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Abstract

In this project, we proof the following theorems:

Theorem Fuvery compact, connected, and immersed special Lograngian sub-
manifold, which has only isolated transversal self-intersection points in a
compact 2 or 3 dimensional Calabi- Yau manifold, is the limit of a famaly
of embedded special Lagrangian submanifolds.

Remark: The theorem is not expected to hold in general when the dimen-
sion n is bigger than 3. Never the less, we show that if the tangent planes at
the self-intersection point satisfy an angle condition, then the theorem holds
for any dimension (as follows}. One can also try to do the connected sum
of two special Lagrangian submanifolds. However, it is easy to see that this
will not work by simply counting the dimension of local deformations of a
special Lagrangian submanifold.

Theorem Suppose that L is a compact, connected, and immersed special
Lagrangian submanifold in ¢ compact n-dimensional Calabi-Yau manifold,
n > 3. Moreover, assume that L has only wsolated transversal self-intersection
of two sheets and the two tangent planes at each intersection point satisfy the
angle condition 61 +---+8, = . Then L is the limit of a family of embedded
special Lagrangian submanifolds.

Keywords: special Lagrangian, Calabi-Yau manifold.
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In this paper, we will proof the following theorem:

Theorem FEvery compact, connected, and immersed special Lagrongian sub-
manifold, which has only isolated transversal self-intersection points in a
compact 2 or 3 dimensional Calabi-Yau manifold, is the limit of o family

of embedded special Lagrangian submeanifolds.

Remark: N.C. Leung points out that the theorem is not expected to hold
in general when the dimension n is bigger than 3. We will discuss this point
on section 2. Never the less, we show that if the tangent planes at the self-
intersectioﬁ point satisfy an angle condition, then the theorem holds for any
dimension (see Theorem 4). One can also try to do the connected sum of
two special Lagrangian submanifolds. However, it is easy to see that this will
not work by simply counting the dimension of local deformations of a special

Lagrangian submanifold [9]. This is pointed out by R. Schoen.

The method in this paper can also be used to deform a special Lagrangian
submanifold with singularities. This will be discussed in a future paper. To
make ou:r presentation less messy, the constant C in the paper may change in
different contexts. Its dependency will be specified whenever it is essential.
This work is independent and different from A. Butscher’s in [2]| (see also
[3]), but the technique is similar. We have had some discussions after the
work was finished. Both the author and A. Butscher benefited from the
discussions and made some changes in each other’s work. We basically use
the same setting as Butscher’s in [2] and omit some computation to avoid
repetition. However, there are still a few differences in the treatment. Some
is due to the nature of the problem and some is for clarity and correctness. I

also should point out that in [3], A. Butscher only considers n > 3. However,




it is casy to see that the results quoted work for n = 2 and there is no
such restriction in {2]. When the arguments depend on the dimension, I will

indicate clearly and discuss separately.

The author would like to thank A. Butscher, R. Schoen, and J. Wolfson for
their useful discussions and interests in this work. She also likes to thank
N.C. Leung’s comments and explaining her the reasons. During the period
of this research, the author ever visited the National Center for Theoretical
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wishes to thank their hospitality and organizing the stimulating mathemat-
ical activities. Finally, she would like to thank the support of the National
Science Council of Taiwan. The research is partially supported by NSC 89-
2115-M-002-018 and 90-2115-M-002-006.

1 Preliminaries

Calibrated geometry and the notion of special Lagrangian submanifold were
developed by R. Harvey and H. B. Lawson in [6]. We refer to their paper for a

detailed discussion of this subject. The followings are some basic definitions:

Definition 1 A closed, differential p-form ¢ on o Riemannian manifold N
is called a calibration if its comass is 1. That s, ¢{e;,---,e,) < 1 for any

oriented, orthonormal p-frame on TN and the equality holds at some place.

Definition 2 A submanifold M of N is calibrated by ¢, if @|ar = dVig, where

dVis is the induced volume form on M.

A very useful property of calibrated submanifolds is illustrated in the next

proposition.




Proposition 1 /6] If M is calibrated by ¢, then M has the least volume

among all representatives in its homology class.

For instance, a p-dimensional complex submanifold in a Kahler manifold
N is calibrated by J;w?, where w is the Kéhler form on N, and hence is
volume minimizing. R. Harvey and H. B. Lawson showed that Re dZ in R*",
where dZ = dz; A --- A dz,, is a calibration. The corresponding calibrated
submanifolds are called special Lagrangian. The form Re (e¥dZ), where f is a
constant, is also a calibration, and its corresponding calibrated submanifolds
are called special Lagrangian of phase 6. In a Calabi-Yau manifold N, there
exists a parallel holomorphic (n,0) form Q which is of unit length. The n-
form Re (s a calibration and a Lagrangian submanifold in IV is called special
Lagrangian if it is calibrated by Re 2. Recall that a Lagrangian submanifold
is a real n-dimensional submanifold on which the restriction of w vanishes,

where 25 is the real dimension of N.

G. Lawlor [8} modified an example of R. Harvey and H. B. Lawson [6] and
defined the following submanifolds, which will be called Lawlor necks in this

paper:
Assume that ay, -+, an, 7 > 2, aren positive real numbers and a = (ay, - -, ap).
Set
Orla, 1) = /p o 28 for >0,
0 (1+ ars?)y/P(s)
where

(1+a35%)- (1 +aps?)—1
52 ’

P(s) =




One can extend #{a, 4} to negative u by &{a, —u) = - {a, it). Define ,
R x 5771 — R? by

(T, 2a) = (321, 20T0),
where
i1 .
4 +:ri =1 and z, =/ — + p2eOlan)
L
Note that

Qﬁ(u,xl,--~,3:n) =t¢a(§,x1,---,xn} for ¢t > 0.

Hence we can assume . '11Ilf ay = 1. Denote
=l N

= Qg ds
Brla) = , for k=1, n
(o) = | (1+ as?),/P(s)

One can prove that #,{a)+ - - - +&.(a) = §. By an argument in (8], there is a
bijection between positive &y, - - -, 8, satisfying 1+ +f, = Jand a;,- -+, a,
satisfying ) =Llnfn ar = 1. Moreover, G. Lawlor proved that the image of ®,,
which is denoted by M,, is embedded, calibrated by /m dZ, and asymptotic
to Py and P_g, where Py is the plane

F = { (tlei&[a),. . .,tneiﬂn[n)) i€ R, j=1,--- ,TL}_

Note that M, Pp and —P_g4 are special Lagrangian of phase . By moving
these spaces by a phase, we can always make them special Lagrangian. We
thus will not specify the phase any more. But when we talk about special
Lagrangian submanifolds in this paper, we do mean that they are calibrated

by the same form, i.e. they are of the same phase. (see (2], [5], [7], [8]).

A. Butscher [2] studies carefully the asymptotic behavior of the above Lawlor

neck. We summarize some of his results here for completeness. He proves
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that {8(a, u) — Bela)| < 5\347‘ Moreover, there exists a positive real number
Ry so that M, \ Bg,(0) can be written as the graph of the gradient of a
function

U P\ Bp(0)— R, i=12
Here we split R?® as P; x P> to write the graph. The function ¥ has the
properties that

C C C
T(z)] < . V¥R < . IVR(z)] € =,
|T(z)| < B |V¥(z)] T | (z)] iz
'®)
3 < 4 < —
|V¥(z)| < ——--—-|z|n+l, and |V*¥(z)| < o

for z € P; with |x| > Rp. The constant C' depends only on ¢ and n. The scaled

manifold

(M, \ Br,(0)) = M, \ Bery(0), &> 0,

is the graph of the gradient of a function
U, : P\ B.g,(0) = R, i=1,2.

The function ¥.(z) = e?¥(Z} satisfies

CE“ CE‘"’ an

V.(z)l < ——, |VE(2)] < v, (2)] < £,

o) S o, (VL) S o V) <
Vo0.(2)] < 2o and [VAUL(z)] < 2=

for z € F; with |z| > eRp.

(Y

2 Local model

Assume that p is a self-intersection point and locally it is the transversal

intersection of two sheets. We would like to use the Lawlor neck as a local




model. So we first need to find a Lawlor neck which is asymptotic to the
two tangent planes at p. Then cut off a small ball at p on each sheet, glue
in a scaled Lawlor neck, and connect it to the original submanifold outside
the balls. However, there is a condition #; +--- + 8, = § for the planes
which the Lawlor neck can be asymptotic to. In this section, we will discuss
how the condition affects the application. In particular, we show that this
condition is always satisfied for our situation in dimension 2 and 3, but it is
not true when n > 4. Hence when n > 4, we need to add the angle condition
6+ -+8, = % in Theorem 4. We will also discuss why the assertion cannot

hold in general if n > 4.

Recall that a Lagrangian plane (which is always assumed to contain the
origin) in R** is the image of the real z;,---,z, plane by a linear transfor-
mation A € U(n). Thus the set of Lagrangian planes can be identified with

n)/SO(n) [6]. Given a pair of Lagrangian planes P, and P, we claim
that in suitable coordinates, one can make P; to be the x;,- - -, z, plane and
P; to be of the form {{t,¢*',--  t.e™") :t; € R, § = 1,---,n}. This is
because the Lie algebra u{n) of U/(n} is decomposed into the direct sum of
S and so(n}, where S is the set of pure imaginary symmetric matrices and
so(n) is the set of real skew symmetric matrices. The subalgebra S and
so(n) corresponds to the —1 eigenspace and 1 eigenspace of the involution
7 u{n) — u(n} respectively, where 7{y) = ~y*. Since one can diagonalize a
real symmetric matrix, it follows that $ = Uk T k™!, where T is a pure imag-
inary dié‘ghonal matrix and & is in SO{n). The symmetric space U{n)/S0O(n)
is exactly exp 5. The claim is thus proved. We like to thank C.L. Terng's

discussion on this observation. Furthermore, if we denote jw;| by §;, we can




assume that
T
DSBlS.BZS"'Sﬁn—1$§ and Bnot € On <7 — Bt

They are exactly the characterizing angles between P, and £ as defined in
[8]. Note that one has 0 < i 3; < ? Now Suppose that P, and P are two
special Lagrangian planes JLw=1111(:h intersect only at the origin. Then 5 > 0
and when n = 2 or 3, one has 37 ,w; = 0. It implies that J; = 3, in the
case n = 2 and J; + 32 = (33 in the case n = 3. If we change the orientation
on P, which is denoted by — P, then its characterizing angles with P satisfy
81+ B2+ 33 = 7 in the case n = 3. Change the coordinates such that Py = P
and — P = P_g, where # = {%—1, %, %]. We thus can find a Lawlor neck which
is asymptotic to P and —P. When n = 2, one can also obtain the same
conclusion. But this is not true when n > 4. For example, the x;,-- -, 24
plane and ¥y, -,y plane in R® are both calibrated by RedZ and contain
the origin. However, all the characterizing angles between these two planes
are 3. Hence the sum of the angles is 2 and there does not exist a Lawlor

neck which is asymptotic to the x1,---,z4 plane and 1, -« -, y4 plane.

The geometric obstruction for finding a Lawlor neck in n > 4 comes from
the followings: There is an angle criterion which says that the nonzero sum
(oriented union) P, 4+ P» is area minimizing if and only if the characterizing
angles between them satisfy the inequality 8, < 31+ -+ Bn—1. (See [5], [8],
[11].) Suppose that P, and P; are two special Lagrangian planes. By the
property of calibration, we know that P, + P, is area minimizing. Assume
that their characterizing angles satisfy 5, < 1+ - -+ 3.—1 and there exists a
special Lagrangian L asymptotic to P, and P;. A Lawlor neck has the prop-

erty that it is the union of compact hypersurfaces in a family of Lagrangian
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planes. Assume that L has the same property. We first find two Lagrangian
planes P} and P near P and P, which are not special Lagrangian and whose
characterizing angles {8;}, 7 = 1,---,n, still satisfy 3, < 6+ + &, _;.
If the intersection of L and P| + P} is a compact hypersurface in 7 + £,
then the intersection will be the boundary of a compact portion of L and
also be the boundary of a compact subset £; + £, in P, + F,. By the special
Lagrangian condition on L and applying the angle criterion to P} and F;,
we know that both sets are volume minimizing with the same boundary. It
follows that they are calibrated by the same form, which is a contradiction
because P and Pj are chosen to be not special Lagrangian. Thus we cannot
have a Lawlor neck to approximate such a pair. Can we find local models
of different nature to resolve the isolated self-intersection point in general?
The answer is very likely still no. This is observed by N.C. Leung and the

reason will be explained in next paragraph.

One can consider complex Lagrangian submanifolds in a hyperkahler man-
ifold. Recall that there is a S? family of compatible complex structures in
a hyperkahler manifold. A complex Lagrangian submanifold is a complex
submanifold with respect to one of the compatible complex structures, and
is special Lagrangian with respect to another compatible complex structure.
By the property of calibration, any subspace (even singular) which presents
the homology class of a complex Lagrangian submanifold and is volume min-
imizing ir} the class, must be calibrated by the same form, and hence also be
complexlﬂagrangian. Thus all special Lagrangian submanifolds in the ho-
mology class of a complex Lagrangian submanifold are complex Lagrangian.

[t means that we must do the connected sum in the complex category. This

is known to be impossible in general when the complex dimension is bigger




than one. In particular, when we add a handle (= §7~! x R) to the original
submanifold, it will increase the dimension of the first homology group by
one. If the original submanifold is complex Lagrangian, then this new topol-
ogy cannot be complex Lagrangian because it does not satisfy a necessary
condition of a Kahler manifold {the first homclogy group is even dimension).
The upshot for the above observation is that either the theorem does not hold
in general when n > 3, or one cannot find a compact, connected, complex
Lagrangian submanifold in a hyperkdhler manifold which has only isclated

transversal self-intersection points.

3 Approximate submanifolds

Suppose that L is a compact, connected, and immersed special Lagrangian
which has only isolated transversal self-intersection points in a compact n-
dimensional Calabi-Yau manifold N, where n > 2. Without loss of generality,
we can assume that there is only one self-intersection point p on L and locally
it is the transversal intersection of two sheets of L. In a small neighborhood
of p, the metric in & is equivalent to the Euclidean metric in £2". Thus for
simplicity, the distance and norm in the following construction of approxi-
mate submanifolds in this section are all with respect to the Euclidean metric
unless specified explicitly. Assume that the ball of radius o at p in N, which
is denoted by B,,, is both a Darboux neighborhood and a normal neighbor-
hood near p. That is, we can choose coordinates zy, -, Zn, %1, - -, ¥n such
that p is ﬁle origin and for ¢ € B,

i=n

1. the Kahler form satisfies w{g) = _ dz; A dy,
f=1

2. the metric ds® satisfies |ds®(q) — ds3] < Clg|?, where ds2 = dz? + dy?,

10



3. the complex structure J satisfies |J{g) — Jo| < Clg|?, where Jp is the

standard complex structure in B?",

4. the parallel holomorphic (n,0) form Q satisfies |Q{q) ~ dZ] < Clgf?,
where dZ =dzy A--- Adz, and 23 =2; + 4y, =1, n.

Assume that the two tangent planes at p are P, and P, respectively. Then
P, and P are special Lagrangian and L N B,, is Lagrangian with respect
to the standard symplectic structure in R**. It follows that L N B,, can be

written as the graph of the gradient of a function
v:PRnB, - R i=12
for some r; < rg. Moreover, we can choose i satisfying
[z}l < Klal®, [Voz) < Kz, [VR(z)] < Klal, [VP%(z)| < K,

and |V(z)| < Ck for x € P, with |z| < r,, where K is a constant de-
pending on the curvature of L in B,, and Ck depends on the derivative of
K. There exists a Lawlor neck in R** with suitable a = (ay,---,a,) that is
asymptotic to P, and B, when P, = P, P, =P, and 61+ - +8, = 3
By the discussion in last section, this condition is always satisfied when n = 2
or 3. From now on, we focus on the situations in n > 2 where we can find
a Lawlor neck to approximate the pair of tangent planes. We first scale the
Lawlor neck M, by €. Outside a small ball B.g,, the manifold £M, can be
written as the graph of the gradient of ¥, over P, and F,. To match ¢ and
L, togetﬂér, A. Butscher has the following estimate:

Lemma 1 [2/ There exist constants ag and ¢ depending on L only, such that
fO0<a<ap r=2%, and e <ca'w, then |Vi9(z)| <a ond
|V (z)| S a foranyz € P, with § < [z <.

11




Roughly speaking, we want the approximate submanifolds to be ¢34, near
p, and to be L outside a neighborhood of p. We also want to require the
interpolation to be Lagrangian. Recall that the graph of the gradient of a
function on a Lagrangian plane is always Lagrangian. Hence the following
combination of ¥ and V¥, is a good candidate for our purpose. First, assume
that 7 is a smooth function on R* satisfying n(x) = 1 when |z < § and
n{z) = 0 when |x| > L. Moreover, it also satisfies

o< <1 n@i< L, Vi< S,

and |Vin(z)| < % for every z. Next define the interpolation to be the graph
T, = {(z, V|(1 = 0% + 1%.)(z)) € P, x P, 12? <ol <r), i=12
It is easy to check that
IV[(1— 0w + 70| < O, for g <zl <

Denote
B.=Bl xR"NBR xR C P, x PFNPyx P},

where B = B.N P, i = 1,2. We then define the approximate submanifold
to be
My = (eM. N B’g) UThUTyU(L\ BL).

The approximate submanifold is Lagrangian and satisfies the following prop-
erties:

|H(Q)I S C |Q| fOI' q € Eﬂ,f_fa M Blg

H(g)|<C for g€ ThUTy

[H(q)j =0 for g€ L\ B.

12




where A is the mean curvature vector of A, in N. One also has

Im Qs (@) < Clgf?  for q€eMan B
ImQar, (@) £ Ca for geTiUD

Hm Q| (g} =0 for g€ L\ B;

The situation in B?" is computed in [2]. Because |Q(g) — dZ| < Clg}* and
|H(q) — Holg}| < Clg|, where Hy is the mean curvature vector of M, N B. in

R* with the Euclidean metric, we thus obtain the above estimates.

We now investigate some properties of the approximate submanifolds M,.
From the construction, it is easy to see that they are embedded Lagrangian
submanifolds with area uniformly bounded from above and below. Moreover,
because M,, converges to L in Hausdorff distance, we have [y, Im{l = 0. For
a submanifold M™ C R, J. H. Michael and L. Simon [10] proved the Sobolev
inequality:

(fM hTT VY < Cln) fMuva + h|H]|) dV,

where & > 0 is a C! function on M with compact support and & is the mean
curvature of M in R'. By embedding /V isometrically in R/, the corresponding
mean curvature H, of M, in R' is uniformly bounded. Thus the Sobolev
constant on M, is uniformly bounded. (See the discussion in the Appendix.)

We then can prove the following estimate concerning the first eigenvalue.

Theorem 1 When a is small enough, the first eigenvalue A(M,) for the
Laplace operator on M, is bounded below by 1A, (L).

13



Proof. Suppose that f, is the first eigenfuction for the Laplace operator on
M, satistying
f fodV =0, f f2dv =1, and f (V¥ £ 24V = A (M)
My, My, Ma
Because Apy, fo = ~A1(M,) fa, one has
Ap, f2 = =20 (M) 2 + [V foF 2 =20 (M) f.

Assume that the theorem is not true. Then there exists a subsequence {a;}
which tends to zero, such that A;(M,,) < $A(L}. By Lemma 5 in the
Appendix, it follows that

<] gavse

a5

Since A(Ma,;) and Vol{M,, ) are bounded uniformly, the constant C is inde-
pendent of 7.

When n > 2, let s be a nonnegative function in N satisfying s = 1 on
N\ Bs, vs =0on Bg, 0<ys<1lon Ba\B%, and [V¥ps) < 2. A direct

computation shows that

Lwn,j iVM"f @5 fa, |* 4V
= o, (VY582 12 T8 o P+ 2 fo, T - 9 ) 0V
< 2]y o 3| Ve foy AV +2 fMu, 7 M ‘P6|2f§j av

< 2y, IV fosPAV + 2 i, gy (V7 03, 4V

IA

2A1 (M) + S Vol (M, 1 Bs \ B;)

A

221 (M,,) + C6"2,
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In the above estimates, we use |V ;] < [¥;] and Vol(M,, N By < Co"

by monotogicity formula [14]. We also have

[ o PdV2i- [ 24V >1-CVol(My N Bs) 2 1-CF"

M, o Ma r ~B §

and
(f wsba,dV? =([ (1= ps)fo,dV)® < CVol(Ma, 1 Bs) < G5,
JWQJ JLchnBJ
Recall that M, is the same as L in ¥ Y B% for oy < 522 Therefore,

S, |V 05 fa |2 AV B T Vs fa, 2dV
S (s fo 2 AV = (fag,, 05 fa; &V [il@sfa;)? AV = ([ 0sfo; dV)?

> A(L).

On the other hand, it follows from the above estimates that

3

Sita, (98822 AV ~ (Jyy, wsa; V)2~ 1~C6

7

fata, |V 05 fo [PV L Da(Ma) +Com"

Choose § small enough so that C6" % < min(@, %). Then by combining
the two inequalities, one gets Ay{M,,) > iAl(L] when a; < %, which is a

contradiction. Thus the theorem is proved in the case n > 2.

When n = 2, we need to modify the function ; as follows:

[0 |z| < 42
log%I
o = { 2 < < .
ws5(z) (log%) < |z|<é
1 |z} > &

15




A direct computation gives

/ s s |2 AV < ¢ _
Mo, "B\ B2 ~ |logé
3 §

Recall that M, is the same as L in N\ By for o; < K 5%, Similar arguments

as 1n the case n > 2 lead to

2)\1(11&&.) -+ —-—-——“C -
< F ngl.
ML) S 5

Choose & small enough so that 25 < A and G§" < L. One will get
M{Ma,) > i}q(L) when «; < K42, which is a contradiction. This completes

the proof of the theorem.

Q.E.D.

Remark: It is easy to see from the proof that the lower bound can be
improved and the estimate also works for other singularities. Because the
submanifold L is compact and connected, its first eigenvalue A1{L) is a pos-

itive number.

4 Perturbation

There exists a constant c¢; such that the exponential map from the nor-

mal bundle T4 A, into N is an embedding in the ¢; & neighborhood of M,.

Choose & smooth function #, such that 7,{(s} = 1 when |s| £ %E—, and

e €
Ma(s) = 0 when |s| > ~41— Moreover, it also satisfies

0<m(s) <1, [Tna(s)] < &

16




for every 5. Given a C*# function v on M,, 0 < 8 < 1, we can extend it into
a C*9 function U7 on N by defining U(exp{z,v)) = na(|v|)u(z) for x € M,
and v € Tt M,. We then solve the Hamiltonian flow:

Dot ,
cbét: q) = J7V U(Qf’{t, Q’J) and qb([),q) —q for g€ N
There exists a unique solution C¥ for small . Note that if ¢p(f. ¢) is a

solution defined by U, then ¢ (st, g) is a solution defined by sU. Denote
du{T) = pp(1,z) for z € M,.

The map ¢, can be defined for % in a neighborhood of the zero function.
In particular, it is defined when ||(V¥)2U|lo,» < 1. Because ¢y(l,q) is a
symplectic map, the image ¢,(M,) is Lagrangian. Moreover, the family of
maps ¢, 0 < ¢t < 1, is a homotopy between ¢, and ¢p. Define a C%?
function on M, by F,(u)(z) = x¢5{Im Q){(x), where * is the star operator
with respect to the induced metric on M,. If we can find a function  such
that ¢, is an embedding and satisfies F,(u) = 0, then ¢,(M,) will be an
embedded special Lagrangian submanifold. Therefore, the goal is to find the

zero set of F,. The differential of . at the zero function is
DF,(0)(u) = xgp{dijovg Im Q) ().

Because M, is Lagrangian, there exists a function #(z) {mod 2w) on M,,

such that

19{zx}

Qlar, =T w A Awy,

17




where w -+ -w, 18 a local orthonormal basis on the cotangent bundle T M,

(13]. Note that
Pa(tyvryim Q)
= Im Y5, €0 [ (JUNUY By A A g A
F(ITYUVWw A Awg - Awn]
= ¢0s f{x) = du,

where -::35 means that wg does not appear and the last equality follows from

the definition of I/. Because H = JV™=§ [13], we thus have
DF,(0){u) = cos 8(z)Apgu — sinb(z) < H, JVYoy >

It will be denoted by Lu for simplicity. Because |sind| = |¢5(Im Q)| < Ca,
it follows that |#{z}| < C . One then can show

Proposition 2 When o is small, the operator L is an elliptic operator and
its kernel consists of the constant functions. Moreover, the first eigenvalue

A{M,, L) for the operator L on M, has a uniform positive lower bound.

Proof. When « is small, cos#(x) is close to 1 and hence £ is an elliptic
operator. Constants are clearly in the kernel of £. Suppose that Lu =0 and
S, wdV = 0 (ie., normalize u such that it is perpendicular to constants).
Because cos f(x) is nonzero, Lu = 0 is equivalent to

e

A, u —tand(z) < H, JVMey >=0.

18




Multiply « on both sides, and integrate over M,. We then get
fat VHay2dV = — Jug, udpruwdV

= — fy, utand(z) < H, JV¥y > dV

< Cn%}a.x (tan &(x}) [y, |u|| VMewu| dV

< O max (tan8(c)) U, lul? dV)F ([, [V¥eul dV)2.

We use the fact that |H| is bounded in the first inequality above. When a
tends to zero, the number Ir%ix(tan #(z)) also tends to zero. On the other
hand, the first eigenvalue A; (M, ) for the Laplace operator on M, is bounded
below by $A;(L) from Theorem 1. It implies that u is identically zero when a

is sufficiently small. Thus the kernel of £ consists of only constant solutions.

We now estimate A;(M,, L). Suppose that f, is the first eigenfuction of L,

which satisfies
— 2 — — _
/J;fc. fadV =0, ].;4& f2dV =1 and Lf,=—-M(Ms,L)fs

By choosing e small enough, we can assume that cosf(x} > . Multiply

fa
os #(x)
- fMaf&ﬂMafﬂt dv —+ jﬂ'fafa tanG(fE}(H, JVM"fa> adv

both sides of the equation by ~s and integrate over M,. We have

fa

M, cosf{z)

= MM, L)

A direct computation shows that
| fu1, fatand(z) < H,JVM=f, > dV|

< Cmax (12n8(2))(fag, [fal? dVYE(fyy, VY= ful? @V}
< Cmax (tanb() (fyy, |V fal2 dV)3.
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Plugging this into the above equality, we will get

21 (M, £)

v

A Mo, L) far, EB?f?(‘s:‘] av

v

Jia |V¥2 fo? dV — C max (tan 8(2)) (faq, 1= fal? dV)?

2 5hu, VYefal?aV

2 %Al(ﬂ/'{&}-

when « is sufficiently small. This completes the proof of the proposition.

Q.E.D.

5 The theorem

We first set some notation which will be used in the rest of this paper. Assume

that u is a function on M,. We denote

lello,a1, = sup ful,

o

_ u(z) — u(z)|
loan = sup =y 0 0<A<L
and
1
P = PdVie.
leller = (f, wdv)?

We can éinbed N isometrically into &' and set

VM Yoy () — (VM )ey(z')|
Mk _ I
(V7 el = sup dist(z, 27)? ’

where &k is a positive integer.
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When o tends to zero, the neck on M, will shrink to p. Thus we need to
introduce a weighted norm to do the estimates. Roughly Spealiing, we want
to choose the weight function p(z) on M, such that p{x) is less than the
radius of a normal ball at z € M,. More precisely, we can choose that p(x)

is of the form [2]:

ce for € M,N By,
p(z) = { interpolation for z€ My B, \ Bery
Ry for x € M, \ B,

for some constants ry and Rp. In addition, we can also require p(z) to satisfy

the following properties:
L V¥ pllom. < C,
2 cafplz)<Ca for €T UTs,
3. M £C for p<n.

Definition 3 Let u be a C%° function on M,, where k is an integer and
0 < 3 < 1. The p-weighted (k,3) norm ”u”cff-ﬁ{Ma} of u 1s defined as the

sum.

lello.ate + 101V ¥ 0] flopg + - + 10P 1T ) 0] Nouz, + [0+ (VM) ul g,

Proposition 3 The operator L is a bounded operator between the Banach

space C*P(M,) with norm || - lc29(p,y and the Banach space CO8( M) with

norm ||JU‘2 ’ “Cﬂ'ﬁ(Mn]'

Proof. Note that

”pz‘cuﬂcg,,a(Mu}

< |p?cos H&MQHHCE"’(MQ} + “92 sinf < H, JVMay > ”C,‘,"‘:’{Mc.j'
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A direct computation gives

[19? cos B ar, ull gosay,
< A ullom, + [P Ab ] gan, (€08 F]aMu 1A 0.8 |27 D M L0 Mo
< B ulos + [P Buatlsan + 03 o p7losn, 10" Baraul

S C”““C’g‘s{M{,]'

We also have

|p?sind < H, JVMeyu > ”C,[,"ﬁ(Mc.}
< psin®|H| Yoarllo|V¥=ul lloaz, + losing | H| llosr [0V ouls e

+[psin 8H]s a2 lloaallp |V Mau} {fo,az..
Using the fact that the mean curvature is zero outside a small ball and the

properties of p and sinf, it follows that
|o2sin < H, JV¥ou > [loa, < Co®llp| V7] fo,uto-

Moreaver, when we estimate {|p*sing < H,JV¥u > [cos,y,;, all the
suprema involved can be taken only over the small ball. When dist{z,z’) > «,

one hasithat ) ,
lpsin8H(z) — psindH(z'}| < Ca’?

dist(z, z')"
Note that [[(V¥=)2sin 8o, < Ca~'. Hence when disi(z,z') < a, one has
|psinfH (x) — psin@H(z')|
dist(xz,z')5

<Caa™=Ca*".
Therefore,
“,C}2 SlIlt? < H, JVM"TL > “CE"G(MQ) g Ca?”“’“c;‘ﬁ(Mu)'

We thus have

o Cullcosqany < Cllullezoiasa):
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Q.E.D.

By the elliptic Schauder estimate [2] for the p-weighted (%, J) norms, one can

prove that
HuHcﬁ-ﬁ(Mu] < Cf"ﬁ(||102*ﬁ}.-1’uu“cg-3(n,[a} + “u”O.Ma)'

In the Appendix, we show that ||u|oa, < Ce®|| pzﬁMauHcg,a(Ma] for u sat-
isfying [y, udV = 0. We thus have

||u||Cg‘B(1W¢) g CE-(5+“’] ”pzﬂi\"fau”qg"g(:wn)'

In the next Lemma, we bound \[pzﬁMauHCg,n[Ma) by ||p2£u|lcg.ﬁ(Ma) and

hence obtain

Lemma 2 Suppose that v is a C*° function on M,, 0 < 3 < 1, which

satisfies [y udV =0. Then when o is small, one has that
“u”cgnﬂ(MQ) < Csnw-}-v}“Pzﬁu”cg-ﬂ(Ma}s

where v is any positive number. The constant C' depends on v, but is inde-

pendent r,gf .

Proof. Note that
6 Cullcosa,) 2 110° cos 98mr,ull sgiay, =167 sin8 < H, TVHou > | oy,
and

|22 CO.S‘bﬂ;wa“||cg.ﬂ(,wn] = || p° cos 8 ur, ulo.ns, + (0% o382y ulgar, .
When a is small, we have

1
[|0% cos 8A 1, ullo.as, > §|[PQ&MC.U||0.ME.
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and

(0" Ay ulgar, — Callp®Aaullo s

LIt

(0% cos 02y ulg ar, =
Hence
1
2
l|lp° cos H&Affa'u“cg-ﬁ(m,} Z ‘?;”pgﬂMau”cg-H(Maj-
On the other hand, we have

9o Ma . Y 2
“p SlIlH < H, Jv U > ”cg.ﬂ(lwnj g CCY ”'LL”C;.G(MQ}

<Ca s‘(ﬁ”)I|Pzﬂ.-waul|cg-ﬁ(.-wa)'

Putting all these estimates together, we get
2 L, 5 -
e EUHCg.ﬁ[Ma] 2 E”P AMan'”cg-ﬁ(Mn}

and the proposition is therefore proved.

Q.E.D.

Remark: Note that in the proof we first need to fix v and then choose o

small en(JEugh.

Denote the Banach space of C2# functions on M, which satisfies fy,; udV =
0 with norm || - ”cﬁ”( s.) Dy By and the Banach space of C™? functions on
M, which satisfies fy; ©dV = 0 with norm [|p* - lco5ss,y bY Ba. Because
Jar, Im§2 = 0 and the family of maps ¢y,,0 < ¢ < 1, is a homotopy between
¢, and (,'DD, it follows that f,, Fo{u)dV = 0. Thus we can restrict 7, as a
map from B; into B;. A direct computation shows that the operator £ is

self-adjoint. By Proposition 2, we consequently have:
Proposition 4 The operator £ from By into By is injective and surjective.

24



We will apply the following version of inverse function theorem to F,.

Theorem 2 [1/ Let F : B — B be a C! map between Banach spaces and
suppose that the differential DF(0) of F at 0 is an isomorphism. Moreover,

suppose that F satisfies the estimates:
1 AIDFOzlls = Crllz||s for any z € B,

2. | DFO)y —DF(z)ylle < Cxllzllsllyla for all z sufficiently near 0 and
foranyy € B,

where Cy and Cwn are constants independent of x and y. Then there emist
neighborhoods U of 0 and V of F(0) so that F : U — V is a C! diffeomor-
phism and V conteins the ball B%{.,(}—(O)): where r < 5%‘; Furthermore, the
image of the ball B.(0) under F contains the ball Be, {F(0)).

2

We already get an estimate on C}, in Lemma 2 and still need an estimate on
C'w to apply Theorem 2.

Lemma 3 Assume thot v € By, and is sufficiently near 0. The differential

of Fo ot v satisfies the following estimate:

1p*(DFa(v)(u) — DF&({])(H))HCQ-ﬁ(Ma) < GE_B”UHC‘E-H(MG]||u||c§v3(,wa}
for all u € By.

Remark:"The lemma is also proved in {3]. But the proof and the estimate

obtained are slightly different.

Proof. Suppose that the Riemannian metric on & is g. Define a conformal

metric g = s”%g, where s is a constant. Assume that the Hamiltonian
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flow determined by v with respective to the metric g is the same as the
Hamiltonian flow determined by a function v, with respect to the metric g,
which is denoted by ¢y, . Then

dézv . d(.bftvs

dt dt = JVW Sy, = 5 JTVy,,

JTY =

where V¥-¢) is the covariant derivative with respect to the metric ¢’. It im-
plies that v; = s~!v. Denote 57" Q by £, which is a unit length holomorphic
(rn,0} form on (¥, ¢'). Define Gu(v,) =+ (¢}, }*(Im '), where %' is the star

operator with respect to the metric on M, induced from (N, g'}. Since
LG,V (Im) = (@) (s m Q)
= s (Im Q)

= *¢;(Im Q),

one has Galv,) = Fu(v). Assume that K; > % is an upper bound of

| V™e plig 4z, . Choose z € M, and let s = p{z). Then the function p satisfies
2 < p < 2 in the ball B o (2) and the induced metric are bounded uniformly

in this ball Denote the norm with respect to the metric g’ by || - {|¥". We have

dFo(v + tu) dF o (tu)

||Pz("—‘ét—'—ln=u -

o)l o

A

% IDFalv)(w) - DFa(O)wlios g o)
1
52 !
= 5| DGa(us)(us) ~ DGal0)(u:)§ 5 , ()
iRl
< Cuslitas |, wllvalltas
sHeE(B 1( Ni-s C(BTFLG( 1)
where in the last inequality we use the fact that M, with the metric induced
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from {N, ¢} has uniformly bounded geometry in Bﬁt{_(x) Because
L
'i|us||g‘2(8ﬂk_(xj)
1

= s ulll s o+ [VTs )l | o H NVl
o.B?ﬂ}q( } HO'BTﬁT( 1 0-3531‘,1_( )

-1 2
= §7||u + || Vu o+ 8| Veu .
I ”{J,Biﬁ.?(r) “ “0,85};{1_[ ) | ”D»BﬁT( )

< CsHuliczatas

it follows that
|6*(DFo(H) (1) — DFa{0)(u))llo.z g m < CllHllczata il cziata)-

We next need to estimate the following quantity (A):

|02 (DFo(H)(w) — DF(0)(w)) () = 94 (DFa(H)(u) = DFa(0)(w)) ()]
dist(z, z’)? '

When dist(z,z') < 53, we have

; (A) € C8*|luslZas 5 ||| %05 .
(r&—l(“” (,z_kT['-"))

g < o1 -+~
”usHm.ﬁ(BﬁTm) =5 (HUHO.BT‘%T&) - SHV“”U,BTET{E}

2
+5*|V¥ullo.5 p_ 20 + Vi, (2)
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and

329 |V2y(z) — Viul(z')|
dist{z,z")?

P (2)Viu(z) — 0" (2) Viu(z')|
dist(x, )8

A

C

£+ (2)V2u(z) — () TPule!) + 0P ) V() - 0P (@) V()

<
= ¢ dist(z, z')P

< Gl Vs @ + 5Vl @),

we thus have

g -1

||u3||c:2.5(31_k?(3,-)) <Cs |Iu“c§'3(M,,]-
When dist(x,2") 2 577, it is easy to see that
(4) <€ Cs™| Hllcana lull caeatay-
Putting the estimates together, we therefore get
™3 (DFu(H)(x) = DFa(0) @) l35ta < O N B Nl gasary Il ury-

Henee it follows that

||:02{D-Fa(H)(u) - D-Faw)(u))“cg-ﬁ(mqj < CE_ﬁHH”c}B(MQ)”u"cﬁ'”(MQ)'
Q.E.D.

We can choose v = 3 in Lemma 6. Then choose Cz = £ by Lemma 2 and
Cy = Ce™® by Lemma 3. Applying Theorem 2, we therefore conclude that

the image of the ball B.(0) under F, contains the ball Be, (F4(0)}, where
2

83'6
T< T

28




Lemma 4 The zero function lies in the ball Boy 4,4(Fa(0)).
2

Proof.  Denote E = *¢}(fmQY) = F,(0). Recall that |E(z)| < Co and
E(z) =0forx € M, \B%. This together with the properties of p thus imply
that

lo®Eo,at, < Ca.

Moreover, we have
|VM=E| = | cos §VM=8| < |H| < C.

Therefore, when dist(z,z') < gz, it follows that

PP E(z) ~ PP E()|

< Co2tB:1-8
dist(z,z')P s Ca™e
When dist{z,z’) > ¢, it follows that
PHER) = FPEE)] _ oo s

dist{z,z'}8

n+l

Since € = o™ », we thus obtain
I’ C
- L
||PQE||C2"’(M¢) < Ca®P < _2_524-;3
when 3 and e are small enough.
Q.E.D.
The extension function {7 satisfies

V5T llox < CeMllullo, + el V¥ ullos,) < Ce™Hulesiaa,

K2 Ullon € Ce¥ullczara)-
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o2

When ||(VV2Ulgw < %, or ||u||C3[Ma) < =, the map ¢, is defined. When

IV¥Ullow < 1, or lufosan) < S2, then ¢u(M,) is embedded in a cie
neighborhood of M,. Choose r = 278 < 25—2;; in Theorem 2, we knows that
there exists a function u € 5, with ||u||sz.,a{Ma} < 279 such that Fo(u) =0.
It follows that ¢,(M,} is an embedded special Lagrangian submanifold. We

hence prove the main theorem of the paper:

Theorem 3 Every compact, connected, and immersed special Lagrangian,
which has only isolated transversal self-intersection points in a compact 2
or 3 dimensional Calabi-Yau manifold, is the limit of a family of embedded

special Lagrangion submanifolds.

Theorem 4 Suppose that L is a compact, connected, and immersed special
Lagrangian submanifold in a compact n-dimensional Calabi- Yau manifold,
n > 3. Moreover, assume that L has only isolated transversal self-intersection
of two sheets and the two tangent planes at each intersection point satisfy the
angle condition 61 + - -+ + 6, = § (see section 2). Then L is the limit of o

femily of embedded special Lagrangian submanifolds.

Appendix : Supremun Estimate

The author would like to thank A. Butscher for informing her of the useful
references (12}, {15], and showing her a basic argument [4] for the De Giorgi-
Nash estimates in this Appendix. We modify these arguments and present

the material here for the reader’s reference and completeness.

For a submanifold M™ < R', J. H. Michael and L. Simon [10] proved the
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Sobolev inequality:
21 d n;l M ]
(/Mh, 4V < Cln) /Muv Bl + hH) dV,

where h > 0 is a C! function on M with compact support and A is the mean
curvature of M in R', When n > 2, the inequality can be converted easily
into

2n n—2 —
A% = < Mp2 21 FI12dV).
(‘/;Jh ZdV) _C'(n)([MW h| dV-%-thIH| dV)

Or write as

% ﬂ'—;g A2 ] -—% h2 - 1
([Mh dv) SC(n)(fMW ARV + Vol(M)7 [ Kav), (1)

where we absorb sup|H|? with Vol{M)~% to make the expression scaling

invariant. When n = 2, the Sobolev inequality implies

f W 4V < O(k) Vol(M f VMRV + Vol(M)” [ h2dv),
(2)
for any x > 2. Because both H and Vol(M) are uniformly bounded in our
cases, we thus omit the dependency of the constants on sup|H 2 Vol(M)E.

By the above inequality, we have the following estimate:

Lemma 5 Suppose u s d positive sub-solution of the equation Apru > gu
on a closed manifold M, where g is a L' function satisfying the estimate
lgll 5 < ¢ Vol(M M)3=% for somer >n. Then llulloar < Cp VoZ(M)—%HuHLp
forp > 0 The constant C, depends onn, v, T and p.

Progf.  Multiply both sides of the inequality by u9~%, ¢ > 2, and then

integrate over Af. One thus has
| amuav > [ quiav,
M M
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or

(g~ 1)/ W VM2 4V > / gutdV.
M M
By rewriting the left hand side and using Holder inequality, this leads to

4(g— 1)

p /-w \VMu%pdV < HgllfjH“qHL,—:g-

Plug this into the Sobolev inequality. For n > 2, one gets

(e 32 V)5 < Cn) iy [TMud2dV + Vol(M)™a [y u?dV)

S

2
z

< C(n) (caligil 51wl =5 + VoU(M) 77 ]| =y )

< Cq Vol(M)# =% ||ud]

=t

The constant C depends on n and &. For n = 2, we can choose x = ’"—;“—2 and

similarly get

(] u¥ ¥ av)= < Cqval(an)tH ||

L7
The constant C depends on « and . Denote 2 =n for n > 2 and #t = & for
n = 2. Thus one has

2
s

(/w2 V)= < (Cq vol(s) ) ul, .

Denote ¥(x) = ([}, u“‘dV)i. Then the inequality can be written as
T(gk) < (Cq Vol(M)* = #)7 ¥(gs),

=t =T i o =k
where k=375 and s= 5. Because r is greater than 7, thus y= 7 is greater
than one, and

¥(y2) < (C Vi) 4 (),
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for any z > 2s. Choose = = ~m-1p and p > 2s. One then has
Ulpy™) < (GBI Vol(M)F3)m T Wpy™ )
3 m—l 1 m—-1 i
< (€2 Vol()E4)F T 3 42 S (p),

Let mm go to infinity and notice that

© 1 k 11 2 2
S = and ——+-=—-.
o k- ks n T
One then gets
hulloss < C Vol(M)75|[ulls, forp = 2s. (3)

The constant C depends on #, 7 and &. For general p, first recall that one

has
(e u™ V)t < Cq Voi(M)F=% (fyu® dV)s

= Cq Vol(M)E=} (S u® dV)3,

Therefore,
Vot( M)~ % { fy, utk dV) =

< (Cq)t[Vol(M) R (Jfyy ur(=s1 dV)3 Vol(M)~ b (g uss dV)E] 5,

where 1 > ¢ > Cand + 3t L — 1. If we choose X satisfying gs(1 —&)A = gk,
then it follows that

vai(ay 5 ([ wdv)ys < (Ca)t Vol 3 (| e V)3
That 1s,

VGZ( M) % (./W T (.f.V)kl (C’q)qs Vol(M ~ et {f uPE V) st ,uqas )

Pl
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Let g = 2 and p = 2sep = 235, then

Vol(M) ™% (| u V) < (20)% Val(M) 5 ( ﬂ NG Vs, (4)

By varying &, we can choose p to be any positive number. Combine (3} and

(4), and one gets
lulfonr < Cp Vol(M) 7 ||uflze, for p>0.

Q.E.D.

Remark: The constant on the right hand side of the inequality (1) or (2) is
called the Sobolev constant on 3. The quantity can be defined in a general
Riemannian manifold, which is not necessarily a submanifold of &', We only
use (1) or (2} to derive the estimate. Thus the lemma holds in general and

the constant C, depends on the Sobolev constant on M, r, € and p.
From Lemma 5, We can get the following supremun estimate:

Theorem 5 Suppose that u is a Wb? weak solution for Ayu = f on a
closed Riemannian manifold M, where f satisfies | f|| 3 < oo, for some

r > n. Then
lwllos < C (Voll M) #[luil s + Vol(M)==F11 £ 5),
where C {Izepends ondy on the Sobolev constant on M and r.

Proof. Define 3= VoZ(M)E‘%llfHLE and £ = %[(%)2 + 1]. It is easy to see

that & is a weak solution for

Apé >

Tals.
Lol &
It
Tl
ol
Syl



1 E
% 3 Because |§—£| < 2, one then has

“Col'w

Denote g =

2
z

JIN

lall, 2 < ﬁllfll 2 < 2Vol(M)

By Lemma 5, it follows that
§ < CVol(M)7H€] -

Hence
51 < CVaI(M)™ 5 1) s + Vol(30).

Therefore,

lu| < C’;ﬁ'\/l + Voi(ﬂff)'1||(;—;-}2||L1

< C\/ﬁ? + Vol(M)=1||lu?||

< C(B + Vol(M)#||ulj 1)

= C(Vol(M)=%|| fll ;5 + Vol(M)7#||ul|2).

Again, tHe constant C may change slightly in different places.

Q.E.D.

Suppose that M, and p are as defined in section 3 and section 5. We need

the following estimate in weighted norm to prove the main theorem.

Lemma'6 [3/ Suppose that u is a C*P function on M,, 0 < 3 < 1, which
satisfies fy, wdV = 0. Then one has |ufjom, < Ce™ "’||p2AMau||Cua way JOT

o small enough, where v is any posttive number. The constant C' depends on

v, but is independent of «.
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Proof.  Assume that the Lemma does not hold. Then there exists a se-
quence o; — 0, its corresponding «;, p;, and u; € C*° {(M,,) which satisfies

fll‘la' 'U-J dv = 0 a.nd
3
”uj ”D.Mc.J >J E;V”P? tﬂ'iMﬂ(J ujncg;ﬂ(mgj}-

We can normalize u; such that ”uj”O.Muj = 1. It then follows that

£,
J

L e

162 B, 5l ooy, <
On the other hand, by Theorem 4 we have
lugllon,, S C[Vol( M, ) Hllullze + Vol(Ma )37 Apa,, w5
Because u; satisfies fMaj u; dV =0, one has

Aﬂ%ﬂf @wg~f < D, vy, > AV < [ Bag, ujllze

o) o
Remember that the Sobolev constant on M, is bounded uniformly, the vol-
ume Vol(M, ) is bounded uniformly from above and below, and M(Ma,) is

bounded below by $A1(L). Thus when r satisfies —r + & > —n,

L= lusllonss, < Crllldat,usllz + 180, w5l 5)
—r r 2
< Cilfa, 95 (0} Bara, ug)3 dV]

< Cilfag,, p5" (Gep)E dV]?

C,
< —J-‘(IMU.J, 2

p
"

)

< Er
—_— J -
The constant C, may change in different places. Given v > 0, we first find r

which satisfies —r 4+ 4 > —n. Because the constant C, is independent of j,
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the above inequality then leads to a contradiction. Hence the lemma must

hold.

Q.E.D.
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