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Abstract
Consider the generalized Emden-

Fowler equation
(*)y"+g(x)y” =0 in [0,),

where y=2n-1, with »>1 an integer
and g(x)>0. In this article we will give
results about existence and uniqueness
of bounded positive solution and
nonoscillation-behavior of solutions.
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On Emden-Fowler equation
By

CHIU-CHUN CHANG (E#k 1)

Abstract. Consider the generalized Emden-Fowler equation
(*) ¥ +g(x)y" =0 in [0,0], where y=2n—1, with n>1 an integer and g(x)>0. In

this article we will review some results about existence, uniqueness of bounded positive
solution and add some new results about nonoscillation and asymptotic behaviour of solutions.

So that the whole theory will be fairly complete.
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1. Introduction

Consider the generalized Emden-Fowler equation

(1) Y +8@Y =0 e (0 c0)
where y=2n-1>1 and g(x) isassumed to be positive and continuous on [0,c0). We
also assume that the solutions of (1) are continuable to the entire non-negative real axis; say
under the condition that g(x) is locally of bounded variation [5].

In this article we will first review some results about existence and uniqueness of bounded
positive solution and give new results about nonoscillation of the solutions as well as the

asymptotic behavior of positive solutions. So that the whole theory will be fairly complete.

2. Existence

We seek bounded positive solution y of (1) with y(0) =0, so that the solution will
positive and increasing and tends to a positive constant. As in [2], we built such a solution by

first consider similar solution U_ on [i’ m} and take their limit. The existence of U is
m

quaranted by previous theory [9]. The uniform limit U_ =y (on compact intervals) will be a

bounded positive solution of (1) under the integral condition.

y+1

) J':g(x)dex <oo.

Theorem 1. Under condition (2), there exists a bounded positive solution of (1) with y(0)=0.
proof. The essential part of the proof is to show that the limit {/_ is bounded.

From the equation

@) U,m)=U (a)+ [ (1-a)g)U()dt,0<a<n,

we have



U,(m)<U, (a)+ [ 1g(t)Ul()dt,0<a<n,
SU (@) +U, (m) [ g(®)Ur () dt
U (@)+U,(m)-C- [ 1g(r)- z%l dt
=U (a)+U, (m)-C- ng(t)t%] dt

(2) implies U _(m)<U (a)+e U, (m)

foralarge (€ fixed number less than 1).

Hence U_ is a bounded solution.

3. Uniqueness

In considering the uniqueness problem of bounded positive solution of (1), we first state the

following Pohozaev identity [4].

3 G,(s) =(s—a)y“(s)—y(s)y'(s)+%(s—a)g(s)ym (s)

_ 2 pl7t3 (-a)g'®
B2 { 5 +————g(t) gy’ (t)dt

=2 [[0g®y™ (v
y+1

we assume that
y+3  (t-a)g’®)
2 g(?)

accordance with (2). We further assume that there exists a bounded positive solution y of (1)

is eventually of one sign and hence it is non-positive in

4 Q0=

with y(a) =0 so that the corresponding G (s) is positive in (a, o).
Theorem 2. If ((f) has at most one zero in (a, ), then G,(s) is positive in (a, o) for

any bounded solution y.

proof. It is clear from the facts that (Ja)>0, (Xx)<0 eventually, y isbounded and that



(s—a)y'(s) tends to zero.
We can now state the following uniqueness theorem.

Theorem 3. Under condition (4) there exist at most one bounded positive solution of (1) with

y(a)=0.

Proof. The essential part of the proof is the following comparison formula [3]. Let y,y, be

two positive solutions of (1) with y,(a@)= y(a)=0 and G (s)>0 in (a,oo), then

7+
) G, (x)>(<)(L) G,(x) In (a,e) forcases y'(a)>(<)y'(a).
Y y :
For the proof, we consider

©) Ln=G, (1)- [y;) (0 G,(1)-

Then L(a)=0 and

(7) L'(t)=—(y+1)(&) liy—‘—LJGy(t)-
y y

L(t)>0(<0) aslongas DN decreasing (increasing) which is true initially (near a) as can

y

be seen from the identity
® 'y=y'»)) = [ yy8)" =y ds.
If there is a point x, such that

9) !—‘:(xo) = %(xo), then from (8) we have

10) ¥ (x,) 2()y, " (x,).

But L(x,)>0 implies

(11) (xo _a)yl‘z (xo)_ylv(xo)y(xo)'i';—i_l(xo _a)g(xo)yIYH(xo)



> (<)(LJ (xo){(x0 —a)y" (%)= y'(%,)y(x,) +L(xo —a)g(x,)y™ (xo)} :
y y+1
or,

(D (%= @)y, (£,) =2, ()0 (%) > or < [y;] _ Gl = @)y, (5) = 3, (k)0 (6 }

As is well known that (x, —a)y, " (x,)=»,"(x,)y,(x,) <0, this leads to a contradiction

with (10).

Therefore, we have [ﬂj <0(>0) all the wayin (a,o0) forcases y,'(a)>(<)y'(a)-
y

Hence L(t) is increasing (decreasing) in (a,o0). But since G, (0)=0=G, (o) and

L(e0) =0, a contradiction follows. Hence we have proved the uniqueness theorem.

4. nonoscillation
To guarantee the nonoscillation property of equation (1), we assume (2) and (4) for each
fixed a.

Theorem (4). Under condition (2) and (4), The equation (1) in nonoscillatory.

proof. Let y be a solution of (1) with infinite many zeros a,,q,,...a,..., in increasing order.

On [a,,c] there exists a unique bounded positive solution y, with y, (a,)=0,and
G, (x)>0 on (a,,~).

As in the proof of Theorem 3, by considering the function

L(t)=GV(t)—(lJ ()G, (1) in (a,,%),
. ; ,.

v

we can show that the case y'(a,)< y,'(a,) must be excluded for otherwise ¥ will be
Y

increasing all the way violating the oscillation property of .



Since Q <0 eventually, we may assume g'<(0 and y'(a,)<y'(a,) for m>v because
as is well known that y'z (s)+ —2Tg(s)y7” (s) is decreasing.
Y+

QO <0 eventually implies G,(x) 1is eventually decrensing and positive. Hence we have

(12) avyv'Z (a,)< avy’2 (a)<C,v=12,...

From the equation

y.(0)=y,(a)+ [ (s—a)g(s) y/(s)ds+(x—a,)y,'(x),
we have

(13) 3,(2a,)=0+ [" (s—a,)g(s)- y!(s)ds +a,y,'(2a,) , and

[ (s=a)g(9) y()ds < 3, Qa) [ (s-a,)g)y, @) s —a)] ds

1

=y,(2a,)[" (s—aﬁg(ﬂ[y;(a»(s—ayﬁ} ds

<y,(2a, ))[yv'(av)(zav - ay)i] ["(-a)" gls)ds.

(12), (13) implies
17 bad 1
(14) ISI:yV'(aV)aVZ:I J:g(s)s 2 ds+5
y-l 1
<C"-e +5 for v large.
This will leads to a contradiction if € is sufficiently small. Therefore equation (1), is

nonoscillatory.

5. Asymptotic behavior of positive solutions
As to the asymptotic behavior of positive (increasing) solution, we assume that it is not of the

order x because it is quite known to be the case [§]



rgsyds<°o.

So, the cases we consider below satisfy

y+!

ngsyds=°o and rgSTds<w.

Let w=w,then w satisfies
y(s)
15) w(s)=2 0= _ o 0<w(s)<1.

By integration,
(16) J‘ngyr"'ds - J-XMdS =w(a)—-w(x)=1-w(x)>0,
a a S

if y(a)=0.

First, we show that for unbounded positive solution y,

we must have lim I “sgy”ds = oo,

X—oo 9d

For from the equation
y(x)=y(a)+ [ sgyds +x'(x)
< y(a)+y(x) [ sgy"ds+xy'(x)

<y(a)yte y(x)+xy'(x),if '[jsngds is bounded

and a is sufficiently large, then ISM+G + 22
y(x) y

This would leads to case y(x) ~ x . [8]
Hence (16) means tsat

x «w(l— w
j sgy”'ds md I —(—)ds is of the same infinite order.
S

For (15), we have another expression



(17) w(x)= Dy-(x-a)y” —-(x-a)gy™

1
y*(x)

=- yzix) ) {(y— 1)(w—%)+Q(S)}gy’*'dS-

Since ) <0 eventually, this equation shows that there is no local minimum of w with

value less than % If w< % eventually, then from the equation.

(18) y(x)=y(a)+ Lx(s —a)gy’ds+ xy’(x), we have

pad)
(19) ¥(x)< p(a)+y(x) [ gt * dt+y.w(x)
1 L : .
< y(a)+e y(x)+ Ey(x) , This implies y is a bounded solution.
Therefore, we conclude that w must eventually large than%. Have we have.

1 d—w

(20) Ixsgy’ “ds > I wi=w) ds >— I
A A

a

ds, a large, or rsgy7 “ds > % I x(— lr.ur _]) ds
a a u

su’ 1

u’ 2(y-1)

with y=us,l—w=— u'7’(x).

X _ X . — 5
On the other hand J- sgy”ds = Lgsyur 'ds = u” '(a)LgSy ,since u is decreasing.

< u"'(a).[jgs’ds.

ds eventually.

X

g8

a

Hence we have L gs’ds > C u'’ (x),or y (%)=

4

Therefore, we have proved one side of the following theorem about the asymptotic behavior of

unbounded positive solution of equation (1).
- o 2
Theorem. Any unbounded positive solution y of (1), with J' gs’ds = oo, I gs? <oo, is



X
of the asymptotic order —————.

([[gs7ds)™

proof: we will prove the inequality <.Let y, be the bounded positive solution, then as before

Yo

y+1
wehave G (x)< (lJ Gyo (x),a<x<oo,

Let x, large fixed and consider f(x) = G, (x)— MG}," (x),M = (l)y+l (x,).

0

7

Since y is an unbounded positive solution , (—ZJ >0 and
Yo

0

f(x)= Q[gy’” -~ ng07+1]= ngOM (x) (yl) (x)—M |<0 form x, on.

Hence f tends to a negative limit —k,0 <k < .

So, G,(x)- MG, (x)S—%k on (x,,°0),some x,.

k
Since G, (x) = 0,x — co,wehave G, (x) < 5 < 0 for x large.

2 1 ’ : —1
s—a)gy" <yy—(s—a)y or 2 (s—a)g S%u{l—w)si(l—w).

This means
y+1 y+1
Then following the proof from equation (20) on (with reverse inequality) we get the inequality

uy -l < .x_l_
I gs’ds
The proof is completed .

Remark. We remark that for unbounded positive solution y , the corresponding Gy (x) must

tends to -0 as x — oo, because the M considered in the proof may be any large constant.
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