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Main Results

Let T be the flat torus with the rectangle fundamental domain [0,a] x [0, 4],
p € R, a5 > 0, 4, be the Dirac delta function with mass at ¢; and W(z) is a
Lipschitz function on 7". We consider the following equation
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Clearly, the condition
!
(0.2) > dmay = p+/ W dv
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is necessary for the existence of solutions to (0.1). Let
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When os are nonnegative integers, NV is called the vortex number.

One interesting phenomenon of (0.1) is its blow-up behavior. For N = 0, by the
works of Brezis-Merle, Li-Shafrir, Li and Wolansky, the nonlinear term, after passing
to a subsequence, converges to a delta measure with mass 87 near a blow-up point.
This implies solutions of (0.1) can blow up only when p tends to 8mm with m a
positive integer and the number of blowing up bubbles is exactly equal to m. When
N > 0, Bartolucci and Tarantello showed that the local mass of the nonlinear term
tends to 87(1 4 a;) when solutions blow up at g;.

One method to study the existence problem is to use the Leray-Schauder degree.
Let K(p) be defined by
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If there is no blow-up of the solutions, the Leray-Schauder degree of (0.1)

dﬂ = deg(I + K(ﬁ)) BRao)

is well defined on a big ball B in a suitable space.

For N = 0, we can also consider (0.1) on a compact Riemann surface M without
boundary. More generally, let h be a C? function on M with A > 0. We can consider
the following equation

u

he
0.5 Au + +W )} =0 on M,
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where A is the Betrami-Laplace operator on M.



For the case M is the standard sphere, more results about d, were known. For
p = 8w, Chang-Yang in [12] obtain a formula for d, when & is a Morse function and
Ah # 0 at critical points of A. That formula can be written as follows

(0.6) d=1- Y (-1
vh(g)=0,Ah(g)<0
where ind g is the Morse index of h at gq.
Recently, the second author considered the case h =1 in [29] and after an careful
study of the orbits of the solutions, was able to obtain

d,=—1 for 87 < p < 167
d,= 0 for 167 < p < 24m.

For a general Riemann surface M, the authors obtained in [16]and [17] a complete
formula for the degree. Let g denote the genus of M and x(M) be the Euler charac-
teristic of M, that is, x(M) = 2 —2g. For two integers m, and my with my > m; > 0,
let

for m; >0

- m1!
1 form; =0

(m2> ma(mz — 1) -+ (my — my + 1)

my

Theorem A. Assume 8mm < p < 8w(m + 1) with m a nonnegative integer. Then
4y = ("X that is,

o

When p = 87m, the problem becomes more difficult. If 4 is a Morse type func-
tion, then a degree formula similar to (0.6) was obtained also. Another method to
find the degree for p = 8nm is to show that solutions can not blow up when p tends
to 8mm from the right (or the left). Then the degree at 87m is the same as the one in
the right (or the left). For (0.1), one can show that solutions can not blow up when
p tends to 87m from the right. Therefore as an application of Theorem A, we have

(—x(M) + 1)(=x(M)+2)---(=x(M) +m) for m>0

for m=0.



Theorem B. Let d, denote the Leray-Schauder degree for (0.1). Suppose N =
Zgzl a; =0. Then d, =1 and (0.1) has a solution for p € R.

In this paper, we are going to study the more delicate cases with N > 0. We focus
on the study of the behavior of equation (0.1) when p cross the first critical value,
8m. We assume [ = 1, that is, there is only one delta function in (0.1) N = 1,2 and
0 < p < 16m. We will show that a delta function changes the topological property of
the solution set. The main results are as follows.

Theorem 1.1. Let d, denote the Leray-Schauder degree for (0.1). Suppose
l=1and N =1. Then

d = 1 for p<8nm
£ ) 2 for 87 < p < 16m7.

Theorem 1.2.  Let d, denote the Leray-Schauder degree for (0.1). Suppose | =1
and N = 2. Then

1 for p<8m
dy=14 0 for p=28nr
2 for 8m < p < 167.

Comparing to Theorem B, one can see two different features in Theorems 1.1 and
1.2. The first is that the degree is changed for 87 < p < 167 when there is a delta
function in the equation. This can be explained as follows. The degree is related to
the blowing up of the solutions. The locations of blow-up points can be determined
by the critical points of a special function f (see Section 2), which is a sum of logh
(where h is the function defined in 0.5) and Green’s functions. If there are [ delta
functions at {qi,...,q} in (0.1), we need to add more Green’s functions with their
singularities at {gi,...,q:} to the function f. Then the number of the critical points
of f changes. This leads to the change of the degree.

The second different feature is in the determination of the side (left or right) from
which a blow-up can occur as p tends to 87. Assume u; is a sequence of blow-up
solutions of (0.1) with p = p; tending to 8x. It is crucial to know the sign of p; — 87
for computing the degree at p = 87. The dominant term of p; — 87 was obtained in
[29] and [29]. Unfortunately, it is 0 if N = 2. This is exactly the case in Theorem



1.2. Hence we can not decide the sign of p; — 8. To overcome a similar difficulty for
(0.5) on a bounded domain of R? with A = constant, we computed the next order
term of p; — 87 in [|. However, it is still very difficult to know the sign of the next
order term for the problem on a torus. The key idea here is to use the Weierstrass
P-function. Then the next order term can be considered as the area of the difference
between the image of the primitive of a Weierstrass P-function and R?.
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