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Abstract
In this paper, we adopt the kernel weighted GMM approach to estimate the parameters
of drift and diffusion for continuous-time interest rate models. In this framework, we find
that our estimates have typical large-sample properties, such as consistency, asvmptotic
normality, and robustness. Moreover, after using the local linear regression smoother, we
can see that at low and high levels of interest rates the implied volatility is higher than

that at mid-level interest rates. This supports the evidence for a volatility smile.
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1 Introduction

In the financial field, we usually use some stochastic processes to study the behavior
of interest. rates. Many models have been proposed in the literature. These models use
diffusion processes to describe the dynamic of interest rates. In other words, if r(t) denctes
the instantaneous interest rate at time £, and it follows a diffusion process, then by Itd's

formula, we have the following stochastic differential equation (SDE)
dr{t) = it r(8))dt + o(t,r(£))dB(), (1)

where, {B(t),t > 0} is standard Brownian motion; and u(-,-) is called the drift parameter
of the process or instantaneous mean; o(-, -} is called the diffusion parameter of the process
or instantaneous variance. Under such specifications, we can deduce the term structure
of interest rate and price interest rate derivatives.

In the literature, many econometric methods have been developed to estimate equa-
tion (1). The maximum likelihood estimation (MLE) and generalized method of moments
(GMM) are two methods which are most commonly used. For example, Chen and Scott
(1993), Pearson and Sun {1994) use the maximum likelihood estimation. On the other
hand, Chan, Karolyi, Longstaff and Sanders (1992) use the generalized method of mo-
ments. However, these two methods have some limitations. Specifically, we have to make
appropriate assumptions when we use these methods. For example, in using the MLE, we
assume that the likelihood function of the change of interest rate is known, but, unfor-
tunately, this is impossible. There are also misspecification problems with the likelihood
function. White {1982) studies the misspecification of likelihood and introduces a method
to correct this problem. Moreover, the pseudo maximum likelihcod estimation is used in
Gourierous, Monfort and Trognon {1984) to correct this error.

Although the GMM is more robust than the MLE, it still has some problems. In a
recent paper, Fom (1998) shows that if the moment conditions are not exact, then the
estimates are wrong when using the GMM. Moreover, if too many moment conditions
(overidentification) or too few (underidentification) are used, it will result in no solution
(infinitely many solutions). Since the estimation of parameters is sensitive to moment
conditions, the GMM is not a robust estimator. Facing such a problem, Gallant and
Tauchen (1995) and Andersen and Lund (1997) propose the efficient method of moment
method (EMM) to solve this problem.

In our paper, we assume that

plt,r(@) = p(r(t))  and  o(tr(8)) = olr(2)) ()



Table 1 lists some parametric models which have been proposed in the literature.

Becanse it is impossible to guess the true model of interest rate, some approach of
nonparametric models or semi-parametric models have been proposed in the literature.
Table 2 is a list of some nonparametric models.

Although nonparametric models are more robust than parametric models, nonpara-
metric model estimations cannot catch the features of serial correlation or persistence. In
contrast, the GMM will do a much better job than nonparametric models in this case.
In addition, since the kernel estimate is a special form of weighted scheme, which counts
hoth sides in a bandwidth of cach set of data. Data ncar the boundary only has weight
on one side and this lacks weight on the other. It will result in estimation bias, is the
so-called boundary effect. Therefore, to reduce the boundary effect we have to correct
the specifications of the kernel function. Table 3 represents some simulating results by
comparing the parametric models estimation and the nonparametric models estimation.
It says that the nonparametric model estimation is more robust than the parametric mod-
el estimation. Morever, under suitable assumptions, we may find that such a correction
does,in fact, reduce the boundary effect. The main argument is based on Hansen and
Scheinkman (1993), in which they inset a kernel function into each moment condition.
Using this method, we can estimate the drift and diffusion in equation (1), and discuss
the properties of their estimations, respectively.

The remainder of the paper is organized as follows. Scction 2 presents the nonpara-
metric estimation method incorporating the boundary effect. Section 3 discusses how we
implement the kernel weighted GMM method. The empirical results are given in Section

4. The last section concludes the paper.

2 Nonparametric Estimation and the Boundary Ef-
fect

2.1 Identification

Generally, the interest rate is thought of as a continuous-time process, however, on ob-
servation, only discrete data can be accessed. Weekly, daily, even hourly observations
are available, but they are not continuous- time observations. Therefore, when we use
this discrete-time data to approach the continuous-time interest rate, there will be some
bias. This will result in the ability to catch some features of the data. Unfortunately, we



cannot abbreviate the time interval when we observe it. If we could, there would be two
advantages: one is that the effect of the limitation would be enhanced. Second, we could
increase the number of observations.

Unfortunately, abbreviating the observed time interval will cause the market micro-
structure problem!. As a result, if we want to increase the number of observations but
not abbreviate the time interval observed, the only thing we can do is to increase the
amount of time ohserved.

On the identification of parameters, Ait-Sahalia (1996a) proposed that (;1.., f:r"’)f and
(a)u,, aag): a # () are distinguishable if we do not put any restrictions on the parameters.
Given this, while including the information of the interest rate observed data, he also
made some specification on the parameters. He assumed that u(r) = 8-{c@ — r), and the
diffusion was no restriction. Given this, the model of Aft-Sahalia is given by

dr(t) = 3-(a — r(t))dt + o(r(t))dB(t) (3)

Under this specification, we may cstimate the drift and diffusion. In the next section, we

will introduce the estimation of Aft-Sahalia.

2.2 Estimation of Drift Parameter

According to equation (3) and Klenbaner (1998), we have

r{t) = exp(—3t). {r(O) + th afexp(Ss) ds + fot exp(3s)a(r(s)) dB{s)}
= o+ (r(0) — a)exp(—5t) + fut exp (—3(t — s}) o(r(s)) dB(s)
= a+ ('rt(t — A) — a)exp(—S4)
+ [ e (=3t - ) o(r(s)) dB(s). 4

such that, ¥ A > 0,
Efr(t) | r{t— A} =a+ {r{t — &) — a)exp(—3A) (5)

Hence, when we use the AR(1} model: 7(¢) = &y + p-r(t — &) + ¢, we can get dp and 5.
Now use the one-to-one mapping of (8, o)’ and (&, 8)', and we have, & and 3. Then

In Ait-Sahalia(1996a), he proposed the market micro-structure problem including the bid-ask spread,
the discreteness of the prices observed and the irregulariy of the intra-day sampling interval three kinds
to affect the estimation of parameter.



the estimator of drift parameter is obtained. The relation is given by

=) o
§ o= - ), (7)
ir) = Sla-r), ®)

such that, we can indirectly find the estimator of drift by using the estimator d= (éf, ;‘?)'
of § = (a, 5)".

2.3 Estimation of Diffusion Parameters

Since the diffusion is hidden behind the information in the data, it is unobservable, so
we cannot use the observed data to estimate the diffusion parameter. This means that
we have to use another method of estimation or use some proxy. Later, we will introduce
a feasible method to estimate the diffusion. This method uses the marginal probability

density [unction and the relation of drift and diffusion.

2.3.1 Transition p.d.f. and Marginal p.d.f.

Let P (¢,- | s,z ) denote the transition probability density function of a stochastic process
{ r(t),t > 0} from r(s) = z to time £(¢ > s), and ='(-) denote the marginal probability

density function of it at time ¢, giving us the following relation
[ Pty lso)r@ d=r), WeR (9)

Consider the Kolmogorov Forward Equation

;P (t,y | s.2) = —Ei‘% [1t(y; 8)- Pty | s.z)] + ;%‘2‘ [02(’9)'?7(75-. y | ’J’T)] (10)

Combining these two equations, we have

%ﬁt(y) = %—/R :D(f,y |S,$).7r5($) dz
a
- [R 7P by | sz)m(z)] do

- L{—%[p(y;ﬂ}'?)(tey P s,x)]



A PPy 50 ) de

= [ e Py | sa)w @) de

+3 [ 35 @ P oy | 50) =) do

= 5 [ktwe) [ Py | 5w ]
1@"[ [ Py | sz) dx]

1 &

= [( 87 ()]+5@[o(-)-wt(y)]. (11)

And, supposing that the transition probability density function is stationary, there then

exists a (-}, such that

wy) =n(y), Yy e R, ¥t > 0. {12)
Therefore,
;;.(]—0 Yy € IR. {13)
So that,
2 tpty 000 = 3 2 [ (o)
= o*(y)= z_ plv;®)-w(v)dv , Yy e IR (14)
m(y) St

2.3.2 Find the Estimator of Diffusion by Marginal p.d.f.

Above all, if we know the form of the marginal probability density function and the

estimator of drift, we can easily find the estimator of diffusion. It is shown as follows:

2(y) = b)) v, vy e R, (15)
o.4]

()
where, #(-) is a known probability density function.

However, we do not usually know the form of z(-), so we must use some estimator to
replace it. This time, nonparametric estimation will offer us a strong tocl to help us to
find it. Following Cheng and Li (1978), we have

) 28F z (’"“):“)), (16)



where, {r(t) }Ll is the data; T is the number of observations; XC(-) is the kernel function:
A. is the bandwidth of L. Generally speaking, the nonpararmetric estimation of the
probability of each point is of special weighted form. The shorter the data ,the more
weight the data have. And the weight is counted by the kernel function. In Hardle

(1989), we can conclude the following five properties of the kernel function:
1. Support (K) = [-1,1].
2 /_'1 K{u) du = 1.
1
&j¥wmwwm=&
4, /_11 oK) du =75 #£ 0.

5 Kec (|-1.1]).

In the empirical discussion, we will use the following kernel function to estimate the

marginal probability density function.

2 1
Mo = o1 Tl (17)
2 1
e iflul<1;
B {7" 1+ u? el <1
0 Jf | u | > 1

When we replace (-} for the above kernel function, we have

A N
L= JNICORMOL TS & (18)

2.3.3 Boundary Effect and Correction

As our estimator of the parameters are of the symmetric weighted form, we do not need to
correct the kernel function if the boundary effect is not significant, or the near boundary
data are negligible, because the correction is just of advantage in reducing the boundary
effect. Moreover, since the computation of the boundary kernel function is more complex
and difficult than on the original kernel function, there therefore must be a trade-off in
selecting the kernel function when we decide to account the boundary effect in, or we may

get an unreasonable outcome in pricing some securities.



In the above discussion, we have shown the importance of the marginal probability
function in estimating diffusion parameters, and have pointed out the form of the kernel
function. Here, the major argument is with regard to results of the boundary effect and
correction. According to Hardle (1989), a boundary kernel function K,(-) must satisfy

the following properties:

b
1. f_l K (u) du= 1.
b

2. flu-.FC;,(-u) du = 0.

&

]b w2 Ky (u) du =1y # 0.

-1

oy

| [i (Ko (1))? du < +50.

Ky et {(-18]).

o

(=}

. lblﬁl Ke() = K().
And in Section 2.3.2, the kernel function we adapted is
2 1

. 1[_111] (u)‘

Ku) = — ——
() 7 1+
such that, when we consider the boundary effect, its boundary kernel function XCy(-) is

given by
Ky() = [ (8) 2+ o) )] 1 () (19)
6(In2 — In{1 + b%)]
(1 +5) [arctan(b) + g] 31— 1) [In2 — In(1 + 52)]
27(1 + b%)
41+ ¥) [arcta.n(b) + g] —3(1 = &) [In2 — In{1 + ?)] .

where, f,{8) = and, ha(h} =

Proposition 1: K;(-) must satisfy the six properties in Hérdle (1989).

For the proof, please see Appendix A.

In accordance with the above derivation, we may see that the original kernel function
X(-) can be replaced by K3(-) when the boundary effect is significant enough to reduce in
a bias. In other words,

; L =
furi) 0 Loy (1510 (20)

-
!



= . — 2 R LA R r v
& (b = o /(_m,y1 p(v:6)- o (vib) dv | Wy € R. (21)

Figure 1 displays the effect of the correction of the boundary effect. Here, given u(r;8) =
0.25-(0.055 — r}, the boundary effect is significant. Therefore, we can replace the original
kernel function with the kernel function adjusted for the boundary effect.

3 Inserting the Kernel Weight to GMM

In Ait-Sahalia (1996a), we may find the semi-parametric estimates of both drift and dif-
fusion, although the method used to get the estimate of diffusion is more difficult than
that of drift. This method takes into account both the estimate of drift and the marginal
probability density function®, and the Kolmogorov Forward Equation and stationary as-
sumption.

Next, we may ask whether we can find the nonparametric estimate of diffusion by
using another method different from Ajt-Sahalia (1996a). The answer is "yes!” In Stanton
(1998), he uses the same kernel function to estimate both drift and diffusion, such that the
estimate of these two parameters is of nonparametric form. However, the nonparametric
estimation is more generalized than the parametric estimation, and it has faced much
criticism, such as the selection of kernel function, the size of bandwidth, the convergence
rate as it is affected by the dimension of variables, boundary effect. etc. In addition, when
we apply the nonparametric estimation to time series data, for example, to variables of
economics or finance, it is usually accused of having disregarded the persistent and serial
correlation which are always important features of time series data.

As there are so much eriticism for the implication of nonparametric estimation to time
series data, should we abandon this method and go back to the parametric estimation to
correct some specification on it to avoid the occurrence of the above problems? In fact,
the ability of nonparametric estimation in catching the features of persistence and serial
correlation of data is weaker than that of parametric estimation in naturc. Fortunately,
the moment conditions do a good job in catching the features. Given this, in order to
compensate for the blots of nonparametric estimation, we propose a new estimation model:
inset the kernel weight into the moment conditions. This model not only preserves the
robustness of nonparametric estimation, but also has the advantage of moment conditions

with respect to catching the features of persistence and serial correlation. Here, we will

*Regardless of whether or not the boundary effect is considered.



develop such a new estimation model and study the properties of estimates which this

method provided.

3.1 Derivation of the Moment Conditions

In this section, we derive the moment conditions of the following specific interest rate

process:

dr(t) = pu (r(£);0) dt + o (r(t)) dB(2)
p(r(8:8) = 8- (o~ (D)},

By equation (5), we have, Vi > A > 0,

E[r@)|r(t—24)]
= a+[r{t - A) —alexp(—34)
Tt — D)+ (1 —exp(=84)) - (a —r(t — A))
= all —cxp(—3)] — (1 —exp(=3))-r(t - &), (22)

such that, by defining

e(t) ity = r(t— A) = B[r(t) —r(t - ) | 7t~ &) ], (23)

we can find that E[£(t) | r(r — A) ] = 0. Moreover, by using the iterated expectation
rule, we have,

Elet) |=E[E[e(t) |r(r—A)]]=0. (24)
So that, the first moment condition, C1, is given by

-1

Y AC(T =) =77 = = )=l = exp(=g9) = [ - exp(=8-5)) (T =5 = 1)} =0
(25)

Moreover, if we define /4 = 1, then, since

Elrt)—r(t—=1 |rt-1)]=a-[1 —exp(-3)] +exp(-58) - r(t — 1)



and by the iterated expectation rule, we know that

E[r({t)—v(t—1) = [l —exp(=3)]+exp(—3)- E[rt-1)] , t=1,2,3,...,T. (26)

Equation {26) shows us how to find the expected value of the interest rate at time ¢ condi-
tional to the (¢ — 1}-information. By the iterative law, we have the following proposition:

Proposition 2:

Elriy—rt—1]=a-[1—exp(—-8)t+exp(-5:¢)- E[r(0) ] , t=1,2,3,....T

(27)
Moreover, in Jiang {1998), when deﬁne the difference of interest rate as follows:
A ¥ _rp— Ay, > A,
then ¥r > A >0
Cov (Ary, Are_y) = exp (—8-(7 — A)) [1 — exp(—3A)0%, (28)

such that, we may show the following proposition

Proposition 3: If we suppose that /A = 1, then a -lagged corrclation coefficient is given

by
Corr (Are, Ary 1) = —% exp (8- (7 — 1)) [1 — exp(—8)] (29)
Therefore, by 7(t — 1) = r{0) + E Ary_, we find that
Cov{Ar,r(t - 1)) = § exp (—8-(r — 1)) [1 — exp(—8)]*>. (30)

Hence, the second moment condition, C2, has been shown as follows:

T—7
Z_O{[T(T—j)—?‘(T—j—1)]-[r(T—j—1)—r(T_j_T)]}
= pep(-f(r )1 —exp(-5) 723 (31)

10



Giving these two moment conditions, we can get the estimates for o and 3, respectively.
To find an estimate for drift, you can substitute the estimates of & and 3 into the speci-
fication of drift. In other words, by solving the system of equations C1 and C2, we may
find & and 5, and substitute them into the specification of p, such that,

gy = #i0) = B (@ =) (32)
3.2 The Estimation of Moment Conditions After Insertion of
Kernel Weight

Using the above derivation, we find not only the two moment conditions, but also find
the estimate of drift parameters by solving the svstem of equations C1 and C2. However,
since the estimates provided by the GMM are not robust estimator®, we have to make
some modifications to correct this problem.
First, we insert the kernel weight into each moment condition. And by the following

equation

T-1

> {H(T = §) = o-[L — exp(~3-3] — exp(~3)r(T ~ j = 1)}

-

= 2% {(r(T-3)—r(T—i-1] -l —exp(~5-7]
T - ep(-p)l @ -5 - 1)}

Hence, C1 can be replaced for C1’ as follows:

0= 73 {[FTP - T30} —a(9) - [1 - exp(—57)] - [a - 77|}
1 pe(T—i) wt — (T3 1)
Y _— 1 d
T"\/H(T—J‘—l}}c( A ) “ {35)

[t} 4 p(t-1)
where, s(t) def r"+7" ° , t=1,2,3,. -, T.and r

(1), r{2), 7(3), ---.r(T).

In C1°, we put a nonrandomized function e{#}. This makes the estimation more robust

(t) d;(gf the t-th ordered statistic of

and comprehensive by taking on a special form. For example,

1
1. When we take a{(8) =1, and K(u) = i then C1' = C1 , and our estimates will
be identical to that of the GMM estimation.

31t is sensitive to what the moment conditions are and the number of moment conditions.

11



2. When we take a{8) = 0, and define

-1

i [+ — 500] f R (—” _;(t) ) du, (34)

{0

. def 1
HEZ TN

then C1' gives us estimatcs just the same as in Stanton (1998). which are of

nonparametric form.

Hence, we may change C17 into C1”

T-1
0=juxc — 3 {a(d)-[1 - exp(-5-7)]- [ —r" I V]}
j=0
1 s{T~5) U — T{T—J'—l) )
X TA /;(T-j—l] K (MJ\_) du. (33)

Then, by solving the system of equations C1” and C2 and adjusting the value of a (5,()
we may obtain the optimal estimating result.

Under such an estimation, we may find the estimate of drift
f = pt (7‘: é}c) : {36)
and by equation{16) and (18}*, we can find the estimate of diffusion
O =0 (r; @x) . (37)

Also, from Hirdle (1990), we have the following proposition,

Proposition 4: 5 has the following large-sample properties:

1. P 111}_1 Gy = o, in other words, it is consistent with the true diffusion pa-
N——+0C

rameter.

2. v (Erfc - 02) RN (0,X), in other words, it is asymptotic normal with

the asymptotic variance .

The proof of Proposition 4 is shown in Appendix B.

10r, vou may use the equation(20) and (21) which have considered the boundary effect.

12



4 Empirical Results and Analysis

In our research, the data used are the U.S. FEDERAL FUNDS (EFFECTIVE) -MIDDLE
RATE from 1/1/1990 to 25/8/1999. We compute and list the descriptive statistics of the
data in Table 5, such as mean, variance, skewness, kurtosis, etc.

Before discussing the empirical results of our study, we solve the system of equations
C17 and C2 to find the estimate of drift parameters. Also, we use equation (18) or (21) to
find the parameter of diffusion, so that, in the stochastic differential equation of interest

rates

dr(t) = i (r(8)) + & (r(1)) dB(2)

we may find the term structure of interest rates.

4.1 Marginal Density Estimation

Figure 2 is the graph of the nonparametric estimate of the marginal probahility density
function. The real line is the curve of the line which accounts for the boundary effect; the
dash line does not. This shows that the marginal probability density function is unimodal
but asymmetric to the mean, and the boundary marginal probability density (solid line)
has a fatter tail than the other.

4.2 Drift Estimation

Table 4 compares the estimates of drift parameter. The 2“d—step FGLS estimates were
described in Aft-Sahalia (1996a). The optimal bandwidth® is given by

c

- L 2 5 0.0360727
In{n}

It is oblivious that the boundary effect is significant, so the estimatc with the original

kernel should be correct.

4.3 Diffusion Estimation

Figure 3 displays the graph of the estimate of diffusion parameter. As mentioned before,
we must use the estimating results of the drift parameter and the marginal probability

density function to estimate the diffusion parameter. Hence, its bias maybe larger than

8 The admissible bandwidth choices are described in Ait-Sahalia (1996a) Assumption A3,

13



the parametric estimate if the specification of the diffusion parameter is correct. In Figure
3, we see that all the three curves have a “smile-like” U-shape. But, in Ait-Sahalia (1996a),
he had supposed that

lgirg a(r) =0,

such that the graph of the estimate of diffusion using the model in Aft-Sahalia (1996a)
will be more likely to pull the diffusion to 0 when the interest rate is low. This contradicts
the "volatility smile” feature. Since at low levels of interest rates, the investors have no
willingness to hold such a security, if they do not possess the security, they will not buy
it. On the other hand, if he already holds a low level interest rate bond, he will short
it, so the liquidation of a low level interest rate bond will be high. At mid-level interest
rates, investors will hold securities for a longer time than in the case of low level interest
rates, so the level of liquidation is lower than that at low of level interest rates. And the
dashed linefis too flat to look like a line. In contrast, the real line’ scems to be a U-shape.

As the above discussion, this is result by the boundary effect.

5 Conclusion

In this paper, we find that the mean-reverting property of interest rates proposed in the
Vasicek {1977), CIR (1985), Courtadon (1982), Chan {1992) and Duffie-Kan (1993}, etc.
is not evident. Locally, we can see when the interest rate goes up, the drift will pull it
back to the trend level and conversely, when the interest rate goes down, the drift will
pull it up to the trend level. Overall, we can say that the term structure of interest rate
has a local mean-reverting property.

Secondly, in Figure 3, we see that the implied volatility is smile-shaped. At low
levels of interest rates, the liquidation of Treasury bonds is higher than that at mid-level
interest rates. Hence the implied volatility at low level interest rates is higher than that
at mid-level interest rates. This is contradict to the result in Ait-Sahalia (1996a).

%The curve of the estimate of diffusion which is estimated by using the original kernel function.
"The curve of the estimate of diffusion which is estimated by using the boundary kernel function.

14



Appendix A—Proof of Proposition 1
Lemma 1: lim A (p) =0.
B
[proof:]

i A6 — i 6In2 — In(1 + 4]
1 T 5 Y (] + 82
4(1 + %) |arctan(b) + 3 3(1 ) [In2 — In(1 + b%)]

llm{ [1112 —In(1+ bz)]}

]E!‘Tnll {4(1 +b°%) [arctan{b) + Z] —3(1-¥) []H 2-1In{l+ bz)]}

4r—10
=0

Lemma 2: lblgl ha(b) = 1.
‘proof:|

3
im he{b) = lim ?rﬂ(l 7
Bt1 bl 41 + 53 [arctan(b] + Z] —3(1 - 8% [In2 — In(1 + 6%)]

l#? {‘27{(1 + 63)}

llﬁ]{ (1+5%) [arctan(b) + E] —3(1-6% [1112 —In(1 + bg)]}

We now will verify the six properties described in Hirdle (1989) of X,{-) one by one, so
the Proposition 1 has been shown below.

I

fl;cb(u) du = f [ (B) -1 + Ro(b}-K(w)] d
= f [h1 -1 du+f [hz K(u)] du

= 2 hl(bl + __hg(b]

arctan{b} + %]

13



B[In2 — ln(l + 6*)]-

¥ -1
2
4(1+ %) [a.rctan(b) n 341] —3(1— 5)[ln2 — In{1 + 2)]

2 T
er(l1+6%) — [arcta.n(b) o

* A1+ ) [arctan(b) + g] ~3(1— ) In2 — In(1 + 02)]

= 1

j:b]-u-}C;,(u) du = fbl-u.-[h](b)--u+h2(b)-.1€(u)] du

= Lbl [h1(b}'u2] du.}.fjl [h2(b)u]C(u)] du

= %{53 + 1A (b} + %hz(b) [ln[l +b) —1n 2]
B +1

6(In2 — In(l + 6]

A(1+8%) [arctan(b) + g] ~3(1— ) [In2 — In{1 + )]

1
2 (1+b%) — [In(1+ %) — In2]

-+
4(1 + 5%)

= 0

arctan(b) + Tﬂ —3(1—#)[In2 ~ In(l + &?)]

b &
fluz-}Cb(u) du = [1u2-[hl(b)-u+h2(b}-KJ(u}] du

— /_” 1 [ha(B)-o?] du+ L bl [ha(b) w? K(u)] du
= 0 - O + —alb) {©+1) - [arctany) + |}

= m (#0, V[0 <1)

b b
/_ (K@) du = f 1{hf(h}-uz+2h1(b]h2(b)u!C(u)+h§(b)}C2(u)} d

16



< %(zﬁ + 1IR3 (D) + 2hy (B)Ra(D) -f_ll uko(u} du
i) [ 11 K2(u) do
= VRO ) [ K d

< +4oc (Since K(-)isa kernel function.)

5. It is clear that K € C'{[—1,8]) does hold by the definition of Ku(:)

6. To show it;lTI]ITIJ'Cb(') = K(-), we have to show légl fuy(b) = 0 and lbl_gl ha(b) = 1 first.

By Lemma 1 and Lemma 2 we see that this property does hold.
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Table 1: Some parametric models dr = u(r)dt + o(r)dB(t)

pl(r) a{r) Implied Transition Reference

B-{a—r) o Normal Vasicek (1977)
3-{o—7) o-ri? Non-central y? Cox ct al. (1983}
3-(a—r1) o-r . Lognormal Courtadon {1982)
3-(a—7) a-r? Gamma Chan et al. {1992)
3-(a—7) vo +v-r Unknown Duffie-Kan (1993)
3rle—In(r) or Locally Lognormal Brennan-Schwartz (1979}
Gr+ a0 g.pd? Unknown Marsh-Rosenfeld (1983)
a+3r+vr* o4+wr  Unknown Constantinides (1992)
5 o Normal Merton (1973}

0 o-r Lognormal Dothan (1978)

0 a2 Inverse-Gamma Cox(1975}

Cox et al. {1980}
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Table 2: Some Nonparametric Model Estimations

Estimation Specification Reference

Neutral Network learning curve and Hutchinson al. et. (1994)

training

Semi-parametric p(r) = 3-{a — r), Ait-Sabalia{1996a)
¢ : nonparametric
Nonparametric  p and ¢ are non- Siddique(1994)
parametric Stanton{1997)
Jiang (1998)
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Table 3: Comparison the Estimation Results of Parametric model and
Noparametric Model

This table represents the simulating results of two parametric model estimation and
noparametric model estimation. The base-line model the term structure of interest rate
followed as Chan, Karolyi, Longstaff and Sanders (1992) and spcifying o = 0.05, 3 = 1.25,
¢ = 0.064, and v = 0.75. There are 100 samples of size 1000. And the standard errors of

each estimate of parameters are in parentheses.

Models Specification Results

Base-line uir) = 1.25(0.05 — 7), of{r) = 0.0647"™

Vasicek wry=3a—r)olrl=0 o =0.083, 4 =1.017
(0.041), (1.184)

CIR u(r) = 8{a — 1), a(r) = or'/? a =0.076, 3 = 1.003
(0.058), {1.547)

Nonparametric None a={0.056, 3 =114

(0.033), (1.009}
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Table 4: Comparison between Different Estimation Models

Kplu}) Klw) Ai-Sahalia FGLS CIR  Vasicek

o 00621 0.0989 0.0611 0.0745 0.0668 0.0657

4 10014 1.9905 1.0388 09593 1.1003 1.0192
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Table 5: Descriptive Statistics of U.S. FEDERAL
FUNDS(EFFECTIVE)-MIDDLE RATE

In our research, the data used are the U.S. FEDERAL FUNDS (EFFECTIVE) - MIDDLE
RATE from 1/1/1990 to 25/8/1999. We compute and list the descriptive statistics of the

data, such as mean, variance, skewness, kurtosis, etc.

mean median range variance st. dev. kurtosis skewness

3.29 5.34 3.73 0.14 0.37 3.76 0.40
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1 Introduction

The expectation maximization, EM (See Dempster, Laird and Rubin, 1977, and the references
thereof), algorithm for finding maximum likelihood cstimates [.I\'ILE’SII is a powerful numerical
technique useful in contexts ranging from standard incomplete data problems {e.z. missing,
grouping, censoring and truncation), to iteratively reweighted least squares analysis and
empirical Bayes models.

The primary conceptual power of the EM algorithm lies in converting a maximization
problem involving a complicated likelihood, into a sequence of pseudo-complete problems,
where at each step the updated parameters can be obtained in a closed form [or at least in
a straightforward manner). The general idea is to represent the observed data vector as the
realization of some incompletely or indirectly observed data vector. The problem remained
to he answer is how to do it systematically” For statistical data models including mixtures,
convolutions and random effects, they are transparent. In general, it is not.

There is a growing literature on the development of least squares, maximum likeli-
hood and Bayesian methadology for dealing with incomplete covariates in regression models.
These methods are of particular interest in epidemiological studies where constraints of time,
cost and technical difficulty prohibit the complete observation of an important covariate or
covariates. For incomplete covariate regression models, the EM algorithm becomes a useful
framework to tackle the estimation problem since the complete data and incomplete data
are transparent. Mast proposals in the literature involve an E-step and a nonparametric
estimate of density or regression. This is a contrast to the case that both the E-step and the
M-step can be carried out exactly using closed form solutions. This motivates the study of
this paper. We want to studyv the effectiveness of EM algorithm when the E-step involves
with an approximation.

In particular, we want to study

o Why can we replace & with 8 in the E-step without incurring further exror in esti-
mation?
As a remark, EM typically leads to MLE but it introduces ervor using the above ap-

proximation,

» Suppose that we cannot get a closed form solution in E-step. Instead, some approxi-
mations such as nonparametric density estimation are introduced in E-step. Here we
introduce the approximation error. As documented in the literature, the approximation
error of nonparametric curve estimate in not up to the order of n1/2, How will it affect

the effectiveness of EM algorithm to find MLE?



2 Some Useful Facts

2.1 EM Algorithm
We now describe the EM Algorithm.

» Suppose we have a model for the complete data x, with associated density f(x(|8), 8 €
© C R* is the unknown parameter and x = (2;,...,2,)7 € X. Write X = (Xops, Xmis )
where X5, represents the observed part of x and X,;; denotes the missing values.

The objective of the EM algorithm is to find the MLE for & based on the observed data

Xobs-
Instead of observing x, one observes the value of a measurable function Y {x) = Xaps =

vevt.

o The EM methed is only attractive in situations where finding the complete data MLE
and either the observed or the expected information matrix would be straightforward,

but the problem based on the incomplete data Y requires an iterative solution.

o The EM algorithm starts with an initial estimate 8% Letting B! be the estimate of

9 at the tth iteration, iteration (¢ + 1) of EM is as follows.
— E step: Find the expected complete-data log-likelihood of 8 were ot
23,000 = os{010)) = log { | 16 ™)dpt} &

where R = {x: y(x) =y}, and p(x) is 2 dominating measure.

- M step: Determine #*t") by maximizing this expected log-likelihood:
Ay, 858y > A% (y,0)8™), for all 8.
s Let

Alx,
Ay, 0)

Il

log{F(x|6)}
log{ f(y]6)} = tog { / fx{XEﬁ'Jd#(X)} ,

Now, instead of maximizing 8* directly, the EM algorithm proceeds by using an initial

estimate 8 and solving the pseudo-complete data problem:

maximizeBEBEem [A[X,8)|X € R].

¢ The maximizing value for this pseudo-complete data problem called 6" and the it-
eration is continued until [[8*TY — 8'*)|| is sufficiently small or some other conver-

gence criterion is satisfied. The M step is standard maximum likelihood estimation for



complete-data problems, and the E step is usually available from standard complete-

data theory of conditional distributions.

2.2 Tool for Asymptotic Results

Let ¥1,¥2,... be a sequence of independent random vectors and g;{y;, ®) be a sequence of

7 x 1 vector functions which invaolve an unknown parameter 8. Denote ¥ = {y;,7 > 1} and
Galt, @) =773 gily:, 6).
i=1

In many statistical problems, we need to get an estimate B, of 8 based on the observed
variables y; through function G, (¥, 8) = (1. They include maximum likelihcod estimatars,
least squares and reweighted least sequares estimators.

Yuan and Jennrich (1998) gave conditions to ensure consistency and asymptotic nor-

mality of a sequence én of roots of G,,(8). The conditions are
s ,{fy) - O with probahility one.

e There is a neighborhood & of &5 on which with probability one all G,(8) are contin-
uously differentiable and the Jacobians D{7, (8} converge uniformly to a nonstochastic

limit which is nonsingular at &p.
Lo r
o Galfn) 5 N(O,V).

Conditions 1 and 2 are for the existence and consistency of #,. Condition 3 is for the
asymptotic distribution of 8.

Lemma 1 of ¥izan and Jennrich (1998) claims that there is a continuously differentiable
function G(8) on N such that G{Bp) = 0 and with probability one G,{(# — G(8) and
DGL{8) — DG(O) uniformly on N under Conditions 1 and 2. When Conditions 1 to 3 hold,

V(B — 80} 3 N0, A7 VAT,

where 4 = DG(8y).

3 Examples

To motivate the derivation of likelihood function in our study, we first derive the likelihood
function for random censoring on survival times. We start with parametric setting and then

extend it to nonparametric setting.



3.1 Parametric Censoring

To motivate the derivation of likelihood function in our study, we first derive the likelthood
function for random censoring on survival times. We first consider parametric setting and then
extend to nonparametric setting. Let X have a distribution in the family {F(-:8),8 € @},
where © is an cpen set of B*. Assume that the F(z; 8)s are dominated by a o-finite measure
p on a Euclidean space of which z is a generic point and pessess nicely behaved densities
Fx{z; &) that are sufficiently smooth to make MLEs consistent and asymptotically normal.
Write survival functions as Sx(z, ). In survival or reliability analyses, a study to observe
a random variable X;,..., X, will generally be terminated in practice before all of these
random variables are able to be observed. Assume that the termination mechanisin is random
censoring.

Let {(y;,7:),1 < i < r} denote the observed data. According to the assumed data
generation mechanism, we observe i; = Ty and vy = 1if z; < Cjand y; =5 and r; = 0
if X; > ¢;. Or, r; = 0 or 1 according as the observation X; is censored or uncensored
at &; (§ = 1,...,n). To derive estimatc of 8, we can use the method of maximum like-
lihood. Since {Ry, X1,C1),...,(Rn, Xn, ) are independent and identically distributer,
{F1, Y1), ..., (fn, Y,) are also independent and identically distributed. The likelihood func-
tion for & formed on the basis of {(r;,1:).1 <i < n} is given by

n
L@ = [[ frsowa)-
i=1

Ohbserve that

PE=1Y =y(dy) = PX =y, C>yldy
= P[C 2> y)fx(y)uldy) = Scly)fx (y)uldy) (2)
and
P(R=0Y =yhldy} = P(C=y,X >y)dy
= PX z y)fo{puldy) = Sx () fely)pidy). (3}
Hence,

TT15x (wes @)y Sc (Wil [ fo (v)dySx (ys; )~

i=1

Lp(8)

T

T 0 tys 0)u] (S (s 01~ - R[S wd)™ e (w ) 7. (4)

i=1 i=1

Assume parameter distinctness defined in Rubin (1976, Biometrika). (i.e., [t means that there

is no a priori ties between data parameter # and incompleteness parameter associated with



C.) Hence, we can ignore the incompleteness mechanism and derive valid inference based on

the following likelihood functijon instead.

)

L8} = [ ][ Fx(ui: 8)dy]™ [Sx (9: 8] ™. (5)

i=1
Alternatively, we can write L(8) as
] Ti
TTSx (vs: )] [—J] .
rivt (3::8)
In survival amalysis, we consider the dynamic of the change of statc alive to the state of
death as time progresses. It is most natural to phrase it in terms of its dynamics. The above
representation is derived under such a motivation. Sx{y; @) refers to the studied subject is
still alive at time » and the hazard function [Ax [y : 8)]™ reflects that the studied subject is
either dead or censored at time t. Note that the score equation is
[ Ofx(y:i:8)/08 8Sx(y:: 0)/08

Z[T‘t Fx (v )/ ] Z[(l—z x{y:: 0)/ —0.

im1 Fxly; @ SX y1 }
Suppose that we can observe the ideal data, {X;, 1 <1 < n}. Then the score equation

would be
§ 01(X110)/00
—  f{X:8)
Since 3.7 [Bf(X;;8)/00]/ f(X,;0) cannot be observed, we might consider to estimate it by
some nonlinear function of observed data. Suppose the mean squared error is the criterion
to be used for determining this nonlinear function. Namely, we find Qn{y;,...,yn: @) which

is the minimizer of

2
" 9f(X.;0)/08 |
E ;W‘Qn[yh...,ymg}] )

Since no parametric form is assumed on the censoring distribution and y,’s are independent,

it follows from the standard conditioning argumant that

iy = S5 (220000 )

and

S DX 8)/00
EgQuiYi,....Ya: ) = g (2%)0 6
i=1 B

under regularity condition.

The above fact is the key on the proof of consistency of MLE or the minimum conttast

estimates. Note that E(B‘f;{;?) }88

mean is zero by (6). It follows easily from the strong law of large numbers that

y,-)‘s are nonlinear transformation of y;’s. Also, its

nTlQn(Yy,.. . Y 6 S 0.



We just show that »n '@, (¥1... .. ¥;s:8) satisfies Condition 1 in Section 2.2

Fisher (1925} showed that incomplete data scores are conditional expectations (given
the incomplete data) of the complete data scores. Efron, in his comments to Dempster et
al. (1977), makes the link between Fisher’s result and incomplete data methods. We will

demonstrate it for this particular example. Observe that

E (w’%n _ 1) _ afx(yi;e)faﬂ_

J(X:.8) fxlys:®)
51’[3&’;9);’3} A Bf(X;B]/BHl , )
E( 7(X:6) y“’""“) E( e |7

Blog Sx{y;; 0)

(s Oulde) = =20

2
T w5 fx
SX (yh 8} Wi o8
The last equality holds under usual assumed regularity conditions of MLE that the differen-
tiation and integration can be interchanged.
The above derivation just reiterates Fisher's statement on the incomplete data scores.
As commented by Efron, the E-step of the EM algorithm is equivalent to finding the score

vector of the observed data. However, it does not address the issue on the calculation of

8F(X:8)/50
E( 7X:6) X”)

in Dempester et al.(1977). Under the above parametric setting, it can be done by numerical

integration or Monte-Carlo when an analytic caleulation is not apparent. However, special
attention should be given on the approximation error such that it won't swamp the random
= of X8 /08 . o
error. Let E (Wé)_p{ > y) denote such an approximation. Set
n 7
2 - dfx (y:; 8)/680 OSx (y:; )/ 06
Gal@) =n"" [7', : + 11— | =220 .
»(6) {; 7| "2 (0

Denote the root of G’n(ﬁj =0 by GE MLE

We now use the results presented in Yuan and Jennrich (1998) to study whether BEMLE

will be asymptotically normal as usually expected in likelihood analysis. Write
Ga(8) = Gal(8) + [Ga(8) — Ga(0)],

where

[ Bixts /ae] { ' (asx(yf;a}xaa)]
Go(B) =n" s Yol petsilieliaa | RS
(6)=n {;[ Fx(ys0 +; O TS e 0)

Note that Gp(8) = G,(8) in this paricular example.

Since ¥; are independent and identically distributed, we can use strong law of large

numbers to show that

Got6) ag EHQ ( fl };()E-{HD)M:aO) =0.



We conclude that it satisfies Condition 1. We now use an alternative to show that the
expectation of score vector of L(fp) is zero. Let 1x and 1o denote the support of densities

functions of X and O, respectively. By (2) and (3}, we have
[Rafx(y;ﬂ)/aa +(1- Rjasx(y: 9)/391

fx(y:8) Sx (v 6)
- /—af"aﬁgm}sc(y)-lcu[dy}—j Fx (i 8)fo(y) - Lxpldy)
/—ﬁafxgg;a).?c(y) lou(dy) + / fx( 9)§%@ ~1xuldy).

If X and C have common support and fx(S3'{1):8) = 0.

Ofx(y;8)/08 8Sx{y; 9),’39] -0

we T AT e

E [R
by integration by parts.
To check for Conditions 2 and 3, we just show that it satisfies the usual regularity

conditions assumed for likelihood analysis. Ohbserve that

Ofx(y:6)/08 | . 85x(y:6)/80]"
[R oy TR TS e ]
[8fx(y; 8)/86]°

_ ‘ , F(y
- Felmo) oW 1‘”‘(@)*/ Sly

1 fel) - Lxald) > 0

and

0% log fx(y; 0)
a6*
_ {/’ [Bfx (u; 6)/06]
Fxl(y @)

E[R +(1_RJM]

a*
2 fap
Setw)tontan) + | LD

. 2 :
} { Axlyi0) ;) 1cute) - / %scm - lxﬂ-{dy}}

dfxly; 8)/08 BSx (y; 3),’38} 2
fx (1 8) Sx(u: )

8fx{w *fx(y: 0
+ { f _f’f;g ) ds;fy} Aepldy) + f %Sc(y)-lxﬂ{dw}-

If X and € have common support and 8fx (S5 (1):8}/88 = 0, then the last term of the

il

fely): 1xu(dﬂ)}

= —E[R +(1—R)

above equation is equal to zero by integration by parts. We have

9 log fx (y: ) & long(y;ﬂ)] [ Ofx (y; 8)/08 aSx(y; 0)/08
FIR——22 A T L Ry 2 2 | = B R 2 4 (1 - By — T —
[ or TR T e rwe) TP T e

Condition 3 holds by the central limit theorem with A = V7. Condition 2 holds by assuming

bounded third derivatives of density function. When /n (Gﬂ(ﬂ‘) -G, (8}) = op{1), éfMLE

is asymptotical normal with variance

{ = [ R Ofx(w:0)/30

L 8Sx(y:i0)/08°
2T ]} '

Sx(:8)

]2.



This variance can be sstimated by

{ZR (Blogfx h,e)) +Zﬂ:(1—31‘) (a,\xgg;m)z}ﬂ

1=1]
3.2 Estimation of Survival Function in Nonparametric Setting

Let W1,..., W, be survival fimes that are iid nonnegative random variables from a cdf F',
and €1, ..., be iid nonnegative random variables independent of ¥}’s. Here we assume
that F € F and F is the collection of all cdf’s on B%. Suppose that we are only able to

observe the smaller of W, and C; and an indicator of which variables is smaller:
)({ = min[I-V,-,C'i), 0_!' = I(glci)(.[']["r{), i= ].,. -,

This is called a random censorship model. We consider the estimation of F.
Given W) = w1, ..., Wn = wy, the nonparametric likelihood function is defined to be

the following functional from F to [0, oo}

n

HG) =[] Pel{wi}), GeF.

i=1
Here P is the probability measure corresponding to G € F. Apparently, £(G) = 0 if
Pa({w;}) = 0 for at least one 1. Kiefer and Wolfowitz (1956} shows that the empirical
c.d.f. F, is a nonparametric MLE of F. Define

Hpi,...,Pa HpJ+AEp,,—c),

i=1

where X is the Lagrange multiplier. Set
EI;:;;J;—C:O, g?Hj _1;|:|1:p;+)t Ojﬂl
The solution is p; = ¢/n, i = 1,...,n, A = —{¢/n)™'. This means that max {{G) = (c/n)"
which is maximized at ¢ = 1 for any fixed n.
Recall that 1, is the time to death for the ith studied subject. Define ¥;(t) as the
counting process which is increasing in ¢ and takes values on {0,1}. Conditional on the death
times Wy < Wiy < < Wiy, we have

(Z‘\(H(} =41<j< ) HP(ZN"{WU])=}’

i=1

n
Y Ni(Wioy) =5 - 1) .

=1
Ohbserve that

P (Zm{w[j))

=1

n
=5 2 M(Wn) =5 - 1)

i=1

oo () (2Bm)
-t/ -l




10
Hence,

i=l

it n
P (Zf‘-‘}(wu)} =j1<isn|Wyy <Wy << W{n)) = ”!H'Pi,

i=1
where p; > 0and 3o, ps = 1.

When 6;,,, = 1, the nonparametric mle only needs to consider those F with support
on the collection of Wy, with & = 1. When &, = {, che nonparametric mle only needs to
consider those F with support on the union of the collection of Wiy with & = 1 and any

point which is larger than W,,. Observe that

P(ZA‘ (C(J]) S < )= P(Z"{Cljl _.?:
i=1

E $(Cy-n) =i- 1)

i=1 i=1 1=1
and
n mn
; (ZN"(CU]J =3, D NilCimny) =4~ 1)
i=1 i=1
C{n—j+1,l) ﬁ[j\‘,:O

s . I—ZJ Ry n=i -
Ch-3+1,1 L) = : Gy =1
{ 1 } (I_El=i 6(,“;)1,) (lfz,e 1 Predii ()

Hence, we get the following £(F).
An mazimum empirical fikelihood estimator (MELE) of F' is defined by the maximizer

of
1—(5.-,-)
n+1 '

¢F) = I[ S gy

F=i=1
subject to p; = Pr{{X(n}) 20,1 <i < n,ppy1 =1 = F(X()) >0, and Z?fll 2 =L
Tt can he shown that the above maximization problem is equivalent to the maximization

of
By —i 11—
| I qi( )(1 qi)n i+1—d¢0y

where g; = pi/ $ 7 pj i = 1,...,n. Also, the MELE is

N n+1
F{t) = Zﬁi—’(x‘,-_l],x(,-])(f},

i=1
where X gy = 0, X{,41) = 00, X;) are order statistics, and
Sy 85
T (1} _ () P —
m=n, p’_nmf-i%ln(l n—j+1) =2, My =1 ij
=1 i=1
F{t) can also be written as
d¢i) )
1- I (1 -},
X<t n—i+1

which is the Kaplan-Meier product-limit estimator.
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3.3 Mixture Models

A common proposal to model heterogeneous data is to consider a finite-mixture model. In
the problem considered by Do and McLachlan (1984), the population of interest consists of
rats from g species G71,...,G,, that are consumed by ewls in some unknown proportions
M,...,7y. The problem is to estimate the 7 on the basis of the observation vector W
containing measurements recorded on a sample of size n of rat skulls taken from owl pellets.
The rats constitute part of an owl’s diet, and indigestible material is regurgitated as a pellet.

We can use the argument of conditioning, the underlying population can be modeled
as consisting of g distinct groups Gy, ..., G, in some unknown proportions #1,...,7,, and
where the conditional pdf of W given membership of the ith group G, is fi(w). Let y =

(wl',...,wl)7" denote the observed random sample obtained from the mixture density
g
f(]-’U: (7‘—1:' -- :7‘-9-])] = Zﬂfz(ﬂ}]
i=1

The log likelihood function for (m,...,my—1) can be formed from the observed data ¥

is given by

i g
Y log g > myfy(us)
=1 =1

On differentiating log likelihood function with respect to #; (j = 1,...,g ~ 1}, we obtain
i { Fi(ai) 3 fylwi) } =0
| flws(me . mga)) Flwss (e, mem1) ‘

for j =1,....9 — 1. It clearly does not yield an explicit solution for (m,..., me_1)7.

4 Incomplete Covariates in Regression Models

In Section 3, we consider the case that the unobservable score or estimation equation can
be estimated unbiased or with error 3{n~!). In this Section, we will consider the case that
those unobservable score or estimating equaticn may not be estimated unbiased or with error
bigger than O{n=1/%).

Suppose the regression mode] to be considered is of the form fﬁ{1’|X , Z) which relates
the outcome ¥ to X and Z. Here X and Z represent the incomplete and complete covariates,
respectively. To handle such data, it requires the specification of the form of the conditional
density f({X|Z). Since the performance of estimate of 3 relies critically on the specification
of the form of f{X|Z). A number of semi-parametric methods have been derived which does

not require specification of the form of f{X|Z). Here we consider the mean-score method
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proposed in Reilly and Pepe {1993) and hot-deck used by the U.S. Census Burcau. In the
following discussion, it assumes that ¥ and Z to be categorical.

Reilly and Pepe {1997) describe the motivation of the mean-score method as follows.
If the relatiouship between the complete and incomplete covariates f{X|Z) was fully known,
the maximum likelihood estimate of 8 can be found by using the EM algorithm. Denoting
the complete cases (the validetion sample) as V and the incomplete cases as ¥, this would

involve the iterative maximization of

3 log f(¥ilX, Z) + 3 E [log fg(¥31X, 2,18, 3, Z4)
137

JEV

or equivalently, the solution of

S SalYIXL Z) + 3 E [S(H1X, 2)18.Y5, %) =0,

ey 3'51?
where Sﬁ(}’ilXi,Zi) = (3/53)_&3(1@-})&,2;). The mean-score method involves using non-
parametric estimates of the conditional expected values in the second term, and hence solving
the score equation

- b 235
SalB) =3 SglVilXe, 20+ 3 > Splvlx, Z/n™ =0,
eV JEV iew &Y
where VV%%i denotes those validation sample members whose Z = Z; and ¥ = ¥, and n’? 2
is the number of such cases.
To make the above point precise, let R; denote an indicator with R; = 1 meaning that

X; is observed and R; = 0 if X; is missing. On the application of EM algorithm, it leads to

the calculation of

> E[SgliX, Z0IYi X Z: R)| + 3 B [Sgl¥lx, 2145, 75, 2y)]

i€V JeT
=3 Sl Z) + Y B [Sa0viX, 2%, 2]
ieV je¥

if the missingness only depend on (Y, Z). Namely.
P(R=1|(Y,X,2)) = (Y, ).

Monparametric estimates of £ [S'B(YHX, ZNY;, Zj]] , i €V, are needed. A natural
estimate is 30, z,v; S3(¥;| X, Z;)/n%% . Note that the above imputation can be viewed as
conditional mean imputation based on ¥ and Z. This method has been reviewed in Little
(1992).

A simple imputation method known as hot-deck, used by the U.S. Census Bureau,

completes the data set by imputing (that is, filling in) for each subject with missing X, an
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X which is sclected at random, with replacement, from subjects who match them on the
observed variables. A multiple-imputation version of hot-deck involves repeating this simple
imputation step a number of times, and for each completed data set performing a standard
analysis to obtain the usual regression estimate of 3 in the model fﬁ{Y|X, Z}, which we
denate as fi,- for the 7th completed data set. The multiple-imputaticn hot-deck estimate is

the average of the completed-data estimates:

i K
Byp = Z
i=1

where K is the number of imputations.

3

iy

When ¥ and Z are categorical, the above estimate of unobservable score equation is

again unbiased. Moreover, the introduced variability of EM algorithm is of order Op(n=1/%).

Therefore, the resulting estimate will be asymptotically normal with convergence rate n =%/,
If Y and Z are not categorical, we can apply standard stratification technique and then use
the above approach. In other words, we use a nonparametric curve fitting technique which
will Tun into curse of dimensionality. In this case, the resulting estimate will no longer be

Op(n~/%). This raises the bias issue on using EM algorithm.

5 Discussion

In applications, it is quite often that we cannot get the random sample. Instead, we get
a biased sample. As an example, we consider the random censored data. It is well-known
that we cannot just use those observed data to do usual analysis. The reason is that those
samples with longer life span will be censored heavier than those samples with shorter life
span. Therefore, we need to adjust data properly so that a pseude rendom sample can be
obtained.

When we get a biased sample, EM algorithm is a general recipe for getting an estimate
of uncbservable score or estimation equations. However, EM algorithm is being used when
both the E-step and M-step can be done easily. When E-step cannot be done easily, Monte-
Carlo or resampling method are being used. Usually, it is assumed that the bias caused
by those algorithms is negligible. In this paper, we consider the regression with missing
covariates. In this case, the E-step will involve a nonparametric estimation. Quite often,
the bias can be huge. Therefore, the performance of resulting estimate can be bad. This
phenomenaon is being reported in the literature. However, none of these works associates it
with the bias issue in E-step. In this paper, we just try to raise this issue and use the results

of Yuan and Jenurich (1998) to quantify the effect caused by the magnitude of bias.



14

References

{1] Carroll, R.J. and Wand, M.F., 1991, Semiparametric estimation in logistic measurement
error models, J. R. Statist. Soc. B 53, 573-383.

[2] Dempster, A.P. Laird, N.M. and Rubin, D.B., 1977. Maximum likelthood from incom-
plete data via the EM algorithm {with discussion). J. R. Statist. Sec. B 39, 1-38.

[3] Hoeffding, W., 1963. Probability incqualities for sums of bounded random variables. J.
Am. Statist. Ass. 58, 13-30.

[4] Kiefer, R.J.A. and Wolfowitz, 1956. Consistency of the Maximum Likelihood Estima-
tor in the Presence of Infinitely Many Incidental Parameters. Annels of Mathematical
Statistics, 27, B87-908.

[5] Little, R.J.A., 1992. Regression with missing X's: J. Am. Stetist. Ass. 86, 1227-1237.

[6] Pepe, M.S. and Fleming, T.R., 1991. A non-parametric method for dealing with mis-
measured covariate data. J. Am. Statist. Ass. 86, 108-113.

[7] Reilly, M. and Pepe, ¥.5., 1993. A mean score method for missing and auxiliary covariate

data in regression models. Biometrike 82, 200-314.

[8] Reilly, M. and Pepe, M.5., 1997. The relationship between hot-deck multiple imputation
and weighted likelihood. Statistics in Medicine 16, 5-19.

[9] Rubin, D.B., 1976. Inference and missing data. Biometrikae 63, 581-592

[10] Sande, [.G., 1983. Hot-deck imputation procedures. In Volume 3 of Incomplete Data
in Sample Surveys edited by Madow, W.G., Olkin, I. and Rubin, D.B., p339-352. New
York: Academic Press.

[11] Yuan, K H. and Jennrich, R.J., 1998. Asymptotics of estimating equations under natural
conditions. J. Multivariate Anal. 65, 245-260.



