN}, the union of sets in N}, A, = V(T), and 4; = V(T) — A%,
i =0,1,2,--+,r ~1. Then (A, Ay, A;, -, A,) is a generalized type of
increasing family of sets in V(I'); the sets A_; and Ay could be empty. { If
r = 0, that is, there is no set in N,,, then we have only A_; and A, = V(D).
) 7

The set Ap associated with a non-empty set B can be separated into the
following situations:

(1) Ag C A, ( Ag E.N} ),
(2) Ag = Ay,
(3 Ap=A;, 1<i<r,

19



(4) otherwise, that is, Ag is contained in A% but does not contain z;.

An element £ = (g, 7, {g4}acn) in C{N) consists of a one-to-one function
g : Vy — M, a proper base function 7 on A, together with a family of
proper functions g4 associated with the set A, for all A € A, And, we define
£ (€) as follows:

(i) If V(I')* is not in A, we use go and n to define a “proper” function
gviey 2 V(I — M as follows: gy(rye(zo) = x0; gviry-(v) = g0(v),
if v € W; and, gy(r)-(v) = n(A), if v € A, for some A € N. In the
following, we think the map gy(r)- as a proper function on V(I')*. If
V(T)* is in N, we already have the map gy () : V(I)* — R?; and we
can interpret it as a map from V(I)* to M by sending every point to
7(V([')*} = xp, whenever necessary.

(ii) For each non-empty subset B of V(I'}, consider the associated set Ag
and define a map hg as follows:
Case (1): Ap € Ny, hp : B — T4, is the restriction of g4, to B.
Case (2): Ag = Ay, hg = gv(ry|s: B — M CR", as a map from B to
R".
Case (3): Ap=A;, 1 <<, hp = gai-1|.
Case (4)’ OtheI'WiSG, hB == g,qB|3 : B — TH(AB)‘
Note: gai-1]g is a map from V(I'} — A* = A; to R%.

We need also another map hz : B — R™ defined by:

if Ap € Ny, then hi(v) = n(A), for all v € B;

if’_AB = Ay, then by = hp;

if Ap = Ay, 1 <¢<r, then hlp = hg;

if otherwise, that is, there exists a unique integer ¢, 0 < i < r — 1, such
that Ag C A* and Ag C Ay, then By = gailp : B — RS

Note: g4 is a map A;, — R2.

(iil) #(€) = ((gveydlviry, {Fa} s, {({gviry ), ha)}a),
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where B run over all non-empty subsets of V(I') and A run over all
subsets of V(I") containing at least two vertices.

The functions (gy(ry))v(ry and {gv(r)-)|4 are considered as maps to M
h's and h4 are considered as maps to R"™.

It is not hard to see that p' is a well-defined smooth embedding and

¢ {C(N)) is contained in the closure of &'(EQ(T}) in H'.

To prove the closure of &' (EQ(I")) in M’ to be a qualified compactification

of BEQ(T), we should show that every point in the closure of @' (EQ(I)) is
in ¢(C(N) for some nested family A/, and, for any nested family A/, every
point in the closure of p/(C(A)), is also in p'{C'(N1)), for some other nested
family A which is finer than A/, that is, A" C N]. But, to prevent the paper
from becoming too lengthy, we do not prove these famous facts.

5.4 The codimension 1 boundaries for “trivalent graph”

The graph I" considered in the following part of this section is trivalent.
By the dimensional reason, if o'(C(N)) is a codimension 1 boundary of

EQ(T}, then A contains exactly one set, say A. And there are several cases
we should discuss:

(i)

(i)

The regular part That is, A is exactly equal to an edge of I This
kind of boundaries are the only boundaries which appear in the graph
cohomology and are cancelled by the cycle condition.

The infinite part That is, A contains the infinite point zg, then
g (C(N)) is the same as p(C(Ay, A;)) for 4 = V(') — A and A; =
V(I'). In the above section, such “infinite” boundaries are shown to be
degenerate by choosing the map f : Co(M) — 5? with fine behaviors
on an “end” of Cy(M), this “end” subspace has the same homology as
Ca(M). ( For details see Section 1.1, or [14]. )
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(iii)

The non-anomalous part That is, A does not contain z4; and further-
more, either A consists of two vertices which do not form an edge of I,
or, A contains at least three vertices and the associated subgraph A(T) is
not a connected component of I'. When I is a trivalent graph, there is a
standard argument to prove that the codimension 1 boundary associated
with the set A is mapped by the extension of ¥ : C(T', M)} — [ Co( M)
to a space of dimension < (2k — 2), or to a union of boundari;s which
cancel by pairs ( the same discussion also in Remark 3.2 and 3.3 ).

The anomalous part That is, A does not contain zy and A(T') is a con-
nected component of . Except the non-interesting case, we may assume
A containing at least two vertices. And, by the second property of the
map f stated in Section 1 that f is fibrewise orthogonal on the bound-
ary S(T'M) of C3(M), we can show easily that the boundary of C(T", M)
associated with A is mapped by the extension of ® : C(I', M) — [] 52
to a space of dimension < (2k — 4). Thus, the degeneracy is too la.r;e to
say that it is an anomalous one ( details see the following ).

5.5 Discussion on the anomalous boundary

We show the degeneracy of the anomalous boundary here.

We follow the notations in (iv) above. Suppose [y is the complement of

A(l'} in T. Then C(N) = UM} x C4% where V5 = V(T') — A, which is
exactly the vertex set of I'y. The extension of ® : C(I', M) — []S? to the
k

boundary p'(C(A}) is similar to that for p(M4e x C4t) defined in Section
4.2; but the later case is a product space which is better than that in the
anomalous case, in which the space is a fibre bundle over the space B(A) of all
base functions 5. Thus we consider the product space EQ(T) x (U,C4™).
Because the space M,}’“ can be considered as a subspace of EQ(l,), C(N) is
a subspace of EQ(T'y) x (U,C4M),
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Now we describe the extension of @ to EQ(To) x (U,C*4™}. For conve-
nience, choose a labelling 7 of I' such that the first 7 edges Ey, Ey, - -, E. are
in A(T) and the last k —r edges Eo1, Evsa, o+, By arein . Let S, denote
the 2-sphere of Tyc4y. Then there is a map ¥, : clam) — 115, defined by:

_ hr(2)) — Mr(2i = 1)
Vi) = (@) —ar@ =)=

for all h in CHA7),

I’I.S’ is a subset of HC.’CQ(M) Thus the composite map ®; = (I] Hod
maps CA into 1'[ 52, By the fbrewise orthogonal property, the image of &1
is independent of 7. Let o, : U,CH ) —s H S? denote the union of the maps
&, over all base functions . Thus the image of &, in 1'[ §? is the same as the
image of &, in 1'[ 52 for each 1. By the trivalency of F A(T) is also trivalent;
and hence, 3|A| = 2r, dim CAM = dim (Tyea))d — 4 = 3[A| —4 = 2r — 4,
where |A| is the number of elements in A. Thus the dimension of image of
&, in[rIS"’ is at most 2r — 4.

Consider also the map ¥q : EQ(Tp) — kﬂ Co(M) defined by:

Wo(g) = (g(7(2i — 1)), g(v(20) Nr+1505 »
for all g in EQ(T).

Let $g = ( 1'[ fYo ¥y : EQ(To) — ]'[ 52, and consider the product of
the above two maps, ®; x ®g : (U,,C'{A ’”) x EQ(Cy) — 1'{.5'2 It is the

‘extension we need.

The dimension of the image of ®; in [] S? is at most 2{k —r). Thus the
k—r

dimension of the image of &, x @ is at most 2k — 4.

5.6 Discussion on the non-anomalous boundary
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A subset A of V(T') is said to satisfy the splitting condition, if A(T'} splits
into two subgraphs Iy and s such that the intersection of the two subgraphs
has at most one vertex and both subgraphs contain more than one vertices.
Thus each edge of A(I') is either in T'; or in ['s.

Proposition (5.1) Suppose A is a subset of V(") and A satisfies the split-
ting condition. A is the nested family {A} consisting of a single set. Then
codimension 1 boundary FQ(T; A) = ¢'{C(N)) associated with A is mapped
by the extension of ¥ : C(I', M) — [1Ca2(M) into a subspace of []Ca(M)
with dimension at most 2k — 2. Therefore, it is a degenerate boundtu:y. [

Proof of (5.1): We start with counting the dimensions. As in Section 5.5,
C(N) = UpM}® x C4m, For any finite set B, let | B| denote the number of
elements in B.  dim C(N) = dim M*+ dim C4"+ dim B(N)

= 3|Vol + (3/A] - 4)+ 3 =3|V(I)| - 1.

Also similar to the argument in Section 5.5, consider the map ¥; : .
CAM — [1 8, and the related maps ¥ : C? — 1 S, ¥/ : C2m —
I1 5, whererA,- is the set of vertices of the subgraph I'; a;;d r; is the number of
:dg&s in [y, for i = 1, 2; T'| and I'; are the subgraphs of A(T") in the splitting
assumed. ‘

Because of the splitting condition, there is a natural map II : C(4% —,
CtArm) x C(42) guch that ¥; = () x ¥%) o I1, where ¥} x ¥ is the product
map from ClA1™ x CH427) t0 [T S,

By counting the dimensions also, we have
dim (CUALD x CH2m) = (3|41 - 4) + (3| Aa| — 4) = 3([A1] + [ Az]) - 8
< 3(JA|+1) -8 =3|4| - 5. |

Compare with the dimension of C{A), its image in [[Ca(M) can be
reduced by one; that is the result we need. )

This completes the proof of (5.1).

Proposition (5.1) proves the degeneracy of the boundary associated with
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A, when A(T') has a univalent vertex, or, when A(T) has a free vertex and
with more than two vertices. When A has exacly two vertices and is not a
edge of T, it is also a degenerate case obviously.

5.7 The case of “bivalent vertex”

Thus the only case left is that A(') has a bivalent vertex, and we shall
show that all the different boundaries associated with A in different compo-
nents ¢,(EQ(I")) of C(T, M) cancel themselves by pairs.

As mentioned above, C(I', M) has different components associated with
different labellings of I'. Now we define an involution in the set of labellings
of ' as fllows:

Assume T : {1,2,--+,2k} — V(T) is a labelling. E; = {r(2i -
1), 7(20)}, ¢ = 1,2,- - -, k. For each bivalent vertex v in A(D), let b{v)
denote the integer such that Ep,) is the unique edge containing v and
not in A(T); and let vy be the bivalent vertex in A(I') with minimum '
value of b. Suppose w, and w; are the two passible vertices in A such
that E;, = {vo, w1} and E;, = {vy, we} are the only two edges in
A(T) and containing vo. Let 7 : {1,2,---,2k} — V(T') denote the
labelling which interchanges the i;-th and the ix-th edges; the precise
definition of 7 should be given in the following cases:

(Case 1) If 7(24;) = v and 7(2i3) = vy, then T(2i; — 1) = w,
7(2i)) = wa, T(2i3 — 1) = vp and T(2i) = wn.

(Case 2) If 7(2i;) = w; and 7(2i3} = v, then (24 — 1) = wy,
7(2i) = vo, T(2i2 — 1) = v and T(262) = wy.

(Case 3) If 7(2i;) = v and 7(2iy) = wy, then 7(2{; — 1) = vy,
7(2i1) = wa, T(2i2 — 1) = wy and T(2i2) = 0.

{Case 4) If 7(2i;) = w; and 7(23) = wy, then (20 — 1) = wo,
F(241) = vo, T(2i2 — 1) = w and T(24z) = v.

It is easy to check that the map sending 7 to T is an involution and this
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involution is dependent on the subset A.

Now consider the two connected components X = ¢.(EQ(I")) and X =
d=(EQ(I")) in C(T', M) and the associated boundaries 8(A) = ¢, (EQ(T, A))
and 3(A) = ¢-(EQ(T, A)). Although X and X are different components, the
boundaries 8(A) and 8(A) do have the same image in 13602(M ). Precisely,

let ¢ : B(A) — B(A) be the map defined as follows:
As above, EQ(T; A) = UpyM® x C'4m. At first, we consider an
involution on the space C41,
For any base function 77 of N' = {A} and any A : A — T4 in
CtAm  let B : A — Tyay defined by: A{vo) = hwn) + hl{ws) — R{wg),
and, h(v) = A(v), for v # .
Now, for any (1,9, k) € UM x CAD, g € M,
(¢+(m g, 1)) = ¢=(n, g, h).

Then we have

Lemma (5.2): For any £ € 8(A), ¢(¢) and ¢ have the same image in
EICCg(M ).
Proof:

Similar to the discussion ip Section 5.5, the extension of ¥ on the bound-
ary 0(A) = ¢, (EQ(T', A)) can be splitted into the product of two maps, one
is a function of (7, g); the other one is a function of 2 and with value in [] 5,
{ thus also dependent on 7 }. Roughly, we may write the second func’cioL in
the form as in Section 5.5, that is, ¥T : Ct47 —, I;I S,

r h(T(25:)) — h(7(25: — 1)) )
) = i) — hir@i = D)=
where j;,¢ = 1,2, - -, r, are the integers for which Ej, is in A(T') and the S,’s
are in the correspoding components of CCy(M).

»”

With a straightforward computation, we have
Wr(20)) — h(r(2i — 1)) _ A(T(2i)) — A(T(2i — 1))

|a(r(2i1)) - A(r(2i — 1))| ~ [R(T(201) — R(7(2, ~ 1))]
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and the same equality for changing #; to iz; thus, ¥](h) = ¥7(A). This proves
the lemma.

Consider the map F' = ¢gr0¢;! : X — X. By the definition of G-
orientation, £ is orientation preserving. The boundaries 8{A), J{A) of X,
X, respectively, take the standard boundary orientation; then the map F,
restricted to the boundary, is also orientation preeserving. Finally, the ori-
entation reversing property of the map ¢ : 8(A) — H(A) implies that the
two boundaries 8{ A) and 8(A) cancel each other.

This finishes the proof of the degeneracy of the boundary, when there is
a bivalent vertex in A(I").
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6 Proofs of Proposition (4.2), (4.3), and (4.4)
At first, we clarify the definition of ® o ¢, on M4 x 41,
In Section 4, we define the smooth embedding

pzﬂ?‘“"xé%—wﬁ?‘f

and, for each ¢, 1 <i <k, E; = {7{2i{ — 1),7(2¢)}, we have also defined the
maps a; : M2 x D% s M 5 DU and 7, H — 5 x D5

Let 3; : p(ﬂ Ao 5 CAL) — M« DM denote the restriction of the
map a;om; 1 H — T x DU 40 the subspace p(M# x &41), Because
f; sends p{ M40 x C4) into the closure of Ca(M) in m i ptta ( that
is, CCy(M) ), we shall consider J; as a map from p(M* x C41) to CC(M).

The following lemma is directly from the definition of the map p in Section
4.1.

Lemma (6.1) Suppose (go, 1) is an element in M40 x G4, g4 : 49 —
M, g1 : A — B> (B; 0 p)(g0,41) is an element, denoted by (ho, hy), in
MM DM ke {1,2) — M, by : {1,2} — R™. Then (ho, hu) can be
described explicitly as follows:

For convenience, E; is considered as a subset of V(I').

(i) If E; is contained in Ay,
ho(1) = go(7(2i — 1)), ho(2) = go(7(21)),
hi(1) = go(7(2i — 1)), ~1(2) = go(r(24)).
(ii) If E; is contained in A,
ho(1) = ho(2) = o,
hy(1) = g1(7(20 — 1)), and h1(2) = g1(r(24)).

(iif) If E; meets both Ay and A, say, 7(2i — 1) is in Ay,

hﬂ(l) = gﬂ(r(‘zi - 1)}’ h.g(2) = Iy,
hi1(1) = 0, and h((2) = g1 (7(2¢)) 2
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When E; is contained in A}, we may have further results. In H, p{go, g1)
represents a limit of the functions in EQ(I") whose values on the vertices
in A} approach to the infinite point zq. Thus, in CC2(M), 8i(p(go, g1)) also
represents the limit of pairs of points in M, which approach to (zg, Zo)-

Furthermore, by the property of the map f : Co(M) — S2, stated in
Section 1.1,

- y-z
f(z!y)_ |y_$|

for (x,y) in a neighborhood (zq, zy).
Thus the limit point 3;{p{go, g1)) also satisfies the same equality
_ gu(7(2)) — g1 (720 — 1))
f(ﬁt(ﬂ(gﬂsgl))) |91(T(2i)) _ _E}l(T(Ei _ 1))| ’
When E; meets both Aj and A7, for example, 7(2{ — 1) is in Ag and 7(27}
is in A{, we also have a similar result that

_ q(r(%) -0
f(Bi(p(g0, 31))) = (73] = 0]

In summary, we have
Proposition (6.2)
(i) If E; is contained in Aj,

_ _ 22 ~ar(% = 1)
Blelawn 9D = Io, (o) — au(r 5~ D)

(ii) If E; meets both Ap and Af{, and 7(2i) is in Aj,

) | = ar(@)
f(Bi(plgo, @) = lg1(7(24))|

(iii) If E; meets both Ay and A}, and 7(2i — 1) is in A,

_ _ =—(7r(2i - 1))
F(Bi(p(g0,91))) = g1 (2 — 1))| .
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Because { [ 5;)op is exactly the extension of ¥ o ¢, to the boundaries,
1<i<k

we have got partial information on the map of o, restricting to Mo x 04,

6.1 Remark on the extension of the map f

As the notations in Lemma 6.1, we may describe the embedding 4 :
Co(M) — M4 x C4 by: 6(z,¥) = (ho, 1), ho(l) = A (1} = z and
ho{2) = h1(2) = y. Now, we choose a point y in M and a point z in R® x {0},
then the point (¢x,y) is in Cy(M), for ¢ sufficiently large. Consider the limit
of 8(tx,y) = (hg, hY), as t — oo, the limit point (A, A) of (Y, Al) are as
follows: A$(1) = zq, AF(2) = ; A$°(1) = =, A3°(2) = 0. The corresponding
values of f : Co{M) — 52 are

my)—tr  tiw(y) -z

f tl-', = = 1
t2:9) = ) —tal ~ e in(y) =]
as t — cg, its limit is

0—2zx

|0 —=|

Therefore, we should define the value of f on the limit point (A3, A$®) as
follows:

00 pooy _ 0—2z _ O—h‘f"(l)
Fhe ) = g = o= R

This implies the result in Proposition (6.2) (iii). We can also get the other
results in (6.2), similarly.

6.2 Proof of Proposition {4.2)

Assume that the maps g1, : A — R? are equivalent under the trans-
lation,relation and go : Ay — M is a map in M%,

For each ¢, 1 < ¢ < k, consider the i-th edge F; and the map fo 5; :
H ~—— S? defined above.

By the assumption, E; is either in Ay or in Aj.

When E; is in A], the formula in Proposition (6.2) (i) directly implies

f(Bi(o(g0, 91))) = F(B:i(p(g0, 91 ))) .
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When E; is in Ay, Fi(p(g0, 31)) is an element in (M) and it is dependent
only on the map go. Precisely, as the notation in Lemma (6.1), an element
in Co(M) is completely determined by the map hg, that is, the element
(ho(1), ho(2)) in M x M. Then, by Lemma (6.1) (i), we have

Bi(p(g0, 1)) = Bi(p(go. 91)) = ((go © 7)(2 — 1), (go © T)(24)},
which also implies the equality

f(B:(p(g0,91))) = F(Bi(p(90,91))} -

Thus [I (f o 8;) has the same value on (g4, 91) and (go, 1), that is,
1<i<k

®(p-(90,91)) = ®lpr(g0, 1)) -

To prove the last statement that the dimension of ®(¢, (M4 x C4)) is
less than or equal to (3m — 4) ( m is the number of vertices in T ), it is
enough to check the obvious results that the dimension of M4° is 3mg and
the dimension of (C41/ ~,) is 3(m — me) — 4, where myg is the number of °
vertices in Ag.

This proves Proposition (4.2).

To prove Proposition (4.3), we need the following lemma.

Lemma (6.3) Suppose ® = (¢1, s, -, ¢x) : X — [1.5?% is a smooth map

from & smooth manifold X to J]$?, and there are i afld §,1<i<j<k,

such that either ¢;(z) = t;b,-(x)ic for all z € X, or ¢;(z) = —¢;(x), for all

z € X. Then the dimension of ®(X) is less than or equal to (26 -2). N
The proof of the lemma is straightforward and is omitted.

6.3 Proof of Proposition (4.3}

By assumption, A}(T') has a free vertex or a univalent vertex, say, v (
v € A} ). Also, by the trivalency of ', there are t and j, 1 < i < j < &k,
such that E; = {v,u;} and E; = {v,w;}, wi,w; € Ag. Thus, v is equal to
7(2i — 1) or 7(2i), and, v is also equal to T(2j — 1) or 7(27).
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( There are three edges E;, E;, and E; containing the vertex v; F; and
E; meet both 4y and A, E; could be in A} or meet both Ay and Aj. )
Then, by Proposition (6.2) (ii) and (iii),
fv=7(2—1)=7(25 — 1), or, if v = 7(28) = 7(2j),

fofi=fof;;
fo=72i—-1) =72, or,ifv=7(2)=7(2-1), -
folBi=—fof; .
By Lemma (6.3), we prove Proposition (4.3).

6.4 Proof of Proposition (4.4)

By assumption, an increasing family T = (Ap, A;) is considered. The
edges E; = {r(2 — 1),7(2i)}, ¢ = 1,2,.--, k, can be separated into three
different kinds:

(1) The r edges E;,, E;,, - -+, E;,, each of those edges meets both Ay and

r.
1t

(2) The s edges E;.,, Ei.,,, +--, Ei.,,, each of those edges is contained
in Af; '
(3) The ¢ edges E;,, E;,, - -+, E;,, each of those edges is contained in Ag.
r,s and ¢ must satisfy the equality r + s + ¢ = k. Also, by assumption
that A{(T") has at least one bivalent vertex, r > 1.
We consider the product of the maps fo3;,, h=1,2,--+,r+s,

g T fofy: b x4 —[8°.
1<h<rta T+

By Proposition (6.2), for each h, 1 < h < r+ s, the value (f o8, (g0, g1)
depends only on the map g : A — R3.

Therefore, we can think that [I fo B, is a map from C41 to [] 82

1<h<r+s r+a
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Lemma (6.4) The dimension of C4i is equal to r + 2s — 1. |
Thus the image of themap [ fof; has codimension at least r + 1

1€h<r+s
in the space J] S%, and hence, so is the map of total product [ fog:
Fha 1<i<k
By assumption, r > 1, which implies that the image of [] f o 3 has
1<i<k

codimension at least 2 in [] S2.
Proof of Lemma (6.4): ¢

Assume there are m, bivalent vertices and m trivalent vertices in A}(T).
Then the dimension of 4 is equal to 3m; + 3ms — 1. And, by counting
the end-points of the edges in (1) and (2), we have the equality 2(r + 3) =
7+ 3m; + 3mg. Thus the dimension of G4 is equal to r +2s — 1. This proves

the lemma.
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