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Graph Homology

Su-Win Yang

Abstract

We define chain complexes of graphs for which a particular set
of m points are part of the vertices and show that the homology of
the chain complex is isomorphic to the cohomology of configuration
spaces of m distinct points in Euclidean spaces. This can lead to some
important results of braid and knot invariants.

A graph is an abstract 1-dimensional simplicial complex, that is, a set of
vertices and a set of edges, each edge consists of two distinct vertices.

We shall define chain complexes of modules ( or vector spaces ), each
module is freely generated by a set of graphs. Similar to the simplexes in
simplicial homology, the graphs need orientations. There are different meth-
ods to define the orientation of graph, one of the simplest way is to choose a
linear order for the edges, two orders represent the same orientation if they
are different by an even permutation. For a graph, a simplicial isomorphism
from the graph to itself is said to be an automorphism, if the simplicial iso-
morphism preserves all structures which are assigned to the graph; the set
of all automorphisms forms a group which is called the automophism group
of the graph. If there is an automorphism of the graph, which reverses the
orientation of the graph, then this graph is said to be non-orientable. The
non-orientable graphs are considered as zero in the chain complex, when we
use the real number as the coefficients.

Next important thing for chain complexes is the boundary operator. For a
graph and an edge of the graph, we can contract this edge to a vertex and get
a quotient graph; the summation of all such quotient graphs multiplied by a
proper sign is defined as the boundary of the graph. Suppose we use the linear



orders of edges as the orientation and I' is a graph with orientation, then the
boundary (") = Y (=1)78Y(T), where dY)(I') is the quotient graph of T
by contracting the j-th edge, with orientation the restriction order. Similar
to the boundary operator in simplicial homology, 9(9(I")) = 0, it is the only

geometric property of a chain complex.

Remark: In Perturbative Chern-Simons theory, the graphs represent
differential forms and the boundary operator is exactly part of exterior dif-
ferentiation of the associative differential forms. Thus the above homology
theory of graphs is usually called the graph cohomology as in Bott and Cat-
taneo []. But, in spirit, it is a homology theory and is dual to the cohomology

theory of differential forms by the Stoke’s Theorem.

Based graphs

We always assume the graphs with some fixed points as the vertices, such
vertices are called the base points of the graphs and the graphs are called

the based graphs.

Suppose zi, g, ", I, are m distinct points. A graph I is said to be a
graph based on the ordered set (z1, 2, +,Zm), if the points z1,z3, -, T,
are part of vertices of . The points 1,9, -, Zn, are called the base points
of T.

Notations:

(i) Weuse ', IV, T';, I'; to denote the graphs.

(ii) For a graph I', V(T') denotes the the set of all vertices of I' and &(T)
denotes the set of all edges in I'. Thus, for any E € E(T'), E = {v,w},
v,we V(I'), and v # w.

(iii) The vertices other than the base points are called the inner vertices of
I

e o



Equivalence of based graphs

Suppose I'; and T'y are two graphs based on (z,, 3, -, Zm). A bijection

f V() — V(I'3) is an equivalence of based graphs, if f(z;) = z,,i
1,2,---,m, f(E) € E(Ty), for E € £(T'}), and f~}F') € &), for E' &
E(Ty). ( The last two conditions on the edges are the conditions for the

bijection f to be a simplicial isomorphism. )

If two graphs are equivalent, it is hard to distinguish one from the other.
Thus we need only to choose one graph from each equivalence class of graphs.
or just consider the whole equivalence class instead of the particular graph.
There are a few assumptions which are crucial to our result. Under these
restrictions on the graphs, there are only finite number of equivalence classes

of based graphs.
Asssumptios:

(i) Valency Assumption: The valency of a vertex in a graph is the
number of edges which contain the vertex. Now, we assume that every
inner vertices of a based graph are of valency at least 3. For the base
points z;, there is no restriction on the valency, it could be 0 or any

positive integer.

(ii) Order Restriction: The order of a graph is defined as the number of
its edges minus the number of its inner vertices. The defintion of order

makes sence only under the above Valency Assumption.

Because the order is invariant under edge contraction, we usually fix the

order of graphs in a chain complex.

Proposition Under the valency assumption and the order restriction, we

have only finite number of equivalence classes of graphs based on (zy, g, +, Tr).

Proof: First, we show that there are only finite graphs in which the

inner vertices are all of valency exact 3.

3
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Assume the order of graph is n.

Let s; denote the valency of the base point z;, i = 1,2,---,m, s =
81+ 89+ - -+ 5,,, 7 denote the number of inner vertices and &k be the number
of edges.

Then s+ 3r = 2k.
Thus r<s+r=2k-2r=2n,
and hence, £k =n+r < 3n.

Up to equivalence, we may assume that all the graphs have the vertices
in the set {zy, 22, *,Zm,Y1,Y2,"**, Y2n}. Thus the possible graphs is finite.

From such “trivalent” graphs, we can have all the order n graphs by
contracting the edge a finite number of times, and each “trivalent” graph
can only produce finite number of graphs. Thus all possible order n graphs

are finite.

Chain complex of graphs

All graphs satisfy the valency assumption: the valency of inner vertices

are at least three.

We also need a number, the degree of graph. Suppose the vertices of
graphs are points of a-dimensional Euclidean space. { We may say that the
graphs are on R*. ) Each edge gives a (o — 1)-form and each inner vertex
can move in R®. If [ has k edges and 7 inner vertices, then the integration of
the wedge of the k£ (o — 1)-form on the r x a-dimensional configuration space
produces a differential form of degree & x (@ — 1) — r x a. But the degree is
only good for cohomology theory. To get a homology theory, we define the
degree as —k X (a— 1)+ X . For simplicity, our main consideration is the

graphs in R?. Thus we give the following definition.

Definition: (Degree of graph) The degree of a based graph is the double
of the number of its inner vertices minus the number of its edges.



Definition: For a positive integer m and an integer i, let C™ be the vector
space over the real number generated by all oriented degree 7 graphs based on
(z1, 22, -+, Zm), modulo the following Orientation-equivalence relation:
Two oriented graphs having an orientation preserving equivalence be-
tween them are considered as the same element in C7"; if the equiva-
lence is orientation reversing, one is equal to the other multiplied by

a negative sign.

Orientation systems

There are two different orientation systems, including the linear order of

edges mentined previously.

Orientation system (I): ( Linear order of edges )

It is the orientation system used in the proof of the theorems in the paper.

Suppose a based graph I has & distinct edges £, Ej, - - -, Ex. Consider a
linear order (E4, Es, - -+, E}), all the informations of the graph are contained
in (E1, By, - -+, Ex). Thus we still use (£1, Es, - -, Ex) to denote the oriented
graph, and also use the same notation to denote the corresponding element
in CT". Interchanging the positions of two edges in a linear order set, we get
the negative element. Thus, if £; = £y, for some 1 < j < j' < k, then
(E\, Es, -+, Ey) = 0; ordinarily, we do not meet such an oriented graph, but
it does happen on the “degenerate boundary” of a graph discussed in the
follwing section.

If f: V(') — V(I') is an equivalence of based graphs from I' to I",
then (f(E4), f(Es),---, f(Ex)) is an oriented graph and

(f(Er), f(ER), -+, f(Ek)) = (Ex, En, -+, ) -

When I' = I, f is an automorphism and (f(E1), f(E2), -, f(Ek)) is a
permutation of (Ey, E», - -, Ex); if the permutation is odd, then the above
equality implies that (Ey, By, -+, Ex) =0 in C™. In this situation, I is said

to be non-orientable.

(@1}



Orientation system (II): ( Linear order of vertices together with directions
on every edges )

If the graphs are on R?, we should get this orientation system from the
differential forms. ( For the graphs on R?, we get the Orientation system (I).
)

For an orientation of I', we need to choose a linaer order of the vertices
of I' and directions on every edges of I'. Two such orientations for I are
the same , if the total number of changes in the order of vertices and the
directions of the edges is an even number. Because the direction of an edge
is also an order of the two endpoints, we may get the order by restricting
the linear order of vertex set. Thus the linear order (vq, v, - - -, vs) of vertices
can determine an orientation, denoted by [vi,vs, -, vs], in the Orientation
system (II).

What happen when interchanging the positions of two vertices? If {vy, vs}

is an edge of T, then

[va, V1, -+, vs] = [v1, 02, v
if {v1,v2} is not an edge of I', then

[va, vy, -+, vs] = —[va, v, -+, V5] .

We may also have the non-orientable based graph in the Orientation
system (II).

Remark: Because the two orientation systems have different non-orientable
based graphs for the same numbers m and ¢, C]* can not be the same vector
space in the two systems. But the main results of the paper hold in both

systems. ( The proofs are also completely similar in both systems. )

The boundary operator
To obtain a chain complex, we need a boundary operator from C™ to

Cr*,. For both orientation systems, the boundary operator can be defined.
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Here we define it only in Orientation system (I). For Orientation system (II).

please see Bott and Cattaneo [].

The boundary operator is the sum of edge-contractions, but the edges
consisting of two base points can not be contracted, such edges shall be
shown to have essential contributions to the graph homology. Thus we need

the following definitions.

Definition: (Basic edges) Suppose I is a graph based on (z1, 22, -, Zm).
An edge F is said to be a basic edge, if F consists of two base points, say.
Tj, Tj, 1 < J1 < j2 < m; otherwise, it is called the non-basic edge.

Thus a non-basic edge may consists of two inner vertices, or, a base point
together with an inner vertex.

Suppose I is a graph based on (z1,z3,- -, Zn,) and (Ey, Es, -+, Ey) is a
linear order of the edges of I'.

For each non-basic edge F;,1 < j <k, let m; : V(I') — V(T')/E; denote
the quotient map. Then (7;(E4), m;(Es), - -+, 7;(Ej=1), 7 (Ejx1), - - -, i (Ek))
is a linear order of edges of the quotient graph I'/ E;.

Convention: If the edge E; consists of a base point z; and an inner vertex
v, then we identify the quotient point 7;(2;)(= m;(v)) with the base point z;.

Thus the quotient graph I'/E; still be a graph based on (z1, 2, -+, Zm)
and (m;(Ey), 7 (Es), -, mj(E;j—1), mj(Ej41), - - -, m;(Ek)) is the associated ori-
ented graph; it is the j-th boundary of (£}, Es, - -, Ex) as in the following
notation.

Notation: If E; is a non-basic edge of I',

OV (Er, By, -+, Bi) = (m5(En), m5(Ea), -+, 5 Bjm)s 15 (Bj), -+, m3( i)
If E; is a basic edge of I", dV)(E,, E, -+, Ex) = 0.
Now, we can define the boundary operator
9:Cr— Cr,

7



by the formula

k
OB Ey, -+ Ep) =Y (=1)70Y(E\, Ey, -+, E)
J=1

For a non-basic edge E;, 8Y)(Ey, By, - -+, Ey) usually is not equal to zero
except that the graph I'/FE; is non-orientable or the edge E; is part of a

triangle, as described below.

Degenerate boundary ( Triangular edge )

E; = {v,w} is said to be a triangular edge, if there is a vertex u of I" such
that both {u,v} and {u, w} are edges of I'. For the edge E;, we consider the
boundary 0V)(E,, Ey, - -, Ex). m;({u,v}) = m;({u,w}). When interchanging
the two edges, we have the equality

3(1’)(51,52’ v By = =09 (B, By, Ey) .
Thus 8V (Ey, By, - -+, Ex) = 0.
Therefore, for any positive integer m, we have the chain complex
cr={C" 90:C"—CP,i=-,-2,-1,0,1,--}
Our main result is the following theorem.

Theorem A Let C(m,R?) = {(2, 22, "+, 2m) € [IR?: 2, # 2,, for p # g},
the configuration space of m distinct points in the plane. Then

Hi(C™) = H(C(m,R?),R)

where H~*(C(m,R?),R) is the cohomology group of the space C(m,R?) with

the coefficient R at the dimension —i. [ ]

Thus H;(C™) is non-zero only at the degree < 0.

Remark: The homotopy structure of C(m,R?) is easy to describe, this
space is homotopy equivalent to the product space X1 X Xpm—g X -+ X X,

8



where X, = S'v St v ... v S! the wedge of p copies of St, S! is the unit
circle. Thus we can compute the graph homology easily by this theorem. We

give some applications in the following.

Splitting C™ by the order restriction
As mention before, the order of a graph is the number of edges minus the
number of inner vertices and it is invariant under the boundary operator.
Let C™"™ = {C""} be the subchain complex of C™ generated by the order
n oriented graphs based on (zy,Zs, ", Zn). Then

C'm — @Crn,n

n

We have shown that there are only finite equivalence claases for a fixed
number of base points m and a fixed order n. Thus C™" is a vector space of

finite rank ( finite dimension ), C™ can not be a finite rank vector space.

There are some trivial examples:

(i) For any positive integer m, the unique graph of order 0 is the graph I
without any edge ( £(I) is empty ), it is in degree 0. Thus C3*° =R,
C™0% =0, for i # 0, and the homology H;(C™%) = C™°, for all degree .

(ii) The graph of order 1 is a graph with one edge and no inner vertex. Thus
all the order 1 graph are of degree —1. H;(C™!) = C™' = 0, except

7= —1.

(iii) Consider the case m = 2. The unique graph of order 1 is the graph with
the unique basic edge {z;,z;}. Thus H;(C*!) = C?' = 0, for i # —1,
and H_,(C*) = C* =R.

Consider the “simplest” configuration space of 2 points, C(2,R?), it is
homotopy equivalent to S'. By the theorem, H;(C?) = 0, for i # ~1, and
H_;(C?) = R. The results H_;(C*') = R and Hy(C*°) = R imply that

9



H;(C*™) = 0, for all order n > 2 and all degree i. This simple fact is related
to the problem of zero-anomaly in the perturbative Chern-Simons theory for
knot invariant.

Using the same way, we can compute all homology of C™" easily. For
example, Hi_,(C™™!) has rank (m — 1), it is the lowest degree in whicl
the homology of C™ is non-zero, and H;(C™™ 1) =0, for i # 1 —m. These

are important to the theory of knot invariant.

10



Proof of Theorem A

We shall define a chain homotopy type linear map 7 : C* — C7%, and
consider the associated chain map A = Tod+ dor7 of C™. We can show that
(1) the subchain complex Ker(\) = {z € C™ : A\(x) = 0}, the kernel space of
A, is chain homotopy equivalent to C™, and (2) Ker(A) is equal to the tensor
product of C™~t and €™, £™~1 is the dual of H*(X,,~;), as in Theorem A.

Definition of 7 : C]* — CJ},

For any degree i graph I with orientation (£, Es, - - -, Ex), let (') be the
graph I" with an additioal vertex a and an additional edge £}, = {a,z:}. We
assign 7(T") the orientation (Ey, E», - - -, Ek, Ei,,). Let ¢ be the permutation
of the vertex set V(I")U{a} interchanging a and z;, that is, ¢(a) = z, ¢(z1) =
a, and ¢(v) = v, for any other vertices v.

Define 7(Ey, By, -+, B) = (=1} 1(8(E1), (E), -+, 6(Ex), 6(Efyn), the
corresponding graph is denoted by 7(I"). Then 7(T') is also a graph based on
(1,22, -, Zx), with an additional inner vertex a and is simplicially isomor-
phic to n(T"). If the valency of z; in I is at least 2, then the valency of a in
7(I') is at least 3, and hence, the associated oriented graph 7(FEy, Ea,- -, Ex)
is a qualified element in C7},, 7 is the degree of I'; if the valency of z; in T
is equal to 0 or 1, then 7(I") can not satisfy the valency assumption and we
just define 7(Ey, By, -+, Eg) as 0in C7},.

If I is a graph equivalent to I', then 7(I") is also equivalent to 7(I") and
it is straightforwad to prove the remaining well-defined property.

Because in the graph 7(I"), the valency of z, isequal to 1, 7(7(Ey, Es, - - -, Ex))

is always 0 in C[%,. This proves the following lemma.
Lemma 1 The linear homomorphism 7o 7 : C* — C7}, is a zero-map.

Lemma 2 Suppose I is graph based on (21,22, -, Zm)-
If T satisfies the following *-condition:
(x): every edge containing z, is basic and the valency of z; < 1,

11



then
(rod+dor)([I')=0 ;

if I does not satisfy the x-condition, then

where [['] denotes the graph I" with some orientation. [ |
We prove Lemma 2 later and use it to prove Theorem A.

At first, we check that the linear homomorphism A =700 +do T is a
chain map, that is, to show the equality Ao 0 = 0 o A as follows:

Aod=(ro0+doT)od=T0000+00oT00d=00T00,

dord=0o0(rod+0dor)=00700+00doT=00T00.

Let Ker(\) = {z € C™ : A(z) = 0}, the kernel space of A, and Im()) be
the image space of A. Then both Ker(\) and Im()) are subchain complexes
of C™.

By Lemma 2, Ker(\) contains the linear subspace D; of C™, generated
by the set {[['] : T satisfies the x-condition }. We may also consider the
linear subspace D, of C™ generated by the set {[I'] : T’ does not satisfy the
x-condition }, then C™ = D; & D,. Because A is equal to 0 on D; and is
equal to the identity map on D, ( also by Lemma 2 ), A is a projection map
of C™, that is, satisfying the equality Ao A = A.

Of course, this leads to the result that D; = Ker(\) and Dy = Im(\).

By Lemma 1 and a similar computation as above, A\o7 =70 A. Thus 7
provides a chain homotopy between the identity map and the 0-map in the
chain complex Im(\), and hence, H.(Im{})) = 0.

This implies that H,.(C™) = H.(Ker())).

We summarize the arguments above to the following proposition.

12



Proposition 3 Suppose C = {C;,8; : C; — C;_y,t = -+, =2,-1,0,-- -} is
a chain complex ( 0;_;09; =0, ),and 1, : C; — Cipy, 0 =---, =2, =-1,0,-- .
are linear maps increasing the grade by 1 which also satisfy the condition of
coboundary, 7;4, o 7; = 0. Furthermore, assume that the associative chain
map of {r;}, {\, =1100; + 0o : C; — C4, i =+, -2,-1,0,---}
satisfies the condition of projection map, that is, A; o A; = A;, for all 7.
Then the kernel subchain complex Ker(A) = {kernel of A;, for all ¢} has
the homologies isomorphic to that of C. [ |

For the different possible basic edge containing z;, we split Ker()) into
the subchain complexes which are isomorphic to C™ 1,

Let K(1) be the subchain complex of Ker(A) generated by all oriented
graphs in which the valency of z; is 0.

For each 7, 2 < j < m, let K(1, ) be the subchain complex of Ker(\) gen-
erated by all oriented graphs in which {z;, z;} is the unique edge containing
xy.

Then Ker(A\) = £(1) ¢ £(1,2) 8 £(1,3) & - -- & K(1,m).

K (1) is exactly the chain complex of oriented graphs based on (z2, 3, - -, Tm),
it is canonically isomorphic to C™~!, and for other j, K(1, j) is isomorphic
to k(1) with the elements decreasing the degree by 1.

To describe the structure precisely, for any positve integer p, let £? be
the chain complex defined by: for degree 0 and —1, £&f =R, &%, = R?; for
other degree 7, £7 = 0. The boundary operator in £? are all the zero-map.
EP = H(X,,R), for all 3.

Then Ker(\) X EM 1@ K(1) =Mt ™l

Thus H,(C™) € H,(E™ 1@ Cm ) x2Em-1@ H,(C™ ).

By induction, we have
H*(Cm) o gm—-l ®5m—2® . ®£1 ,
it is the isomorphism needed in Theorem A.

13



Proof of Lemma 2

Choose a linear order (E4, Ey, -, Eyx) for the edges of . If I satisfies
the (%)-condition, then, for the non-basic edge E;, E; does not meet
and I'/E; also satisfies the (x)-condition. Thus, for the non-basic edge E;.
r(8Y[l]) = 7([T/E;]) = 0, and for the basic edge E;, 9”[I] is defined as 0:

this concludes that
r([T])) = T, (1P (89 ([T]))) = 0.

By the valency asoumption, 7([I']) = 0, and hence, (9 o7 + 70 9)([[]) =
o(r([T'])) + 7(8([T])) = 0, this proves the first part of the main lemma.

For the second part, assume that the valency of z, in I" is larger than 1,
or, the unique edge containing z; is equal to {z;,v}, for some inner vertex

V.

(Case 1): Valency (z;) > 2.

In this case, 7([I']) is non-zero. Consider the orientation (FE1, Es, - - -, Ey)
for I. 7([Ey, Ea, -~ Ex]) = (=1)**N(o(Er), ¢(Ea), - -, $(Ex), (Er1'))
( Note: ¢ is defined in the definition of 7 ). Thus

k+1

(@0 T)(Er, Bs, - ) = (1M1 Y (—1)89(¢(EL), - - ¢(Ex)).
=1
The last term in the summation above,

(=15 (1) (BB, §(En), -+, S(Ew), S(Bisr))

is exactly equal to (E), Es,--- E), the oriented graph of I.
For 1 < j < k, we should check that

(—l)k+1 ’ (—1)k+1a(j)(¢(El)» (rb(E?)) T ¢(Ek)’ ¢(El,c+1))

is equal to ~7((=1)70Y(E}, Ey,---, E})). As in the definition of 89, let
7; . V(I') — V(I')/E; denote the quotient map.

14



a(JV)(Elv EQ’ T Ek) = (Fj(El)v B ﬂ-j(E]'—l))’ 7T]'(EJ'+1)> T 7rj(Ek)>‘
Thus 7(0V(E\, Ey,--- E}) =
(=1(o(mj(Er)), -+ S(m(Ejm1) S (Ejer)), -+ &, (Ek)), d(m5(EL))).

On the other hand, to study Y (¢(E)), ¢(Es), -+, d(Ers1’)),
let 75 : V(I) U {a} — (V(T') U {a})/o(E;) denote the quotient map. where
a is the new inner vertex in the definition of 7(T').

Then 09 (¢(En), -+, ¢(Ex), d(Erst’))
— (TO(ED), - TS Ey), T(0(Eyet))y - T3 (B ER)), 750 Best)).
It is straightforward to find that ¢(7m;(£;)) = T5;(#(£)), for 1 <1 < k, [ # 7.
and ¢(E}) = T;(¢(Ek+1")), which imply the equality

~T((=1)'0:(Ev, By, -+, E))
= (—D)M(=1)09(B(Er), 6(B), -, S(Ex), d(Eyer')),

and hence, we have
(807')(E1,E2,‘ v 7Ek) = <E17E27“ ' 7E1€) - (TO 6)(E17E21' : 'aEk> .

(Case 2): Valency(z;) = 1.

There is some edge F; = {z1,v}, for some s, 1 < s < k and for some
inner vertex v.

In this situation v can not be a base point, or else, I' satisfies the (*)-
condition.

By the definition of 7, 7([']) = 0. For the integer j # 5,1 < j < k, 1,
is also of valency 1 in UNI'). Thus 7(0UNI)) = 0, for j # s. And it is
easy to see that for the particular boundary 8¢)(T'), its T-value, 7(8¢)(I)),
is equivalent to the original graph I'. Together with the orientation, we have

T(O(EL, Ea, -+, Ex))

 (~ DT BL), T Bomt)y mslBsir), -+ 7o Bi)

= (~DA (=LY (@ (B), -, Sy (Bot)), @y (Eser), -+ 0l Bi)), (o EL)))
In the equivalence of 7(9¢)(T')) and I, the edge ¢(ms(EL)) is correspondent

to £,. When changing the position of ¢(w;(E})) to the original position of
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E,, we get an additional sign (—1)*~.
Thus T(a(El,EQ,"’,Ek))

= (=1 (=) (B(ms(E)), -+ (s (Bsmn)), 87 (ER)), O(ms(Esn)), -+ o(ms(Ex))),
which is exactly equal to (£}, Es,- -, Ek).

That is,
T(a(EhE?,a t '7Ek)> = (E17E2) T '7Ek) .

This completes the proof of the lemma.
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Embed a subchain complex of C™ in Q(C(m,R%))

Let Q(C(m,R*)) be the cochain complex of all differential forms on
C(m,R*). We shall define a dual homomorphism sending a degree 7 oriented
graph [ in C™ to a degree —i differential form w([[']) in Q(C(m,R*)).

Redefinition of degree: To consider the graph in R*, we should change
the definition of degree to the one depending on the dimension 2/.

Degree of graph = (number of inner vertices)x2/ — (number of edges) x (2/ —
1). |

In the following, the ordered set (z1, 29, - -, zm ) is considered as a variable
point in C(m,R?%).

Suppose I' is a graph based on (z;,z2, -, Zm). Let C(I') be the con-
figuration space of all graphs together with equivalences from I' to them,
that is, {(g,I") : I is a graph in R* and based on (21,23, -, 2m), g :
I' — I" is a equivalence of graphs, g(z;) = 2;, 7 = 1,2,---,m.}, and
C(T, 21,22, -+, 2m) be the subspace os C(T"), {(g,I") € C(I') : I is a graph
based on (z1, 22, +, zm) }.

Then C(I') a a fibre bundle over C'(m,R¥) with the fibres C(T', 21, 22, - -+, Zm)-

The element (g,I") is completely determined by the map of vertices
V(I') — R¥, for simplicity, we also denote this map by g. And the space
C(T) can be thought as the space of the all injective maps g : V(I') — R?.

Assume Ey, B, -+, By are the edges of ', E; = {v;,w;}, 1 =1,2,-- k.
For each edge E; of T, let ¢g, : C(I') — S*~! denote the map

@Ej(g) = ]

Choose a unit volume form wy on S*~! which is invariant under the
anti-podal map of S#*~!. Consider the pull-back of wy by vE;, we get the
(20 — 1)-form @ (wo) on C(T'). The wedge A5_ ¢, (wo) is a k(20 — 1)-form
on C(T'). For the well-definedness of A;?:Igo*gj (wp), we need a linear order of
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edges, actually, an orientation of I'. Thus , for an oriented graph [['], we have
a well-defined differential form Af_, % (wo).

Let w([T'}) denote the push-down of A5_, ¢} (wo) to the base space C(m,R¥),
that is, the fibre integration of /\;‘:199}13] (wo). Thus w(I') is a differential form
of degree k x (20 — 1) — 7 x 2/ on the space C(m,R*), where r is the number

of inner vertices of I'.

Definition: A based graph is said to be trivalent, if every inner vertices of

the graph are of valency 3.

The following proposition is essentially from the work of Bott and Taubes
-

Proposition 4 If I is trivalent, then the exterior differentiation of w(I") can
be given by the following formula:

i w(0V(T))

Although the map sending [I'] to w([I']) is a linear homomorphism from
C™ to Q(C(m,R%)), it may not be a map preserving the boundary operator
except the trivalent graphs.

Let T/" be the subspace of C* generated by all degree i trivalent graphs
based on (1,2, ,Zm) and K* = {z € T/* : §"(z) = 0}.

Part of boundary operator d For an oriented graph (E4, Es, - - -, Ex),
let &(Ey, Es, - - -, Ex) be the summation of (—1)78W(Ey, Ey, - - -, Ex) over the
integers 7, 1 < j < k, for which E; is a edge containing a base point; and let
&"(Ey, Ey, - -+, E}) be the summation of (—=1)70Y(Ey, Es, -, E) over the
integers 7, 1 < j < k, for which E} is a edge consisting of two inner vertices.
Thus both & and 8” are linear maps from C™ to C*y, and 0 = 0’ 4+-0". But

0’ o @' is not a zero-map, even in T;".

The following trivial result is crucial.
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Lemma 5 0"00"=0

Thus C" = {C™,0"} is a chain complex. Because an oriented trivalent
graph can not be in the ”-boundary of any graph, K*No"(Cf%,) = {0}, and
hence, K™ is a subspace of H;(C"). We hope that K™ could be the whole
space H;(C™). Whether it is true or not, the linear spaces {K[™, for all i}

with the boundary operator & form a chain complex, denoted by X™.

Conjecture 6: H;(C") = K™, for all 1. |

The main purpose of the conjectue is that it could imply the following
conjecture.

Conjecture 7: H,(K™) = H,(C™). [ |

This implies that using the differential forms w([I']) produced from the
elements in K™, we have a subcochain complex of Q(C(m,R?%)), whose co-
homology is equal to that of C(m,R?*). And this is the fundamental theorem
to get the braid invariant by K. T. Chen’s theory of iterated integral.

Theorem C If H(C") = K™, for all i, then H;(K™) = H,;(C™), for all i.}
The proof depends on a spectral sequeence argument. At first, we define

a double sequence of spaces.

Suppose I' is a based graph and v is an inner vertex of I'. The deficit
number of v is defined as the number (3 — the valency of v) and the total
deficit number of I is the sum of deficit numbers of every inner vertices. For

example, the total deficit number of trivalent graph is zero.

Definition: Let C7, is the linear subspace of C", i = p + g, generated by
all oriented graphs with the total deficit number q.

It is also convenient to call the number ¢ the inner degree and the number
p the base degree. Then the base degree of I' is equal to (3—2{) x order(I")—s,
where s is the sum of valency numbers of every base points in I'. When the

order is fixed, the total valency number s is an essential part of the base
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degree.

Proposition The boundary operator §” sends C77 into C77 ;. |

Proof:  Suppose [['] is an oriented graph. 9”([I']) is the summation
of oriented quotiet graphs [['/E] over the edges E consisting of two inner
vertices. Thus these graphs I'/E have the same base degree as that of I'.

Thus 8”([I']) is an element in C%,_,. This completes the proof.

Therefore, we have the chain complex C, = {C7,, 8"}, ( Note: City = To",
c

Cp =0, for ¢ > 0. ) and its top dimensional homology Ho(C, ) is the space
KJ*. The other boundary operator & are only defined for the top dimensional

3 /. /
space C7, that is, o' : o —— Cpr1o- For other spaces Cryy <0, sends

it into the direct sum of C}2, ., C7"5 .1, -+ -~ We can summarize thses in the

following diagram.

m m 6// m 6//
Kp IR p,0 p—1

o o

m m 8// m 8//
Kp—l A Cp-l,o - Cp-—l,-—-l -

ial Jral

m m 8" m a//
Kp—‘Z T Cp——?,O — Cp-2,-1 —

2 o

From the diagram we find that for any integer p, the spaces C;/, P <p,
form a subchain complex F,(C™) of C™, that is the subspace generated by
all oriented graphs with the base degree less than or equal to p. The degree
i space of F,(C™) is the direct sum of C7},_,, for all p < p. Then all these
subcomplexes F,,(C™), p=---,-1,0,1,- -, form a increasing filtration of C™

and f;n is exactly equal to the quotient chain complex F,(C™)/F,—1(C™).
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Proof of Theorem C:

The assumption of the theorem that H,(C") = K™ for all i implies that
Hq(C—’;n) = 0 for all ¢ # 0. Thus, the spectral sequence associated with
the filtration F,(C™), p = ---,—1,0,1,- -+, is degenerae, which implies the

conclusion of the theorem that H;(K™) = H,(C™), for all i.
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