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Multifluid Computations with Vacuum and Elastic-Plastic
Conditions: One-Dimensional Case *

Keh-Ming Shyue
December 30, 2002

This brief note describes the recent progress of our development to an efficient multicomponent
algorithm for elastic-plastic flow in solids. As a first attempt to model the flow, we use a mathe-
matical formulation given by Wilkins [8] in that the equations of motion, in one dimension, takes
the form

u
9 ’ 9 -zp -
Em pu + 3z pu” — 0g =0,
pE pEu —ozu
where p denotes the density, u is the particle velocity, o, = —p + s is the total stress, and

E = e + u?/2 is the specific total energy. Here depending on the physical domain of interests, the
hydrostatic pressure p is assumed to be either a function of the density only or a function of both
the density and the specific internal energy e (see below for an example). We consider the Hookes’
law for the constitutive relation between the stress and strain rate, and so have the stress deviator
sz governed by the following equation

DsI_2 D€I+i1_7_p
Dt Dt 3pDt)’

Note that p denotes the shear modulus, De, /Dt is the strain rate deviator, and D(-)/Dt means
the time derivative of a quantity along a particle path. To complete the model, the von Mises yield
condition is used to describe the elastic limit, and in one dimension this is that

2
3

8N

53 < 7 Y5,
where Y} is the yield strength of the material (cf. (8] for the more details). It should be mentioned
that when this inequality is violated, plastic flow begins to occur, and for perfectly-plastic flow the
stress deviator is assumed to remain constant beyond this point, see Fig. 1 for a typical loading
and unloading paths for an elastic-plastic (perfectly) flow in solids.

We are interested in a class of elastic-plastic flow problems with fracture or cavitation. Consider
a popular flying aluminum-plate problem of Wilkins (8], for example. We use the polynomial

equation of state of the form

p(p) = A(p/po — 1) + B (p/po —1)° + C (p/po — 1)°
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Figure 1: A typical loading (4 - B — C) and unloading (C — D - E) paths for an elastic-plastic
(perfectly) flow in solids without the work hardening effect.

with po = 2.7 Mg/m3, A = 73GPa, B = 172GPa, and C = 40GPa, to model the hydrostatic
pressure of the aluminum, and take y = 24.8GPa and Yy = 0.2976GPa in our elastic-plastic model
for the possible resistance of the material to shear distortion. As for the initial condition, we take

vacuum for z < Imm
(p, u) =< (po, ug) for lmm < z < 5mm
(po, 0) for 5mm < z < 50mm

with up denoted the initial impact velocity of the moving aluminum plate.

We run this problem using a high-resolution front-tracking method with a HLL-type approx-
imate Riemann solver (7], the MINMOD limiter [1], the Courant number 0.9, and the mesh size
Az = 1/10mm. Results for the elastic-plastic flow calculations with ug = 0.8km/s and 2km/s
are shown in Figs. 2 and 3, respectively. In the case of 0.8km/s (see Fig. 2), we observe a plastic
shock wave trailing behind an elastic shock precursor, while in the case of 2km/s (see Fig. 3),
since the shock stress-deviator is above the elastic limit, we only see the plastic shock. In both
cases, when the leftward-going shock waves reach the free surface, a leading rightward-going elastic
rarefaction is formed, followed by the plastic rarefaction wave. As the time goes on, these waves
begin to overtake the initial rightward-going shocks. It is easy to check that these results are in
good agreement with Wilkins’ (8] and Miller-Colella’s [3].

To see the effect of the elastic-plastic condition to the basic structure of the solution, Figs. 4
and 5 show numerical results without the elastic-plastic condition. Clearly, now all the waves are
hydrodynamic waves, and so there is no precursor elastic wave (shock or rarefaction) occurring in
the solution (cf. [4] for a similar calculation but with the full Euler equation and a Mie-Griineisen
equation of state). It should be mentioned that in this problem the free-surface boundary is tracked
and evolved according to a speed of the vacuum boundary determined by the vacuum Riemann
problem (cf. [7]).

We are next concerned with a model problem with spall. Motivated by a hydrodynamic calcu-
lation of Miller and Puckett [4], we consider the simulation of the collision of two rarefaction waves
in a precompressed aluminum plate within a vacuum that incorporates plasticity. In this case, the
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Figure 2: Elastic-plastic flow calculations for Wilkins’ problem with impact velocity 0.8km/s. Total
stress o is shown at six different times ¢ = 0.5, 1, 2, 3, 4, and 5us. The dashed line in each subplot

is the approximate location of the free surface.
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Figure 3: Elastic-plastic flow calculations for Wilkins’ problem with impact velocity 2km/s. The
graphs of the solutions are displayed in the same manner as in Fig. 2.
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Figure 4: Hydrodynamic flow calculations for Wilkins’ problem with impact velocity 0.8km/s. The
graphs of the solutions are displayed in the same manner as in Fig. 2.

| ]
151, t=05us 151, t=1pus
T | T |
& 10t & 10t
:, | x |
shi ° sl
| i
0 o :
0 10 20 30 40 50 0 10 20 30 40 50
i i
15§, t=2us 151 t=3us
© ! T |
& 10t & 10}
e I T ]
© 51 © 5hi
| !
0 ! 0 1
0 10 20 30 40 50 0 10 20 30 40 50
i |
151, t=4us 151 t=5us
o i T |
& 10f & 10}
e | T |
5} shi o st
i |
04; 0 I
0 10 20 30 40 50 0 10 20 30 40 50
X (mm) X {(mm)

Figure 5: Hydrodynamic flow calculations for Wilkins’ problem with impact velocity 2km/s. The
graphs of the solutions are displayed in the same manner as in Fig. 2.



initial condition we take is

vacuum for z < 10mm
(p, u, p) = { (2785kg/m?, 0, 13GPa) for 10mm < z < 40mm,
vacuum for 40mm < z < 50mm,

and the equation of state for the hydrostatic pressure of aluminum is

. { Pref(p) +T(p)p [e —eref(p)]  for p > po
A(p/po)* — B for p < po.

Here written in terms of the specific volume V" = 1/p, the function I, p o, and epq¢ take the form:

V q 3 201 — ‘/' . 1 r r
L(V) = Ty (70) » Pref(V) = po+ MC_O(S(‘;/O ! )V)P, eref(V) = €0 + 5 [pre(V) + po] (V6 — ),

and A = pg +K05/K(;S, B = Kog/K(')S, and o = K(;S with Kos = pocs and Kés =4s—1 (cf. [5]).
Note that cy denotes the zero-pressure isentropic speed of sound, and ¢ and s are dimensionless
parameters.

We carried out the computation using the same numerical method as before, and dsplayed
the results in Figs. 6 and 7 for the density, velocity, total stress, and the vacuum fraction at four
different times ¢t = 1, 2, 3, and 10us. It is clear that the passage of the initial leftward- and
rightward-going rarefaction waves through the material creates tension when they collide, and
vacuum is introduced when the total stress o, drops below the critical value o, = —2GPa.

To end this note, we mention that a more detailed description of the method along with
some additional results can be found in [6]. In the future, we plan to extend the method to
two-dimensional elastic-plastic in solids, and consider more realistic constitutive model for a rate-
dependent stress-strain relationship.
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Figure 6: Elastic-plastic flow calculations for a model spall problem. Density p and velocity u are
shown on the left and right column, respectively, at four different times t = 1, 2, 3, and 10us. The
dashed lines in each subplot are the approximate location of the free surface.
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Figure 7: Elastic-plastic flow calculations for a model spall problem. Total stress o, and vacuum
fraction Y are shown on the left and right column, respectively, at four different times ¢t = 1, 2, 3,
and 10us.
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