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Abstract

In this paper we consider the Cauchy problem for the simplest 2x2 relaxation hyperbolic
system of conservation laws with non-equilibrium states. We show that the solutions tend to
diffusion waves in LP-space (2 < p < o0) time-asymptotically, when the initial perturbations
are small, where the diffusion waves are constructed based on the corresponding heat equa-
tion and Burgers equation. In particular, we give the LP-convergence rates in three cases
corresponding to the second and third derivatives of nonlinearity at the original point are
zero or not. The proof method we adopt is the Fourier transform method and the energy
method based on the basic decay estimates of solution to the linearized equation.

1 Introduction and Main Result

We consider the simplest 2 x 2 hyperbolic system of conservation laws of relaxation model as
follows, which was firstly introduced by Jin and Xin [12] for numerical analysis,

Ut + Ug = Oa
(z,t) e Rx R, (L.1)
us + avgp = ﬁgfu,
with the initial data
(v,u)|t=0 = (vo,uo)(z) = (0,u+), as T — oo, (1.2)

where (v,u) belonging to R are the unknown functions, which represent, for example, the spe-
cific volume and the velocity in the model of viscous gas in non-thermodynamic equilibrium,
respectively. 7 > 0 is the constant of relaxation time, and we may assume 7 = 1 without loss



of generality. a is a given positive constant. f(v) is the flux function and needed to be smooth,
generally say, f € C?. The state constants (0, uy ) satisfy the non-equilibrium relation

f(0) # ux. (1.3)
About nonlinearity f(v), without loss of generality, we may assume
f'(0)y=o0. (1.4)

The most important examples are f(v) = vP*!/(p + 1) for all integer p > 1, where p = 1 is the
Burgers’ case f(v) = v2/2. Others are like f(v) = v1 + v2, f(v) = 1/v1 + v? and so on.

Relaxation phenomenon often arise in many physical situations, for example, gases not in
thermodynamic equilibrium, kinetic theory, chromatography, river flows, traffic flows, and more
general waves, cf. [35]. The general 2 x 2 relaxation hyperbolic system of conservation laws in
the form

‘Ut+f(v,u)1;=0 .
{Ut +9(v,u)z = h(v,u) ‘ (1.5)

was first analyzed by T.-P. Liu {17] to justify some nonlinear stability criteria for diffusion waves,
expansion waves and traveling waves in the Cauchy problem case. After then, the stability of
traveling waves, diffusion waves and rarefaction waves for the Cauchy problem or the initial-
boundary value problems were studied by many people, for example, see [4, 6, 15, 16, 19, 20, 21,
25, 26, 28, 29, 38]. There are also various works on the limits of relaxation time, or numerical
analyses, see [1, 2, 11, 12, 14, 27, 34] and the references therein. All of these works are under
consideration of equilibrium states, namely,

f(’Ui) = Ug,

where vy = limg_, 4o vo(z). When the non-equilibrium states

flvz) # ux

(our case is vy = 0) holds, there are a few works on stability of elementary nonlinear waves,
cf. [36] and [37]. Regarding on the nonlinear stability of diffusion waves for the other model
equations, we refer to those works in (3, 5, 8, 9, 10, 13, 18, 22, 24, 30, 31, 32].

Now, let us see formally what the asymptotic states of (v,u)(z,t) at £ = oo is. When
z — +o00, the second equation of (1.1) behaves

Su(Foo,t) = £(0) — u(Eoo, )

(1.6)
u(£00,0) = uy
which solves
u(Foo,t) = e*lux — f(0)] + £(0). (L.7)

While the first equation of (1.1) gives

d
Ev(ioo, t) = 0,



which implies
v(£o0,t) = v(+00,0) = vo(too) = 0, (1.8)
and we may also have

d

0 oo
Zi—t/ v(z, t)dr = —/ ug(z, t)dz = —u(400,t) + u(—00,t) = —(uy —u_)e™t,

—0o0 -0
that is, by integrating above equality over [0, t],
oo oC
/ v(z,t)dz = / vo(z)dr — (uy —u_) + (uy —u_)e " (1.9)
—o0 —oo

Since the initial data vo(z) is any given, there is no information from (1.9) to let us expect

J22 v(z,t)dz — 0 as t — oo, except for the special case
oc ‘ .
| wnle)da = (s = uo) =0, (1.10)
oo ‘

which is sufficiently used in [36, 37] for the stability of diffusion waves.

We now reduce a new equation from system (1.1). Differentiating the first equation of (1.1)
with respect to ¢t and substituting it to the second equation of (1.1), we obtain a scalar wave
equation on v with damping

v + v + f(v)g — avyy = 0. (1.11)

In general, the term vy decays much faster than the other terms do in Eq. (1.11), so the main
control part of Eq. (1.11) should be

v + f(v)z — avgy = 0. (1.12)

This is really reasonable to consider that the time-asymptotic behavior of the solutions to Eq.
(1.11) is just as that of its diffusion waves, which are constructed based on the corresponding
heat equation or Burgers equation to the parabolic equation (1.12).

Now, let us recall the so-called diffusion waves. We consider the following parabolic equation

6+ £(0) + £'(0)6 + L4267, ~ 0z = 0
(1.13)
6’t=0 = 60(.’1,‘) — 0, as z — Foo.
We call the solution of (1.13) as the diffusion wave solution to Eq. (1.12), as well as to Eq.

(1.11) or say Egs. (1.1).
If f”(0) =0, then Eq. (1.13) is equivalent to

8; + £'(0)8; — abfzz =0,
(1.14)

0|t=0 = 00(:3)1



which is a linear heat equation, and has a unique solution in the form

1 X @=foy-y)?
f(z,t) = —— e” at 6 dy. 1.15
@)=/ o(v)dy (1.15)

This solution is called the linear diffusion wave.
If f7(0) # 0, we may reduce (1.13) into

8, + f(0)6; + L2660, — a6, =0,
(1.16)

B|t=0 = Bo(z).

By scaling the variables ' = f"(0)z/(4a) and #' = f”(0)?*t/(8a), and denoting the new variables
(z’,t') still by (z,t) without confusion, we obtain from Eq. (1.16)

8; + b + 00, — %921 -0, (1.17)
where a = 2f'(0)/f"(0). ApplyingA the Hofe-Cole transformation

6z,t) = ~(Ing)s, e, @(a,t) = e S lEO%,
to Eq. (1.17), it can be reduced to

Pt + apg — %‘pzx =0,

(1.18)
Plt=0 = e Joeo B0y . wo(z).
It is well-known that the above linear heat equation has a unique solution
oat) = o= [ F iy, (1.19)
Thus, from (1.17) and (1.19), we obtain
0(z,0) = ~(Ing)s = — %
_ [ (- 55 exp ([ Goln)dn)Bo(w)dy 120)

I exp ( - E‘—“J{—yﬁ) exp ( e 90(n)d77) dy

This solution is called the nonlinear diffusion wave.
Returning back to Eq. (1.13), let us see what the diffusion waves behave. By integrating
(1.13) over (—o0,+00), we have

d o0

2 ez, t)dz =0

dt/_w (z, t)dz = 0,
namely,

/ " 0(z, t)dz = / ” Bo(z)dz. (1.21)



This mass doesn’t go to zero too, as t —+ oo, except for [*o 6(z)dz = 0. In fact, we have no
such a restriction on y(z) in this paper.
Making the difference of (1.9) and (1.21), we obtain

/_ ” o(z, ) — 8(, t))dz = /_ ” [uo(2) — B0(2))dz — (us —u_) + (ugs —u_)e™t  (1.22)

For any given initial value vg(z), it is completely possible to choose the initial value 6o(z) for
the corresponding parabolic equation (1.13), so that

/ ” 1oo(z) — Bo(2))dz — (uy — u_) = 0. (1.23)

~0C

This is our essential assumption in this paper.
Now we use Hsiao and Liu’s fashion in [8], that is, let

mo(z) € C°(R) and /09 mo(z)dz =1, | (1.24)

and denote

{z}(z, t) = (uy —u_)e tmy(z)

a(z,t) = et (u_ +(uy —u) [5 mo(y)dy), (1.25)

it is clear that (9,14)(z,t) satisfy

D
[~43
o

T —_—
¢ =0 (1.26)
(£o0,t) =0, d(+oo,t) =use .

>
>

t +
+

(4

Thus, we obtain the following from (1.22)-(1.25)

/ i [v(z,t) — O(z, t) — O(z, t)]dz

-/ " [v0(z) — Bo(2)]dz — (uy —u_) (1.27)

=0.

Notice that, for a parabolic conservation law, Chern and Liu [7], Jeffrey and Zhao [11] studied
that, for a given initial data 8y(z) € L' N H?, the diffusion wave solutions of (1.13) decay in the
form ||0(t)[|2 = O(t~1/*4), for ffooo 6o(z)dz # 0, and ||0(t)||2 = O(t=3/4) for I3, 6o(z) dz = 0.
On the other hand, applying the decay rate estimates in [23] and [36, 37] for the wave equation
with damping (1.11), we can have also the same decay rates of the solution [lv(t)|[z2 = o@t~14)
or O(t3/*) based on the restriction on the initial data [ vo(z) dz—(u4—u-) # 0or=20. So, it
is clear that, in the case of [*0 8o(z)dz # 0 and [ wvo(z)dz—(us~u-) # 0, the solution v(z,t)
of Eq. (1.11) tends naturally to the diffusion wave 8(z,t) in the form ||(v — 8)(¢)]lz2 = O(t=44)
due to [|8(t)]|2 = 0(t=Y/*) and |ju(t)]| > = O(¢t~'/*). However, this decay rate is not satisfactory
if the initial perturbation vy (z) — 6o (z) satisfies the essential condition (1.23). In fact, we expect



that the solution v(z, t) converges to the corresponding diffusion wave (z, t) faster than O(t~1/4)
in L2-sense, namely, we will prove that

O(t=®/t9), for f"(0) #0
l(v—-8)(®)llzz =< O@t34In(2+1t), for f”(0) =0 but f”(0) #0
O(t=%4),  for f"(0) =0 and f"(0) =0

where ¢ is any given positive constant, of course, we may let 0 < o < 1. We see also that, the
convergence rate in the case f”(0) # 0 is quite same to that by Chern and Liu [5], wherein they
only focused on the nonlinear diffusion waves case, while the results for all three cases are also
same to those by Mei and Omata [24], in which they studied the convergence to diffusion waves
for the solutions of the Benjamin-Bona-Mahony-Burgers equation.

The decay rates represented in (36, 37] are better than ours, because the stiff condition
(1.10) may ensure a better decay rate as we know. However the diffusion wave constructed there
is a bit strange. After getting the decay estimates for the original solution of (1.1), they then
constructed a solution for a heat equation with an initial value which is dependent on the original
solution v(z,t), as the asymptotic profile of v(z,t), and called it the "diffusion wave”. Thus,
both of two solutions v(z,t) and 6(z,t) are not independent, and the late is closed dependent
on the previous, such a ”diffusion wave” is not in the original meaning.

Our proof method is different from those used in the previous works [4, 36, 37] in this
direction. By making use of the Fourier transform, we reduce the fundamental solution to the
linearized equation. Based on the energy decay estimates on the linearized problem, we further
show the decay rates for the nonlinear problem by means of the Duhamal’s principle and the
elementary energy method.

Now let

€:= /-oo (160(z)| + |260(z)|) dz < +o0, (1.28)

—00

we are going to state the main results as follows.

Theorem 1.1 Suppose that (1.23) and

wnle) = [ " [vo(y) = Bo(y)]dy + us — u_ € (L' N HY)(R) (1.29)
)= [ " [ (y) — 05y, 0) — o1y, O)ldy € (L' N HY)(R) (1.30)

hold. Then there exists a positive constant &y such that when ||(wo, w1)||z1 + [|woll gz + Jwill g +
€+ |uy —u-.| < &y, then the Cauchy problem (1.1) and (1.2) has a unique global solution v(z,t)

satisfying
v(z,t) - 8(z,t) € C°(0,+o0; H'(R)).

Furthermore, the different decay rates hold for the following three cases.



1. If f"(0) # 0, then, for any o > 0, the following estimates hold

1w = 0)(®)]| - = O()(1 +8)~ 2+, (1.31)
(v = 0)(®)||,> = O()(1 + )=, (1.32)
(v = 8)(8)| o = O(L)(L +8)=57+7. (1.33)

2. If f"(0) = 0 but f"(0) # 0, the convergence rates are as follows

(v = 8)()]],. = O()(1 + )3 In(2 + ¢), (1.34)
(v =6)z(t)]| . = O +1), (1.35)
(v = 8)(8)]| ;oo = O(1)(L + £)~5/In( ¥ 1) (1.36)
3. If f"(0) = 0 and f"(0) = 0, the convergence rates to the diffusion wave are much faster
as follows o
(v = 8)@)||,. = OQ)(1 +.1)7%, (1.37)
(v = 8)a(®)|2 = O(1)(1 + )73, (1.38)
(v =O)®)]| oo = O+ )7 (1.39)
Using L?, L®°-results in Theorem 1.1 and the interposing inequality
I£llz> < WAIEPPNFIZZ, for 2<p < oo,
we can obtain immediately LP-decay rates as follows.
Corollary 1.1 Under the assumptions in Theorem 1.1, it follows
O)(1 +1) 78377, for f"(0) #0
Ite = 0)(®)llzs = { O)(1 + )35 (In(2 + 1)) 7*5, Jor f7(0) =0 but f(0) #0
O)(1 + )1+, for f"(0) =0 and f"(0) =0
(1.40)

for 2 <p < 0.

Remark 1.1 As we showed in Theorem 1.1 for the nonlinear stability of diffusion waves, we
don’t need here the stiff condition (1.10) and the subcharacteristic condition

—Vva < f'(v) < va  for all v under consideration.

But both of them are sufficiently used in [36, 37].



Notations. We now make some notation for simplicity. C always denotes some positive constants
without confusion. 9%f := 0%f/0zF. LP presents the Lebesque integral space with the norm
| - llz». Especially, L? is the square integral space with the norm || - ||z2, and L™ is the essential
bounded space with the norm || - ||z«. H* denotes the usual Sobolev space with the norms
Il - Il ;7% Suppose that f(z) € L' N L%(R), we define the Fourier transforms of f(z) as follows:

F[f1(¢) EfZAf(z)e‘izfdx.

Let T and B be a positive constant and a Banach space, respectively. C¥(0,T; B) (k > 0) denotes
the space of B-valued k-times continuously differentiable functions on [0,7T], and L?(0,T; B)
denotes the space of B-valued L2-functions on [0,T]. The corresponding spaces of B-valued
function on [0, co) are defined similarly.

2 Reformulation to the Original Problem

Note (1.27), that is,

/00 [v(z,t) — 0(z,t) — O(z,t)]dz = 0,

—00

it is reasonable for us to set a new known function as

wizt) = [ b0 - 00u,1) = oy, Dldy, 1)
namely,
wy(z,t) = v(z,t) — O(z,t) — v(z, t). (2.2)

Due to Egs. (1.11), (1.13) and (1.25), we reduce a new equation

Wy + W — QWyy = F (2.3)
with the initial data

wle=o = wolz), Welt=0 = wi(z), (2.4)
where

Fi=—80;+ fI(O)Ht + f”(O)BGt + ﬁz(.’lt, t)

~[£0 + 0+ wa) — £(0) = S8 - 2"(0)6%, (25
wo@) = [ [ooly) ~ Bou)ldy — (s — u-), (26)
@)= [ (o) = 0:,0) = iu(v, O} | e



Here the diffusion wave’s equation (1.13) and the definition of ¥(z,t) in (1.25) give

et(z, O) = f’(O)GOx + f”(0)9090:v + bozz (2-8)
’f)t(l',O) = ﬁz(x’ 0) = (u+ - U_)mo(fﬂ). (29)

By the Taylor’s formula, we have
fO0+3+wz) = f(6) + f'(6) (3 + ws) + O(1)(9 + ws)? (2.10)

and (using f'(0) = 0, see (1.4))

£(6) = £(0) + % £7(0)6? + ~31—!f”’(0)03 +0(1)6 (2.11)
76) = £'(0)8 + 51" (0)8 + O(1)6", (212)
so that

F0+5+w2) — 70) + £/(0)0 - 5(0)6?
- % £7(0)63 + O(1)8* + O(1)(5 + ws)?
08 + 31"(0)6° + 06 + wa). (2.13)
Substituting (2.13) into (2.3), we then have

Wyt + Wt — QWxg =F1 +F2

(2.14)
(w, wt)|e=0 = (wo(z), w1(2)),
where
Fy =~ 05 + £"(0)06; + iz(z,t), - (2.15)
Fy == 5 f"(0)6° = O(1)8" — O()(@ + w,)?
—[f"(0)6 + % "(0)8% + O(1)8°|(v + wy)- (2.16)

We state the main theory in this section as follows.

Theorem 2.1 Under assumptions in Theorem 1.1, then there ezists a positive constant §; such
that when ||(wo, w1)|[r + llwollgz + lwillgr + € < 81, then the Cauchy problem (2.14) has a
unique global solution w(z,t)

w(z, t) € C°(0, +00; H*(R))

satisfying that:



1. If f"(0) # 0, then, for any o > 0, the following estimates hold
[w(®)||,. = O() (1 +¢)~3+7,
lw=(®)]| 2 = O()(1 +1)75+,
ez ()| 12 = O + )71

2. If f"(0) = 0 but f"(0) # 0, the convergence rates are as follows
[w(®)]| . = O()(L + )~ 7 In(2 + ¢),
lwz (@) = OQ) (L + )% In(2 + 8),
[wea (B)]] 2 = O(1)(1 + 1)~

8. If f"(0) =0 and f"(0) = 0, the convergence rates are much faster as follows
lw®)]|» = 0 +1)75,
lwe ()]l 2 = 01 +1)75,
ez )] 2 = OW(1 + )73,

By Theorem 2.1 and the well-known inequalities
1/2
lw®lle < V2w lwa @)1,

hwe (8)llzeo < V2lwa (8115 lwae (B 5,

we can obtain the decay rates for ||w(t)||z= and |Jw;(t)||z~ as follows.

Corollary 2.1 There follow

o()(1+1)~G=9, for f"(0) #0
lw®)llze = § O(1)(1+ )7 In(2+1), for f"(0) =0 but f"(0) #0
O(1)(1 +t)~z, for f"(0) =0 and f"(0) =0
and
O()(1 +1)~=, for f"(0) #0
lwz @)z = { O(1)(1 + )8 In(2+t), for f"(0) =0 but f"(0) #0
o)1+, for £"(0) =0 and f"(0) =0

(2.17)
(2.18)
(2.19)

(2.20)

(2.21)
(2.22)

(2.23)
(2.24)
(2.25)

(2.26)

(2.27)

Once Theorem 2.1 is proved, we may show Theorem 1.1 as follows. So, to prove Theorem

2.1 is our main effort in the next section.

Proof of Theorem 1.1. Thanks to Theorem 2.1 and Corollary 2.1, and note (2.2),
v(z,t) — 0(z,t) = wy(z, t) + 0(z, 1),

while
6@z = OWlus —u_le™,  Jo®llzz = OW)fuy — u_|e™,

we can prove Theorem 1.1 immediately.
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3 A Priori Estimates

Now we first reduce a fundamental solution for the linearized equation of (2.14). Let us consider
the corresponding linear problem

Y+ P —ae; =0, zeERtER,
(3.1)

Yle=o = Yo(z),  Yilt=0 = Y1(z).
We can represent the solution of (3.1) as
1/’(% t) = KO(t) * ¢0 + Kl(t) * 1/)11 (32)

where Kj(z,t) (¢ = 0, 1) are some functions which will be represented below, the mark * means
the convolution [ K;(z —y, t)1i(y)dy.
Let R;(&,t) be the Fourier transform of K(z,t), i = 0, 1, then R; satisfies the following ODE

d? d :
it R+ at’R; =0, i=0,1 (3.3)
with the initial data
d .
Ro§,0) =1,  —Ro(¢,0) =0, (3.4)
and
d
Rl(Ea 0) =0, (ERI(E7O) =1, (35)
respectively. Solving these ODEs directly, we obtain the exact solutions as
[ e-t/2 . V/1—4ag?
e sinh (Y5 ), el < ol
Ri(6t) = { te 2, 6l = 5 (36)
2e—t/2 . v/ 4a€2-1 1
[ \/2a€7-1 xn( 2 t)’ €1> 5z
and
Ro(§,t) = Ri(&,1) + Ra(€, 1) (3.7)
where
1= 2
(/2 cosh( 12445 t), €] < 5—\17;
Ra(&,1) = S e™/2, €= 2z (38)

- 4a£7—1
G t/2 cos (3Za§:t), €l > 5=

S

11



Thus, we see that the functions Kji(z,t) (¢ = 0,1) can be given by making use of the inverse
Fourier transform to R;(&,t) (1=0,1).
Furthermore, for the linear equation with source term

Yt + Pt — azz = g(z,t)

(3.9)
¢It=0 = 1/)07 ¢t’t=0 = ¢la
due to the Duhamal’s principle, the solution is expressed as
t
Wlat) = Kot s+ Ko e i+ [ Kilt=r)wgoam (3.10)
0

On this linear problem, we now state some energy decay estimates as follows. Since these can be
proved in a quite same way as in [23], we would like to say the following lemma is contributed
also by A. Matsumura in [23].

Lemma 3.1 ([23]) If g € L' N H, then
O\ ‘ g
|(52) 10 =), < €0 +07 5 lgllzr + lgllas-1). (3.11)
If g € L' N HI*, then

() Hott) = a)]| , < €1+ 07 lgllzs + lolzs) (3.12)

Now we are going to study the nonlinear problem (2.14). Due to (3.10) we can rewrite (2.14)
in the integral form

w(:v,t) = Ko(t) * ’l/)o +K1(t) * ’(,[11 + -/otKl(t - T) * (F1 +F2)(7')d7'. (313)

Before proving Theorem 2.1, we need several useful lemmas as follows.

Lemma 3.2 ([5, 10]) Let 6(z,t) be the diffusion waves of (1.13). If

€= /:oo (160(z)| + |z80(z)|)dz < +00. (3.14)
then

1826(2) 12 = O(1)e(1 + )~ 5, (3.15)

10(®)]lze = O(L)e(1 +8)™ %, 1<g< oo (3.16)

1996.(8)ll = O(L)e(1 +8)™'~5 (3.17)

hold for allt > 0.

12



Lemma 3.3 ([33]) Leta > 0 and b > 0 be constants. If max(a,b) > 1, then

/Ot(l +t—38)"%1+ 5)"ds < C(1 + ¢)~min(eb) (3.18)
If max(a,b) = 1, then

/Ot(l +1—35)7%(1 4 5)"ds < C(1 + ¢)~™in(@d) 1n(2 4 4). (3.19)
If max(a,b) < 1, then

/t(l +t—5)"%1+3s)"ds < C(1 + )it (3.20)
0

According to the three cases in Theorem 2.1, we define the solution spaces in the forms
Xi(8) = {w € C°(0, 00; H2(R))| M; (w) < 8} (3.21)

for ¢ = 1,2,3, where

My (w) = 03:“;{2(”” NSOl + (L+ ' e (02 (3.22)
My(w) zof?fw{z L+0" 2+ D0dw(Ollze + L+ s )2} (3.23)
Mz(w) = OS}IP Z(1+t) 03w ()]0 (3-29)

Using Lemma 3.1 we obtain immediately the following estimates on the initial values.

Lemma 3.4 Ifwye L' N H? gnd w, € L! NHY, then

182 {Ko(t) x wo} |2 < C(1 + t)*’%(ﬂwonu + [lwollzr2) (3.25)
I182{K1(2) x wiHlz2 < O + )% (Jawr ]l + Jlor|lr) (3.26)
forj=0,1,2.

We are now going to prove the following estimates.

Lemma 3.5 In the case: f"(0) # 0, suppose w(z,t) € X1(4), then

/Ot IK1(t = 7) % (Fy + F3)(7) | p2dT < Cle + fug — u_| + 8)2(1 + ) =i+, (3.27)
/Ot 162{K (8 — 7)  (F1 + Fo)(r)Hp2dr < Cle + |uy — u_| + 8)%(1 + £)=5+, (3.28)
/0 t 1OZ{KL(t ~ 7) * (FL + Fa) (1)}l p2dT < Cle + Juy ~ u_| + 6)2(1 + t)~1t, (3.29)
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Furthermore, if wi(z,t), wa(z,t) € X (4), then

2j+1 ¢
(1+1)% o /0 163 {1 (t — 7) * (Fa(ws) — Fa(ws))(r)}| gadr

M-

<
Il
o

t
+(1+ t)l“’/o 102{K1(t = 7) % (Fa(wr) = Fa(w2))(7)}l|2dr
< C(e + ”U,+ - u_! + 5)M1 (w1 - U)Q) (330)

Proof. Let w(z,t) € X{(d), thanks to Lemma 3.2 and the definition of X1(9), and note the
inequality

s (t)l= < V2we (B2 lwas (D112 < VB +8)~F+7,

we first have several energy estimates on 8.F; and Bl F, (=0,1) in L' and L? spaces as follows

17l < [ 00ud + 1770108, + o

—0o0

< Cl0z(B)llzr + 0@ L2 16e(8) |2 + Dz (E)l] 1)

SO+t 3+ 21+ 3(1+8)F + [uy —u_le?]
<Cle+ fup —u_|)2(L+28)"3, (3.31)
and
1 Fillz2 < C16ze() 2 + 10E)| o 16 (2l 22 + N8z (E)]I22)
SCEML+) F+e2(L+ )51 +)"F + juy —u_le]
< Cle+fus —u_ |1 +1)77F, (3.32)
and
182 Fillze < Cll6zae()llz2 + 162(O) o l16e(t)ll2 + 102) o= 10a (22 + e (B)l]2)
SCEQ+8)3+2(1+)7% + Juy —u_|e™?]
< Cle+luy —u_|)2(1+1)71, (3.33)
and

I F2ll e SC/Z[IHI3 +101* + 19]% + Jwz* + (6] + 161 + 161°) (18] + |wq )] de
<CllI8lZs + 161z + 191132 + llwe 12
+ (1612 + 16112161l L2 + 1161170 1611 22) (191l 22 + l[wg|z2)]
<C{EA+) T+ 1 +4)72 + uy — u_fPe % 4+ 62(1 + 1)~ 3t20
+EQ+) T+ 21+ + S0+ Huy —u_et
+e6(1+ )" 4 €26(1 +¢)" 2+ + 36(1 + t)~2+o}
<C(e+ uy —u_|+8)2(1 4+ t)~ 1+ (3.34)
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provided € + |u; —u-| <1 and o < 1/2, and
IF2llzs <CLUI6%II Lz + 6%z + 192112 + w2l 2 + 1(16] + 617 + 161°)([92] + [wa )2 ]

<C[116lI3s + 161125 + 19l zoo o1l 22 + llwz Lo llws |22
+ (1612 + 10117 + 10170 ) 19l 22 + llwallz2) ]

<C{E+t) F+ &1+ )77 + Juy —u_|?e 2 + 521 +t)" 5+
+e(l+8) T +20+ 1)+ 31 + ) 3juy —u_et
+e8(L+ )75 4 £26(1 + 1) 767 4 36(1 + )17}

<Cle+|uy —u_|+ 621 +t)"4t7, (3.35)

and finally,
oC
10:Fellzs <C( [ 16%04] +16°0s] + (9921 + wgtvae] + (62| + [602] + 16°021) (9] + o)
—oo o

!
+ (18] + 16%] + 16%) (192 + [wza])]dz )
<C[N161Z 162112 + 161130 10z]l 22 + l16]l 2192 ]| 2 + lwe ]| Loo [zl 2
+ (10zllzee + 161z 16zllz0 + 101|700 16zl o) (lIB]l 22 + llwzllL2)
+ (18]l + 16117 + 1611 300) (192l 2 + llwzzll£2)]
<C{BA+ ) T+ 1+ )% +|uy —u_[2e™ + 62(1 + £)~ 5%
e+ T+ 210+ 82+ S+ )" 5 [Juy —u_le~t + 51 +)-5+9
F L+ 7+ 21+ 1)+ 31 + )3 [ug —u_le~t +5(1 +¢)~ 1]}
<C(e+|uy —u_|+8)2(1 +¢)~3%. ' (3.36)

Applying Lemma 3.1, Lemma 3.3, and above energy estimates on 8 Fy and 8F, (7 =0,1), we
prove (3.27), (3.28) and (3.29) as follows

t
/0 K1t = 7) % (F1 + F2)(7)||2d7
t 1
=C /0 L+t =) 75 F (DL + N1E2(r)l + IFL(Dllzz + 1 F2(7)ll L2 JdT

, |
<Ole +huy—ucf 487 [t =r)t
0
JA+7) 4+ A+ 1)+ (L + 1) 5 + (L + 1) 5dr
t
SC(E“L'“+‘“—|+<5)"’/ (L+t—1)" 31 +7)" 7
0

< Cle+|uy — u_| +8)*(1 + )=~
= Cle+|uy —u_| +8)%(L+ )5t (3.37)
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and

t
/0 10:{K1(t — 7) * (Fy + Fo)(1)}||p2dr
t 3
<C /0 L+t = )73 Pt + (Bl + I (T g2 + 1Fa(r) g2 )dr

SCle+uy —u |+ 5)2/0t(1 +i—7)%
1+ T)‘% + (147" (14 r)"% +(1 +T)_%+”]dr
< Cle+ ug —u_| + 6)? /Ot(l +t— T)-%(]_ +7)"Hogr
SCle+uy —u_| + 821 + )1-i-0-9
=Cle+|uy —u_| +6)%(1 + t)~4§+a, 5.39

and
t
/0 12{K1(t — ) % (Fy + Fa)(r)}||p2dr
t
<C /O (L+t=7) AP + |1 Fa(r)lp + IFL (T + | Fo ()| g Jdr

<Oty —uf+5? (141t
AU+ @+ ) s L) E (L4 ) Har
<Ot e =407 (Lt H )00
< Cle+ uy —u_| + 8)%(1 + ¢)~min{3,1-0}
=C(e+|us —u_| + 6)%(1 +¢)~1*9. (3.39)

On the other hand, if w;(z,t), we(z,t) € X, (6), we are going to prove (3.30). Firstly, we
have

Fy(wy) — F(w,)
= 0(1)(20 + w1z + waz) (w1z — wag)

+ (000 + 5£7(0)6% + O] (wrs — wna), | (3.40)
and

Oz (Fa(wr) — Fa(wn))
= 0(1)(21) + wig + w2a:)(wlzx - w2:c:z:)

U8+ 37"(0)8 + O w12z — w3as)
+ [£"(0)6z + £"(0)66; + O(1)620,) (w17 — wag). (3.41)
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Thus, we get the following energy estimates
| Fa(w1) — Fa(ws)|lp
S Clollze + llwizllze + ffwae g2 w1z — wozl| 2
+C(II0l 2 + 16l L1612 + 11611700 161 2) llew1z — waz |2
< Cllus —u—fe™ +8(1+8)™$+lwi, — wog 2
+Cle(l+8)7% + 21+ )% + 51+ t) Jlwie — waep2
< Cle+lus —u| + 0)(1 + 1) 5wz — wag 12
SCle+Jup —u_|+8)(1 +t) "M, (w; — wo), (3.42)
and
[ F2(w1) — Fa(wp)]| 2
S C(lIollzee + llwizllzee + llwazllze)lwiz — wazllz2
+ C([10llzo + 180170 + 1611300 )11z — waz 12
< Cfluy —ufe™ +6(1 + )57 |lwyg — wag]|,2
+Cle(1+8)77 +e2(1+8)" + 31 + )~ 3w — wagl g2
< Cle+Jug —u_| + 8)(1 + 1)~ 2 [lwyg — wag |12
< Cle+ug —us| + 8)(1 + )~ M (wy — ws), (3.43)

and by using the inequality

L 1
”wlx - w2a:”L°° < \/§”wlz - w2:1:“£2”w1:::c - w2:za:"£2

/3

2
< _2‘(”"”11' — Wwozllr2 + lwize — WorellL2)

to get
10z(F2(w1) — Fa(w2))||2

< C(19llz= + lwizllzee + lwazllzoo)[wias — wags| 2
+ Cllozliz2 + lwizzllz2 + lwazsll2)llwiz — wog ||z
+ Cl6l| e + 1611300 + 1613000122 — wazgl2
+C(6zll2 + 16)|zo 16zl 2 + 101200 162l 2)l[w15 — wigll e
< Clluy —u—le™ +8(1 + )5 wigz — wggl 12
+ Cllus = u_le™ + (1 + ) lwy, — wag|eo
+ Ol +8)77 + 21+ )7 + (1 + ) H|wigs — wasell 2
+ Ol +8)7% + 21+ )% + (1 + ) Fflwiz — waeflzo
< Cle +lus = u-| +6)(1 + )7 (wizs — wagellzz + [lwiz — waglze)
< Cle+ [ur —u |+ 6)(1+ )" 2 (lwizs — wazsllzz + llwiz — wasl|12)
S Cle+ |us — u_| +0)(1+ )My (wy — wy). (3.44)
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Therefore, making use of Lemma 3.1 and Lemma 3.3, we obtain

L 2j+1 Lo
(1405 [I0LKL (¢~ )« (Fouwn) = Fa(wa) ()}l pndr

—0

<

t
+ (14t /0 162{KL(t = 7) * (Fa(wi) — Fi(wn)) (7))} 2 dir

! 2j+1 ¢ 241
<CY 1+ _a/(l'f't—T)— I F2(w1) = Fa(w2)) (7)1
7=0 0

+ | Fa(w1) — Faows))(7)|| 2)dT
+CO(1+1)i-7 /0 (Lt 1) 5[ Fa(w1) — Fa(wa))(n)ll1s
+ [ Fo(w1) — Fa(w2))(7)|| g1 ]dr
1 5 .
< OMy(wy —wy) S (1 +) % Wtt- )T 1+ 7)oy
»_ 0
Jj=0 y
+ CM(w; — wa)(1 + t)l_"/ (1+t- 7‘)"%(1 + 1)~ Hogr
0

1 : .
< CMy(wy —w) Y (1 +) 570 (1 4+ ¢~ Hit+e

Jj=0
+ CMy(wy —wa)(L + )17 (1 + t)~to4dr _
S 0(8 + I’U+ - u_[ + J)Ml(wl - wg). (345)
Thus, our proof is complete. O

Similarly, in the case: f”(0) = 0 but f”(0) # 0, and case: f"(0) = 0 and f"'(0) = 0, we
may obtain the corresponding estimates in X»(8) and X3(8) in the same way. We state them as
follows but omit the proof details.

Lemma 3.6 In the case: f"(0) = 0 but f"(0) # 0, suppose w(z,t) € X,(68), then
t
/ 1K1 (E = 7) % (Fy + Fo)(r)llpadr < Cle + Jugp —u| + 6L+ &)~ In@+1),  (3.46)
0

/t 10:{K1(t — 7) * (F1 + F2)(T)Hiz2dr < Cle + |uy —u_| + 8)2(1 + 1)~ In(2 + t),
0
(3.47)

/Ot 102{ K1 (t — 7) % (Fy + Fa) (1)} 2dr < Cle + Jug —u_| +6)2(1 + )~ (3.48)
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Furthermore, if wy(z,t), wa(z,t) € Xo(d), then

! 2j 41 ¢ .
1+ 5% (2 + 1) /0 182K (t = 1) * (Fa(w1) — Fy(ws)) (1)} p2dr

LY

t
+(1+ t)/o 162 {K1(t — ) % (Fa(wr) — Fa(wa)) ()} p2dT
< Cle+ lug — u_| + ) My(wy — wy).

Lemma 3.7 In the case: f"(0) =0 and f"(0) = 0, suppose w(z,t) € Xs(5), then
SR =) (B + ) < Cle+ fug =l + 970+ 97}
[ 1006 =71 5y + g < e+ g~ + 9200 +)-1,
[ 186 =71 (81 + PO < Ole by — ) + 9201+ )74,

Furthermore, if wi(z,t), wa(z,t) € X3(8), then

2 o [t
SO+ )% /0 B KL (¢ - 7) * (Fa(wy) — Fa(wa))(r)}Hipadr
j=0
< Cle + |ug —u_| + ) Mz(w; — wy).

4 Proof of Main Theorem

(3.49)

(3.50)
(3.51)

(3.52)

(3.53)

We are going to prove our main result-Theorem 2.1. We first prove the case 1: f”(0) # 0. Set

Sw := Ko(t) * wo + K1 (t) * wy + /OtKl(t =) * (F1 + F3)(r)dr,

we are going to prove that there exists a positive constant d; such that the integral operator
S maps contractedly from X,(6,) into itself, and has a unique fixed point w(z,t) satisfying

w = Sw in space X;(d1), which is just a unique solution of (2.14) as we are looking for.

Step 1. S : X1(8) = X1(8). Let w(z,t) € X,(d) for some positive constant § chosen below
and w := S, we are going to prove w = Sw € X, (6). Thanks to Lemmas 3.4 and 3.5, we have

18Jw(®)llLe = 18LSB(2)]) 12

< 163 {Ko(t) * wo}llz2 + BL{K1 () * wiHiz2 + /0: 0L {K1(t = 7) * (Fi + F2)(7)}l12

< Olll(wo, wi)llza + lwoll g2 + oyl (L +¢)~ 2

+C(e+ [uy —u_| +6)2(1 +¢)~ %t +e

< Cllitwo, widllzs + llwoll 2 + llwrll s + (€ + |y — u_| +6)2)(1 +¢)~ %+
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for 7 =0, 1, and
162w (t)ll2 = 1925w (t)]) 2
t
< 1107 {Ko(2) * wolllz2 + 182 {K1 () = wi } |2 +/0 I02{K1(¢ = 7) * (Fy + F3) (1)}l 2

< Clll(wo, wi)llzs + lwoll g2 + flwy g1 ](1 +¢)~%
+Cle+ [up —u_| +8)%(1 +¢)~1+e
< Cllitwo, wi)llzr + llwollarz + llwillars + (6 + Juy — u_] + 8)2(1 + )=+ (4.2)

Thus, multiplying (4.1) by (1 +¢)~3"+ (j = 0,1) and (4.2) by (1 +¢)-1+¢ respectively, then
we add them to obtain '

1 " A
doa+ 8w ()| + (1+8)' 7| 2w(t)) 12
=0

< Cllitwo, wi)llzr + llwoll gz + llwnll g + (e + fug — u_| + 6)2]. (4.3)
Now we choose '

d < &2 := min{1,2/(9C)},
when

1o, wi)llr + llwollrz + llwill i < 6/(2C) and e+ juy —u_| < 6/2,

from (4.3), we prove

1 i+1 .
(L+8) 5~ w() 12 + (L + )7 Bw(t)| 2 < 6,
=0

7

namely, w = Sw € X{(8). This means that the operator .S maps X (d) into X;(6) for § < 4s.
Step 2. S is contraction in X,(§). Now let w, (z,t) and wy(z,t) be in X(), and denote
wi(z,t) := Sw; (¢ = 1,2). Thanks to Lemma 3.5, and note that the term F) is independent of
w(z,t), we have
1
2j+1 .
DL+ )18 (wy ~ wa)(®)ll2 + (1 + £)1 77102 (w1 — wo) (¢)] 2
=0

(L+ &) %584 (Sw, - S2)(t)ll2 + (1 + 1) 77|02(Sw1 — Su)(2)| 2

.
— ||M>—
o

2j+1 ¢ .
<) 1+ t)JT""/ 12 {K1(t — 7)  [Fa (1) — Fa(w2)](7)}| 2
—0 0

LY

t
+(1+ t)l_U/O 102 {K1(t = ) % [Fa(1) — Fa(w2))(r)}| 2
<C(e + lug — u_| + 8) My (wy — Wa), (4.4)
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namely, we prove
M (w1 —wy) < Cle + |ug —u_| + ) My (w; — w2).
Let
0 < é3 :=min{l1,2/(3C)}
and
€+ |up —u_| <4/2,
then we prove
M (w1 — wo) < My (w1 — 12).

This means that the operator S is a contraction map in X;(8) for § < 83.
Now let 4; in Theorem 2.1 be

41 = min{dy, 83},

due to above two steps, we proved that S maps X;(d;) into itself, and is contraction in X, (4;).
Thus, applying the Banach’s fixed point theorem, there exists a unique fixed point w(z,t) for
the operator S in the space X (d2) so that w = Sw. Such a fixed point w(z, t) is just the unique
solution of Eq. (2.14). Thus, we have completed the proof of the first case in Theorem 2.1.

In the same way, making use of Lemmas 3.4, 3.6 and 3.7, we can prove the other two cases
in Theorem 2.1. The details are omitted here.
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