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Abstract: For any two points P = (p,p® ... p™)),Q = (¢V),¢@),...,¢™) of
R™, we define the crisp vector I;é = (¢ —p), @ —p@ ¢ _p™)) = Q(-)P.
Then we obtain an n-dimensional vector space E™ = {I;a |VP,Q € R"}.Further,
we extend the crisp vector into the fuzzy vector on fuzzy sets of R™. Let 5, E be
any two fuzzy sets on R"™, define the fuzzy vector E:;3= Do E, then we have a

pseudo fuzzy vector space.
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1. Introduction

In (1,2, 4, 5, 6], fuzzy vector space is discussed theorectically. In Katsaras and Liu
(2], E, denqtes a vector space over K, where K is the space of real or complex
numbers. A fuzzy set F in F is called a fuzzy subspace if (i) F+ F C F. (ii)
AF C F for every scalar A\. Katsaras and Liu introduced the concept of a fuzzy
subspace of a vector space. In Das [1], E denotes a vector space over a field K. Let
I =10,1] and I be the collection of all mappings of E into I. We say u € IZ is a
fuzzy space of E under a triangular norm T'. (1, Definition 2.1 ), or simply a T-fuzzy
subspace of E if Vr,y € E, Va € K, pu(z +y) > T(u(z), u(y)), and p(azr) > u(z)
respectively. In Lubczonok [5], a fuzzy vector space is a pair E = (E, u) where E
is a vector space and p : E —» [0, 1] with the property that for all a,b € R and
z,y € E, we have u(ar+by) > p(z) Au(y). In Kumar [4], V is a vector space over F
where F is the field of real numbers. A fuzzy subset y of V is called a fuzzy subspace
if it has the following properties. (i) u(vi — v2) > min(u(v1), u(v2)) Yvy,v2 € V.
(ii) u(av) > p(v) Va € F,v € V. There are various definitions of fuzzy vector
spaces in these papers. All of them use the fuzzy set u over a crisp vector space
E, or p: E — [0,1] to define fuzzy vector. These are different from our work.
Pick two points P = (p1,p2,***,Pn), @ = (¢1,92,-*,4qn) in R™ to form a vector
P_Q)z (91 — P1,92 — P2, **,4n — Pn)- Then extend this vector to the fuzzy vector
ﬁ—é = Q 6 P formed by fuzzy sets I~’, é on R". This is very useful compare to the

abstract one defined in [1, 2, 4, 5].

Section 2 is a preparing work. Section 3 is the extension of the crisp n-dimentional
Euclidean vector E™ to the pseudo fuzzy vector space. We talked in Section 4
about the length of the fuzzy vectors and fuzzy inner product. Section 5 is a more

discussion.



2. Preparation

In order to consider the fuzzy vectors of fuzzy sets on R", we ought to know the
following. First, from Kaufmann-and Gupta [3], and Zimmermann [8], we have the

following definition.
Definition 2.1

(a). A fuzzy set A on R = (—00,00) is convex iff every ordinary set A(a) =

{z|p-(x) > a} Ya € [0,1] is convex. Thus A(a) is a closed interval in R.
A
(b). A fuzzy set A on R is normal iff $¥R pilz)=1.

We can extend this definition to R™, say if D is a fuzzy set on R™ with membership

function
uB(z(l),x(z), cz™) €0,V (=W,z?,...,2™) € R (2.1)
then we have the following definition.
Definition 2.2. The a-cut of fuzzy set Don R",0 < a <1 is defined by
D(a) = {z®,z@,...,2™) | uz(z™,2?,...,2™) >}  (22)
Insert Fig. 1 here.

Definition 2.3.

(a). A fuzzy set D on R™ is convex, iff for each a € [0,1], every ordinary set
D(a) = {(z®,z®, ..., z(™) [ug(w(l),x(z),. .,z™) > a} (2.3)

is a convex closed subset of R".



(b). A fuzzy set D is normal iff

\"% I*"“"(-T(l),-'z(z),...,x(n)) =1 (24)
(:B(U,z(?)’.“,z(n))ER" D

Let F, be the family of all fuzzy sets on R™ satisfying Definition 2.3 (a), (b).
Remark 2.4. When a = 0, then the a-cut is

{(zW,2?®,... z™) |u5(x(1),x(2), ..., z™) > 0}. (2.5)
Let D(0) be the smallest convex closed subset in R™ satisfying

{(W,2®, ..., ™) | uz(zV,z®,...,2™) > 0} (2.6)

( see Example 4.11).

Definition 2.5. ( Pu and Liu [7] ) If the membership function of a fuzzy set

e, 0<a<1;onRis
a, T=a

ﬂaa = 0, x¢a (2-7)

then we call a,, a level a fuzzy point on R.

Let Fj(a) = {as |Va € R} be the family of all level « fuzzy points on R satisfying
(2.7).

Definition 2.6. If the membership function of a fuzzy set (a(),a®,...,a{™),,0 <
a<l;on R"is
gV @ M)

.....

_ {a, if (20,20, ... (M) = (a, a®), ... a™) (2.8)
1o, elsewhere

then we call (aV,a®, ... al™),, a level « fuzzy point on R™.
Let F*(a) = {(a®,a®,...,a™)q|V(a®,a®),...,a™) € R"} be the family of
all level a fuzzy points on R™ satisfying (2.8).
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For every a4 € Fl,,1 (), let aq = (a,a,...,a)q, then a, can be regarded as a special
case of the level o fuzzy point (a(¥),a®,...,a(), degenerates to a(¥) = a!» =

... =a(™ = q Thus

-

' (1) ,(2) (n)) =
a, \x\ T = (a,a,...,a
K(a,a,...,a)a (z(l),a:(Z), - ,:v(n)) = { 0, gz(l),xm, . ’x(n)g # ga, a,... ,a;

g @,5D, . ™)
(2.9)

Remark 2.7 We can regard a, as a fuzzy set on R as the form in (2.7) or it can also
be regarded as a fuzzy set on R", such as a, = (a,4,...,a)q in (2.9) according to

how we want it to be. That is 0; = (0,0,...,0)1, and a, = (a,@,...,8)q,a € [0,1]
From Kaufmann and Gupta [3], for D, E C R", k € R, we have

D(+)E = {(z +y®,2® + 4@, 2 4 4™),

IV(zD, 2@, ..., z™) e D, (V,y?,...,y™) € E}

D(-)E = {(z® —y®,z® — 4@ gl —y™),
|V($(1)1 x(2)7 AR | x(n)) e D’ (y(l)’y(2)7 *. ,y(”)) e E}
k()D = {(kzV, kz®,. .., kx()|¥(cM,z?, ..., z™) € D}
The a — cut of D @ Eis D(a)(+)E(a).
The a — cut of D © Eis D(a)(-)E(a).

The a — cut of ky ® D is k(-)D(a). (2.10)

3. The extension of the crisp n-dimentional Euclidean vector space E™

to the pseudo fuzzy vector space SFR
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In crisp case, for P = (p(),p@ . p™) @ = (4V,¢® . ™) 4 =
(aM,a®, .. aM), B = (M p@ .. b(M) € R" and k € R, we can define the
—

__)
operations ”+,-” for the crisp vector PQ, AB in E™, the n-dimentional vector

space over R", by : .

AB= (6™ — a® p® _q@)  ym) _ 4(m)
(3.1)

D — 1
PQ= (g —pM,q® — p® gt _ pm)y

AB + PQ=(b® 4 ¢ — g1 _ (1) p@ 4 ¢@ —a@ _p@

b g™ — o) _ p(m))
—_
k- PQ= (kq'V) — kp™) kg® — kp® .. kg™ — kp™)

— —
Let O = (0,0,...,0) € R™, then OP= (p(l),p(z),...,p(")) and OO= (0,0,...,0) €
E™,

Let E™ be an n-dimentional vector space over R. By Definition 2.6, Fr(l) =
{(a®,a®,... aM); |V (aM,a®@, ... a™) € R"}. This is a family of all level 1

fuzzy points on R"™.

We notice that there is an one-to-one onto mapping p between

(a®,a® ... a™) e R" and (aM,a®, .. LaM) e F}(1). ie.

p: (aM,a® . a™)e R® s p((a,a® . ,a™)) = (aV),a@ . .,a™),

€ F;(1)
(3.3)
2 5@ gy

x(l),x(2),...,x(")) =C

and p (@) a(®

a(n))(

,,,,,,,,,,

(3.4)

where Cy4 is the characteristic function of A.
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Let P = (pV,p@, ... p™)y, Q@ = (¢M,¢?,...,¢™); € F2(1). From (3.1), (3.3)

we have the following definition:

-

—

~ o~

PQ= ¢V —pM ¢@ —p@ ™ _pM), =Qo P (3.5)

We call }Sé, a fuzzy vector.

—

—
Let O = (0,0,...,0); € F*(1), then OP= (p(,p?, ..., p(™);, 00=(0,0,...,0);.

—
Let FE™ = {PQ |VP,Q € F}(1)} be the family of all fuzzy vectors on F;'(1).
From (3.1), (3.5) we can have the one to one onto mapping p between E™ and FE™

by:

——)
PQ= (g™ —pM,q¢® —p®,. .. g™ —p) (e E) (3.6)

_’ :—f*\r
— p(PQ) = (¢ = p1),q® — p@ . ¢t —p™)), =PQ € FE"

—)
Since (p(1),p3), ... p(™) =OP, hence the point in R™ can be regarded as a vector
—

in E®. Also since (p(V),p®, ... p(™); =OP. hence the level 1 fuzzy points on R"
can be regarded as the fuzzy vectors in FE™. Therefore the mapping in (3.3) is a

special case of the mapping in (3.6).

The operations ” @,®” of the fuzzy vectors in FE™ has the following property:
Property 3.1. For P = (pM,p®,...,p™);, @ = (¢V,¢P,...,¢™);, 4 =
(@®,a@ ... a™)y, B= (D@ . . bM™) € FE® and k # 0 € R we have

= (b 4 M _ g ) 5@ 4 o) _ @) _p@ (3.7)

b(™ 4 g — q(7) _p("))1

(2°) k1® ﬁ@z (kq(l) - kp(l), kq(z) - kp(z), ey kq(") — kp("))l (3.8)
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Proof.

(1°) pey o (21,2, 2

AB®PQ

- sup {/J‘ 1 1 2) 2) (n) _q(n) (:IJ
=g D gy, j=1,2,m a6 el b —a(n)),

.....

= sup | (
() ,y@) . () (61 -a (1) () —a(3),....p(") —aln)),
2(0) _ gy (m)

— 1, if 29 — q0) 4 p) = b — @) j=1,2,---,n
_ 1) (2
T (1) 4 q(1) _a(1) _p(1) 5(2) 4q(2) _a(2) _p(2) | b(n)+q(n)_a(n)_,,<n))(z( ), 2@, M),

V(zD, 23, ... 2(M) e R" (3.9)

_ —

ie. AB® PQ

(3.10)

(2°) Similarly, we have (2°). In the case k = 0, it follows by Property 3.7 (7°).

From Property 3.1, (3.2), (3.6), (3.7) - (3.8), we have

-— —
p(AB + PQ)
—k —
=AB & PQ
' - —
= p(AB) @ p(PQ) (3.11)

—

o(k: AB) = k10 AB= p(k) © p(AB)

By Remark 2.7, k = (k,k,---,k). Hence by (3.3), p(k) = p(k,k,---, k) =
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(k,k,...,k)1 = ky. From (3.6), (3.11), since E™ is a vector space over R, therefore
FE™ satisfies the conditions to be a vector space too. We call FE™", a fuzzy vector

—

space over Fpl(l) and call PQ (€, FE™) a fuzzy vector.

—

Remark 3.2 The zero fuzzy vector 00= (0,0,---,0); in FE™ will be obtained

—_ — ,tz.,
from the zero vector OO= (0,0,---,0) in E™ by mapping OO to OO
Obviously, there is an one-to-one mapping between R and FI}(I) such that a €

R +— a; € F;(1). Thus, we have

Property 3.3 The fuzzy vector space FE™ over Fz}(l), is equivalent to the vector

space E™ over R, denoted by E™ ~ FE™.

Since the a-cut of the fuzzy point P = (M, p@, ... p(™); in Fr(1) is
(M, p®, ... p™)Va € [0,1], hence it can be regarded as a special case in F,,
i.e. we can take F;'(1) as a subfamily of F, i.e. F;}(1) C F.. Therefore we can ex-
tend the fuzzy vector space FE™ to F.. And have the following definition similarly

as in (3.5).
Definition 3.4 For X , Ye F,, define

—

XY=YoX (3.12)

—

We call X }~’, a fuzzy vector.

P
Let SFR={XY=Y 6 X |VX,Y € F.}.

— —

—~ o~~~

Property 3.5 For XY ,WZe SFR,

— —

XY=WZ iff YoX=ZoW (3.13)

Proof. It follows from Definition 3.1 of fuzzy vector.
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— —

~ o~ A

Property 3.6 For XY ,WZec SFR, k € R,

- = =2 e e
(1°) XY ® WZ=AB,here A= XoW,B=Y & Z.

-

— 3

(2°) k10 XY=CD, here C=k, 0 X, D=k, 0Y.

Proof.

(1°) For each a € [0,1], from (i), (ii), (iv), (v) in (2.10), the o-cut of X¥Y=Y © X,
D —
WZ=Z oW are Y(a)(-)X(a), Z(c)(—)W () respectively. Let

D ={(zW,2®,...,2™) € X(a), yM,y®,...,3y™) € Y (a),

(2,23 . M) e Z(a), (w®,w?®,...,w™) e W(a)} 19
Therefore the a-cut of X'_l); ® ﬁ?g is
(Y () (=) X(a))(+)(Z(a) (—)W ()
(D — 20 4 2O _ (D @ _ 5@ 4 @) _ @
Y™ — 2 4 ) _ 4™ | D}
(D 420,y 4@ () 4 )
D, y®,...,y™) € Y(a),(z®,2®, ..., 2™) € Z(a)} 619

(@ +w®, 2@ 4@ () 4 gy

| (z®,2®, ... 2™ € X(a), (w®,w®,...,w™) e W(a)}
~ o~ ~ o~ =2
which is the a-cut of (Y @ Z)© (X @ W) =AB

(2°) Same way as in (1°).
— — —

Property 3.7 For )?17, WZ, UVe SFR,k,teR
-’

_ == = - =

(2°) (XY @ W2)o UV=XY &(WZ & UV)
10



pupd popd
(4°) k1 ® (4,0 XY) = (kt),0 XY
— — —a —

Proof For each a € [0, 1], and from (iv), (v), and (vi) in (2.10),

—  —

(1°) The a-cut of XY o WZ= YoX) ®(Z- W) is

¥ () (=) X (@) (+)(Z(a)(=)W{a))

= (Z(a)(=)W(a)) + (Y (2)(-) X () (3.16)

which is the a-cut of WZ @& XY. Therefore (1°) holds.

(2°) The proof is similar to (1°).
— — —

(3°) Since OO= (0,0,---,0);, the a-cut of XY & 00= (Y & X) & (0,0,...,0),
-——’
is (Y(a)(=)X(@))(+)(0,0,...,0) = Y(a)(—)X(c) which is the a-cut of XY.

popd 2 =
Therefore XY ® O0O=XY
—

(4°) For each a € [0,1], the a-cut of k1 ® (110 XY) = ko (t 0 (Y 6 X))
is k()N Y(a)(-)X(a))) = (kt)(-)(Y(a)(—)X(a)) which is the a-cut of

—

(kt)1() XY
(5°) Similar as (4°)
(6°) Similar as (5°)

(7°) From (v), (vi), for each o € [0,1], the a - cut of 0,0 XY is (0,0,...,0) which
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—

is the a - cut of OO

In order to be a fuzzy vector space, it needs the followings (8°), (9°) hold:
— - — — —_  —
(8°) For any XY e SFR, there exists WZe SFR, such that XY & WZ=00 (3.17)
— — —_

—)
(9°) (m+n)1® XY= (m0 XY)®(n1© X¥) V XYe SFR (3.18)

Now since FE™ is a vector space, (3.17), (3.18) hold without any question. If X,Ye
> 2 =L 2
F, ,but ¢ F}}(1) and XY#00,WZ#0O . By (iv), (v), for each a € [0, 1] the « -
- —
cuts of XY and WZ are Y (a)(-)X (a) # (0,0,...,0), Z(a)(—)W(a) # (0,0,...,0)
— —

respectively. The o - cut of XY @ WZ= (Yo X)® (Zo W) is

(Y (@) - X (@))(+)(Z(a)(-)W (a)) # (0,0, ...,0) (3.19)

i.e. there exists no V%e SFR such that XY @ WZ=00 . i.e.(3.17) does not hold
in this case. |

For X,Y € F, but ¢ F2(1), from (i), (ii), (iii), (iv), (v) and (vi) in (2.10), the o -
cut (0<a<1) of(m+n)1®g7

=(m+n)10(Y 6X)is

((m +n)Y())(=)((m + n)X(a))

= {(m +n)y® — (m +n)z®, (m + n)y@ — (m +n)2?, ...,
(m+n)y™ — (m +n)z™) | @V, 2®, ..., ™) € X(a),

(D, y?,...,y™) e Y(a)}. (3:20)
popd oy ~ ~ ~  ~
However, the a - cut of (m10 XY)® (710 XY)=(m;0(YeX))e(n o (Yo X))
is

m(Y (a)(=) X (e))(+)(n(Y () () X (o))

12



= { (m(y(l)' _ ﬂE(l)’) + n(y(l)" _ x(l)"),m(y(z)' _ j,,(2)’) + n(y(z)” _ x(Z)”), L
m(y(")l —_ x(n),) + n(y(".)” — x(n)”))

(D, 2 g™ (gD @7 g

€ X(a), M, y@, . g™, D",y Ly eY(a)} (3.21)

Therefore (m+n)y@ — (m+n)z@ # m(y@ —z@) ) 4n(y@" —z0)"Y if (2 £ 0’
or £") or (y@) # y@" or y"). Hence (3.18) does not hold.

Definition 3.8. The SFR which satisfies Property 3.7 (1°) — (7°) is called pseudo
__—-*

fuzzy vector space over F,}(1), and call XY (€ SFR), a fuzzy vector.

Then we have E™ ~ FE™ C SFR. i.e., we can regard SFR as an extension of E™,
but only obtain a pseudo fuzzy vector space in stead of a fuzzy vector space. Its

addition @ and multiplication ® are followed by Property 3.4.

fonsd )
Property 3.9 For X;Y;€ SFR, agj) €F}(1),j=12,---,m

fons & fopyd ~ X popd

({0 X171) & (070 XoV2) @ @ (™0 Xm¥m) =48 (3.22)

here A=C1®C3® -+ @Cm, B=D1®D;®---® D, and C; = a? 0 X, D; =
a0Y;,i=12,...,m
Proof. It follows from Property 3.6 (1°), (2°) and mathematical induction.
Property 3.10 For Y € F,, but ¥ ¢ F7(1),Y # O, and X € F,
(1°)
(2°)
(3°)

-

oY #0
—

Y+00

=

l
Ozl

Y=YoX #0

ol
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—

(4°) YX=XoY #0

!

o)

Proof.

(1°) Since Y'# O, the a-cut of Y is Y(o) # (0,0,---,0)Va € [0,1]. By (ii), (v) in

(2.10), the a-cut of Y © Y is

Y(a)(=)Y(a) = ((sV) =M @ @) sn) _¢(n)

! (3(1), 3(2)1 R S(n)), (t(l),t@), o '1t(n)) € Y(a)) 75 (Oa 0’ sy 0)

Therefore Y 6 Y # 0.
(2°) Follows by (1°).
(3°) Similar as (1°).
(4°) Similar as (1°).
Remark 11.

(2) FY = (pM,p@, ... p™); € F(1),

then ? O }7 = (p(l) - p(l),p(Z) - p(2), oo ,p(n) _p(n))l = (0, Oa .

-2 2
Hence YY=00.
— —

R
(b) It is trivial that 0O & O0=00.

(3.23)

..,0)1.

_—)
(c) Let SFV = {PX |VP = (p),p@, ... ,pM);,€ FP(1),X € F.}, then E" =

FE™ Cc SFV C SFR.
Property 3.12 For Xe F,
(1°) 0,0 X =0
2°9) O X=X

Proof. It is obvious.
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Example 3.13. n = 2. A car carrying a rocket departs from point Q = (1,2)
passes through point S = (5,8), arrives at point W = (10,15), and launches the
rocket from there. Suppose its target is located at Z = (100,200). Chances are the
rocket will not hit at Z exactly. Instead it would probably drop in the vicinity of
Z. Let

0((100, 200), 1) = {(z,y)|(z — 100)% + (y — 200)2 < 1} (3.24)

and the point hit is Z, (Z € F.) with membership function

_ [1-(z-100)2 - (y—200)2,  if (z,y) € O((100,200), 1)
ux{z,y) = { 0, if (z,y) ¢ 0((100,200),1)

The a - cut (0 < < 1) of Z is

(3.25)

Z(e) = {(z,y) | n-(z,y) 2 a} = {(z,y) | (z ~ 100)* + (3 — 200)> < 1 — a} (3.26)

If we choose the route from base to target to be Q - S — W — Z, then we have
the crisp vectors 59: (4,6), ﬁf': (5,7), Vﬁ: (90, 185). So the crisp vector from
_>
Qto 7 is é—g' + §I7V + WZ=(99,198). And the route in the fuzzy sense is
Q=(1,2)1—8=(58); > W= (10,15 — Z (3.27)

—

with (3. 25) as the membershlp function of Z. We then have fuzzy vectors QS=
(4 6)1, SW (5,7)1 and WZ Z ©W. From (3.25), the membership function of

WZ is
b (2,y) = p(z + 10,y + 15)
w2z
_ 1= (@ —90)2— (y—185)%, if (z — 90)2 + (y — 185)? < 1 (3.28)
0, elsewhere
The fuzzy vector from base Q to target Z by Property 3.4 (1°) is
—) ——) —) _)
QS oSWeWZ —QZ , with membership function
u::(z,y) = uz(x +1,y+2)
Qz
- { 1—(z-99)% - (y—-198)%, if (r-99)+ (y—198)2< 1 (3-29)
0, elsewhere
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Let Z = (100,200), U = (99.5,200.5), V = (100.2,199.7) € O((100,200),1).
Insert Fig. 2 here

As shown in Fig. 2, the crisp vectors from Q to Z,U,V in O((100,200),1) are

— — —

QZ= (99,198), QU= (98.5,198.5), QV= (99.2,197.7) respectively. The grades of
—)

membership of these crisp vectors belong to fuzzy vector QZ are

— —
b (QZ)=p_,(99,198) =1, u_, (QU) = p_, (98.5,198.5) = 0.5,

Qz N QzZ Qz QLZ
b (QV) = pu__ (99.2,197.7) = 0.87
Qz ez

4.The length of fuzzy vectors in SFR and fuzzy inner product.

(I] The length of fuzzy vectors in SFR

Let P = (p(1,p®, ..., p(M),Q = (¢M,¢@,...,¢™) € R". The vector I;é in
o —

E", PQ= (¢ —pM,¢® —p®, .. ¢ — p(™) = Q(—)P has length | PQ | =

— ~
\/ > i-1(¢D —p)2. Called this, the length of the vector PQ. Now let P =
(W, p@, ..., p™); and Q = (¢, ¢@,... ¢™); € F7}(1). Since FE™ =~ E™, we

—
can define the length of fuzzy vector PQ= (¢'V) — p() ¢ — p@ ) _ p(n)),
~Z — - .
by | PQ|=| PQ| = /L) 1(a¥) —p)*.

Since FE™ C SFR, we may extend this thought to SFR. Similar to the fuzzy
—

vectors in FE™, for the vector XY= Y © X € SFR, its a-cut 0<a<lis

Y(e)(-)X(a)

= {(yM -z, 4@ — z@ ym) _ (™)

(z®, 2@ 2™) e X(a), (yD,y?, .. Ly™) € Y(a)} (4.1)

where X (a),Y(a) are the a -cuts of X,Y, respectively. For each point Px(a) =
(1,23, M) € X(), and Py () = (y1,y®@,...,y™) € Y(a), the crisp
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—-ﬁ
vector Px(a)Py(a)= (yV) — 20,y — 2@ 4™ _ () has length

| PX(a)PY \JZ(g(ﬁ) — ;1;(.7))2 (4.2)

which is the distance between two points Px («) and Py («). For any (z(1),z(®),. .. z(™) ¢

X (a), denoted simply by (z)) € X (a), let

—
d*(Y(a)(=)X(a)) = sup | Px(a)Py(a) |
(z)eX (@),(y)€EY (a)

_ sup \J Z(y(]) - x(f))2 (4.3)
(m(”)EX(a) (y9))€Y ()

Since X,Y € F,, and by Definition 2.3(a), X(a),Y(a) are convex closed subsets of

R", so d* (Y (a)(—)X(a)) exists. And d*(Y(a)(—)X()) is the longest one among

all the distances between points Px () in X (a) and Py () in Y (), which makes

sense for using this as the distance between X (a) and Y{«). Therefore, we have the

following definition.

— —
Definition 4.1 For XY ¢ SFR, define the length of XY to be

XV | = sup d*(Y(a)(=)X(a)) (4.4)
0<a<l1

—

Property 4.2 For XYe SFR, let the O-cuts (a-cuts, o = 0) of XY be
X(0),Y(0) by Remark 2.4. Then there exist (x )(O) (2)( 0),. ,mS,?)(O))
X(0), (s (0),452(0), -,y (0)) € Y (0) such that

u“f?l*: sup ' (¥(a)(-)X()) \JZ(y(“(m P (0)2  (4.5)

17



Proof. Let the a-cuts (0 < o < 1) of X,Y be

X(a) = {(zM, 23, ... z()] u;(z(l),x(z), ..,z™) > a} and

Y(e) = {(™ 9@,y (v, y®,...,y™) 2 a}. (4.6) It
is obvious that X (a) C X(8),Y(a) CY(B) if0<B<a < 1.

Since d*(Y(a)(—-) X () = sup \J Z(y(ﬂ — z()2
(z0))€X(a),(yD)€EY ()

4.7)
we have  d*(Y(a)(—)X(a)) <d"(Y(B)(-)X(B)) VO0<B<a<l

(4.8)

So
sup d*(Y(a)(—)X(a)) = sup \JZ(?J“) 0) — z()(0))?

0<a<l (z(9(0))€ X (0),(y)(0))€Y (0)

(4.9)

Since X,Y € F., by the definition of F., we know that X (0),Y(0) are con-
vex closed subsets of R™. Hence there exist (x(l)(O) x(2)(0), . ,:cm)(O)) €
X(0), (yﬁ’(O),y,‘ﬁ”(O), e ,yf(;?)(O)) € Y(0) such that

| XY [ = sup d"(¥(e)(-)X() Jz(y‘”(m zR ()2 (410)

Example 4.3. In Example 1, the rocket eject at W takes the route Q = (1,2) —
S = (5,8) — W = (10, 15), aimes at Z = (100,200). The membership function of

fuzzy target Z is

(z,1) = 1 - (z—-100)% — (y — 200)2,  if (z — 100)2 + (y — 200)2 < 1
4 0, elsewhere
(4.11)

18



=

We obtain fuzzy vectors QS (4,6)1, SW (5 M1, WZ and QZ The former two
have lengths | QS [* = m 7.21, and | SW |* = /52 + 72 = 8.6 respectively.
As to the length of WZ since for each « € [0, 1], the a - cuts of W,Z are W(a) =
(10,15), Z(@) = {(z,y)| ( — 100)* + (y — 200)2 < 1 — a}. respectively.The longest
distance between points P, ,, = (10,15) € W(e) and P, ,, = (z,y) € Z(o) is

d*(Z(a)(—=)W () = /(100 — 10)% + (200 — 15)2 + V1 — a
= /42325 + V1 —a =205.73+ V1 -«

(4.12)

Hence by Definition 4.1 | WZ I* = sup d*(Z(a)(—)W(a)) =206.73

0<a<l1

A

1

~

Similarly, we can calculate the length of QZ: For each a€ [0,1], the a - cut of Q
is Q(a) = (1,2), s0

d*(Z(a)(-)Q(a)) = V(100 — 1)2 + (200 — 2)* + V1 —

(4.13)

=+/49005 + V1 —a=221.37+V1 -«

—

Therefore | QZ |* = sup d*(Z(a)(—)Q(a)) = 222.37
0<a<l

Remark 4.4. By Cauchy-Schwartz inequality

(a1by + asby + -+ + anbs)? < (a2 + a2+ ---+a2)(BE+ b3+ +b2)  (4.14)

we have
n
Zanj < IZan]I < (4.15)
j=1 j=1
Therefore
n n n n n
Za§+2b§+22a,-bj52a§+2b§+2 (4.16)
j=1 j=1 j=1 j=1 j=1
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i.e.

\JZ(a,+b 2<J2a +\JZb? (4.17)

~

—)
Property 4.5 For XY ,UVe SFR,ky € Fy(1),k #0

'~<z

= ==
(1°) |k1®XY I* =kl - | XY |*
- L popd
(2°) | XYoo WZ|*<| XY |* +|WZ|
Proof

—
(1°) For each a € [0, 1], the a-cut of k10 XY=k, © (Y(—)X) is

k()(Y (@) (=) X ()
={(ky™® — kzM ky® — k@ ... ky™ — kz(™) (4.18)

(2D, 2P ... 2™ € X(a), @™, y@,...,3™) € Y(a)}
For each a € [0,1],d*(k(-)(Y(a)(-) X (c)))

= sup \/ > =1 (ky®) — kz()? = [k|d* (Y (a) — X (a)) (4.19)
(z0)eX(a),(yN)eY (o)
Therefore
popd
k10 XY [* =03up1 d*(k(-)(Y(a)(-)X()))
- (4.20)

=|k| sup d*(Y(a)(-)X(@)) = |k|-| XY |"
0<a<l
. =
(2°) From Property 3.6 (1°), XY ® WZ= AB= BoA, where A= XoW,B=Y@®
Z. For each a € [0,1], the a-cuts of X,Y, W, Z are X(a),Y(a), W(a), Z(a),
respectively, and the a-cut of B© A is (Y (a)(+)Z(a))(=)(X (a)(+)W ()
= {(y(l) -+ z(l) — _'L'(l) _ w(l)’ y(2) + z(z) = x(z) — w(z)’ .
Yy 4 2(0) _ g(n) _ w("))
|z, 23),... zt™) € X(a), (1@, y?,...,4™) € Y(a),
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(21,22 2M) € Z(a), (wD,w®,...,w™) e W(a)}. (4.21)

For each « € [0, 1], let
D = {(z(l)’x(z)’ MR ] x(n)) e X(a)’ (y(l), y(z)’ A ’y(n)) e Y(a)’ (4 22)
(21,23 2 e Z(a), (w?,w?®,. .., w™) e W(a)}

From Remark 4.4,

ij(aj )< \’Z + \| > (423
j=1 j=1

j=1
and inequality sup(A+B) < sup A+sup B, we have d*((Y (a)(+)Z(a))(-)(X (a)(+)W (a)))
=sup {Z;,"___l(y(j) + 20) — () — w(j))Z}%
D

< sup \/y_:;le(y(j) — z(1)2
(20))€X (a),(y))EY (o)

+ sup \/Zyzl(z(i) — w())2
(w)EW (a),(2())€Z(a)

= d"(Y()(-) X ())+d*(Z(e)(-)W (a)). (4.24)

—_—  — —

_)
By Definition 4.1, we have | XY @ WZ |* < | XY |*+ | WZ |*

4.2 The fuzzy inner product and the angle between fuzzy vectors for the fuzzy

vectors in SFR.

Corresponding to the equation

d'(Y(a)(=)X(a), V(e)(-)U(e))

n
(£)€X (@), (D)€Y (a),(uD) €U (), (v )eV (@) T

We define the fuzzy inner product as follows:
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—

—
Definition 4.6 For XY,U Ve SFR, define the fuzzy inner product of them to be
popd
XY @* UV= sup d'(Y(a)(-)X(a),V(a)(-)U(a)) (4.25)
0<a<l1

— —

Property 4.7 For XY,UVe SFR, let the O-cuts (a-cuts, & = 0) of X,Y, [7 V be
0),- )

X(0),Y(0),U(0), V(0), respectively. Then there exist (x )(0) x(z)( ( ) €

X(0),
WD (©0),42(0),...,55(0) € Y (0), (u(0),u(0),...,ulz) (0)) € U(0),
W (0),v2(0), ..., v (0)) € V(0) (4.26)
such that .
Xy o V= > 0RO - HONRO - RO @)

Proof Use the same way of the proof of Property 4.1 to prove it.

== 2 =L
Property 4.8 For XY, UV, WZe SFR,k, € F}(1),k >0,

—
(l)XY o* UV=UV o* xv.

oyl -= hupd == pupd —*
(2°) XY (UVeBWZ) < (XY O*UV)® & (XY o* W2Z).
— bopd —_ - bowd

(3°) k(XY ©* UV) = (k1® XY) o* UV=XY o* (k10 UV).

popd pop i3
(4°) XY " XY=| XY |*?
—

popd =2 oy
(5°) | XY 0* UV | < | XY |*-|

%u

Proof
(1°) By Property 4.7,

XV o U= Z(ym(O) — z$)(0))(v$ (0) — u)(0))

=t (4.28)

—

= Xn:(vfr’;’(f)) —ul(0)) (¥ (0) — z9)(0)) _0V o XV
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—_ = —

(2°) By Definition 4.6 and Property 3.6(1°), UV ® WZ=AB= Bo A, where A =
UeW, B=V®Z. The a-cut of BoAis (V(a)(+)Z(a))(—)(U(a)(+)W(a)).

Hence for each a € [0, 1], set

H = {(zW®,z?,.. L™ e X(a), (@M, y?,. y™) e Y(a),
w®,u® .. u™) e Ua), 0™, v, ™) e Via),
(w(l),w(z), L w™) e W(a), (z(l),z(Z),. ., 2™ e Z(a)}

E = {(x(l),ar(2), .. .,x(")) € X(ao), (y(l),y(z), ...,y(")) € Y(a), (4.29)
w®,u®, ... u™) e U(a), @D, v?,...,0™) € V(a)}

D= {(zM,z?®, ..., z(™) € X(a), D, y?,...,y™) e Y(a),

(w®,w®, ..., w) e W(a), (zV,22,...,2M) € Z(e)}

Then for each a € [0,1], d'(Y(a)(=)X(@)), (V(a)(+)Z(a))(—)(U(a)(+)W(a)))

=sup Z(y(j) — x(j))(v(j) + 200 ) w(j))
H .
Jj=1

n
Ss‘ép Z(y(j) — @) () — )
j=1

i=1

=d'(Y(a)(=)X(a), V(a)(-)U(a)) +d'(Y () (—) X (@), Z(e)(-)W (a))  (4.30)
By Definition 4.6, (2°) is proved.
(3°) Follows from Property 3.6 (2°), and (v), (vi).
(4°) Follows from Property 4.2 and 4.7.

(5°) For each o, where (0 < a < 1),

(W, 2@, ... ztM) € X(a), (@D, y@,...,y™) € Y(a),
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,v™) € V(a), (4.31)

WD, u®, .. ™) € Ula), 0D, 0@, ..

By Cauchy - Schwartz inequality,

i.e. — \Jzn:(y(j) - x(j))2\J zn:(v(j) - u(j))2

Jj=1 i=1
< Z y(]) - 51,‘(]))('1)(‘7) — u(]) Z(y(]) — x(.?) Z fv(]) — u(j))Z
Jj=1 J=1
(4.32)

Since sup AB < sup A sup B, if A > 0, B > 0. Then, we have
— d*(Y () (=) X (a))d*(V(a)(=)U(a)) < d (Y (a)(—) X (a)), (V(e)(-)U(e)))

< d&(Y(e) (=) X ())d*(V(e)(-)U(e)), Va € [0,1] _,
(4.33)
=2 -2 ~Z pupd 2 pupd
Therefore —| XY |[*- | UV |* < | XY ©* UV | < | XY |*-| UV |* Hence
popd o popd =2
| XY o* UV |<| XY |*-|UV |*.
popd popd
Remark 4.9. If | XY |* > 0, and | UV |* > 0, by Property 4.8 (5°)
popd popd
(4.34)

e
| XY |[*-|UV |*

. So we have the following definition.
——) —) —’)v - -
Definition 4.10 For X Y Uve SFR, if X Y;é 0,UV#0O0, define the angle 0

fopd -

between XY and UV by
(4.35)

Example 4.11 n = 2. Let us eject the rocket from (2,3) aiming at (6,8). The
rocket falls in the circle centered at (6,8) with radius 2. Also eject another rocket

aiming at (10, 4), the rocket falls in the circle centered at (10,4) with radius 1
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Insert Fig. 3 here

Then we have the membership functions of the fuzzy sets X , f’, U , V:

—J1 L ifzM =2 232 =3
u;(2, 3) = {O , elsewhere

w0, y@) = [ 40 -6 - ™ =87 ,if(y) - 6)? - (4@ - 8)? <4
¥ ’ 0 , elsewhere

1 if u® =4, u® =1
~(4,1) = ’ '
”u( ) {0 , elsewhere

e (0D, o) = { 1— (M ~10)2 — (@ —4)? ,if (v — 10)> ~ (@ —4)2 < 1
v M

0, elsewhere
(4.36)
The a-cuts, 0 < a <1 off,?,ﬁ,f/ are
X(a)=(2,3)
Y(@) = {@",y®) | P -6)* - (v -8)* < 4(1 - @)}
(4.37)
Ula) = (4,1)
V(@) = {(@®, @) [ (v" - 10) — (v - 4)> < (1 - )}
and
X(0)=(2,3)
Y(0) = {(y™M,y®) | (" - 6) — (v - 8)* < 4}
U(0) =(4,1)
V(0) = {(vV,v®) | (v - 10)* - (v®) - 4)? < 1}
By Fig. 3, we have
9 (0) = 2, z2(0) =3
W02 Vi W) =6+ £ (4.38)
w03 VA2 @) =g+ 10
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By Property 4.2, the length is

ZY 1= VD0 - 200 + 0D 0) - 2D =848 (4.39)

Similarly, we have

ua)(0) = 4, u) (0) =1
. " (4.40)
i (0) =10+ £ w0 =4+ £z
and the length
==
[TV 1 = V0D (0) - ulP(0))2 + 2 (0) — P (0))2 = 7.708 (4.41)
By Property 4.7,
pupd 2
XY 0* UV = (y5(0) - z82(0)) (v (0) — v (0))
+ @2(0) ~ 22 (0) 0 (0) ~ ud (0)) (4.42)
= 58.81125
= ptd
By Definition 4.10, the angle between XY and UV has
~2 g
cos = _{Y © U:,/ = 0.907996 (4.43)
| XY [*-| UV |*

—

In crisp case, the vector XY from X = (2,3) to Y = (6,8) is (4,5), and the vector
—_

UV from U = (4,1) to V = (10,4) is (6,3). Their lengths are |
jopd X 2

|UV | =6.708; XY - UV=4-6+5-3 =39 and

—

XY | = 6.403 and

—_— —

Xy . .Ov
cost = — —— = 0.908005 (4.44)
| XY |- | UV |
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Example 4.12 Let

p(zM), @)

X

{ 1— (21 -5)2— (z@ -10)?, if (¢ - 52+ (z? —10)2< 1

0, | elsewhere

p (yD, y@)
Y
14— (W -14)2 - (y® - 15)%}, if (¥ —14)2 4+ (¥ - 15)2 < 4
0,

elsewhere

p(u®), u®)
U

{ {4- (u®-8)2— (u® -2)2} if (u® —8)2+ (u® —2)2< 4

0, elsewhere
(1) (2
p (01, 0'2)

_ { 1- (oM =172 - (@ - 7)2) if (v —17)2 + (k@ = 7)2 < 1

4.4
0, elsewhere (4.45)

Insert Figure 4 here
We have the a = 0-cuts of X’, 17, 5', V:

X(0) ={(zM,2@)|(c® - 5)° + (® —10)2 < 1}

Y(0) ={(™,y?)|(y® - 14)2 + @ - 15)2 < 4}

(4.46)
U©) ={®,u®)|(u® - 8)° + u® —2)* < 4}
V(0) :{(v(l),v(z))l(v(l) 172+ (P -7)2 < 1}
As in Example 4.11, from Fig.4, we have
z3(0) =5 — A, T(0)=10- A
Y (0) =14+ A 4D(0) =15+ Ao i
0 =8~ A, uP0)=2- A |
v (0) =17+ o=, 0l(0) =7+ 2
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By Property 4.2, the lengths

XY | = V@) - 220))2 + 42 (0) - 22 (0))?

15
\/( + \/__)2 +(5+ o) = 13.20563

TV \/ “’(0) w9 (0))? + (02 (0) - u(0))?

2+ (5+ 15 )2 = 13.29563 (49
V106
and by Property 4.7,
popd pupd
XY o*UV

= (D 0) - z(0)) - (5D(0) - ufP(0)) + FD(0) — 2D (0)) - (v (0) - D (0))

15 9
=(9+ \/W)z (5+ \/1%)2 = 13.29563

(4.49)
oy popd
By Definition 4.3, the angle between XY and UV has
=2 2
cosf = i{Y . UK, =1 (4.50)
| XY |-|UV |
popd pupd
Hence § = 0.i.e. XY // UV .
pops
In the crisp case, the vector XY from X = (5,10) to Y = (14, 15) is (9, 5), the vector
- oy popd
UV from U = (8,2) to V = (17,7) is (9,5). The lengths | XY |=|UV | =10.2956

and the angle between them has cos¢ = 1. i.e. X Y /) U V.

5. Discussion

(A) The comparison of the second definition 5.1 of the length of the fuzzy vector
— —
XY e SFR and the length | XY |* of Definition 4.1.
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Method 2: Definition 5.1

e
(a) The length of the fuzzy vector XY € SFR defined as

—

| XV | = / 4" (Y (0) (=) X () de (5.1)

— —

(b) The inner product of XY,UVe SFR is defined as

v of 0= /1d'(Y(a)(—)X(a),V(a)(—)U(a))da (5.2)
0
(c-1) By Definition 4.1, since | )% |* = sgp a*(Y(B) — X(B)) > d*(Y(a) —
0<B<1
X (a))Va € [0,1], so we have o
-2 1 popd
XV P2 [ @ @)X @)da =] XY | (53)

Use the same way as in section 4, we can prove the following:

— —
(c-2) For XY ,WZe SFR,k € F}(1),k # 0, we have
pupd pupd
(1°) |k1© XY | = [k|]| XY |
=2 =2 =
(2°) | XY @WZ | < | XY |+|WZ |
This leads to the same results as Property 4.5.

- — —>

(c-3) For XY,UV,WZe SFR,k, € F}(1),k >0

!

— — —
(1°) XY &' UV=UV &' XY
-— —

)& (XY o' WZ)

—_ = — —

(2°) XY &'(UV e WZ) < (XY &

ISH

popd =2 bopd 2 =2 =2
(3°) k(XY @' UV) = (k1® XY)O' UV=XY &' (k0 UV)
These are the same results as Property 4.8 (1°),(2°), (3°). However, (4°),(5°) of
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Property 4.8 do not hold in Method 2. Therefore we can not define the angle

between two fuzzy vectors in SFR as in Definition 4.10.
(B) In P.Lubczonok [5], he defined the fuzzy vector space as the following:

Definition 5.2 ( Definition 2.1 in [5]) Fuzzy vector space is a pair E = (E, y)
where E is a vector space and p : E — [0, 1] with property that for all a,b € R, and
z,y € E, u(ax + by) > u(x) A u(y) holds. Then he obtained some results from this
in [5].

In this paper, we get fuzzy vector space FE™ over F}(1) through n-dimensional
vector space E™ over R, then extend this to the pseudo fuzzy vector space SFR
over Fpl( 1). It is strongly linked with E™ throughout this process, so it has more

practical usage.

Since E™ ~ FE™, we may consider the fuzzy vector space under the sense of [5].

The mapping

—

—
—PQ= (¢ —p,¢® —p@ . g™ —p™), € FE" (5.4)

. — —
is one-to -one onto. In [5], let E = E™ and y = v. For PQe E™, define v(PQ) =

p_, (@D —p®,q@ —p®, . g™ —p() = 1. Let
PQ
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ST= (t0 — 5,¢® _ 5@, 4™ _ ) ¢ E» and a,b € R. Then

— —
a PQ +b ST
a(g™ — p™) +b(t™ — s()) € E"Va,be R
— -, (5.5)
— (a10 PQ) & (b, ST)
a(g™ — p) + b(t™ — s™));, € FE™

Hence by the definition of v, we have

— —
v(a PQ +b ST)
=u (a(q(l) - p(l)) + b(t(l) — 3(1)),a(q(2) — p(2)) + b(t(z) —_ 3(2)), vy

(a10PQ@b;OST)
a(g™ — p™) + p(t™ — 5(7)) = 1. (5.6) Then

— — —_ —
v(a PQ +b ST) =1 =v(PQ) Av(ST). Thus we get the fuzzy vector space [E", v]
by Definition 5.2 under the sense of [5].

(C) In this paper, we emphasize on solving the practical problem in stead of just

working it out theoretically.
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(1)
X

(1) @)
z=l. (X ,Xx )

Fig.1 o—cut of fuzzy set DonR
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0((100,200),1)

Q(1,2)
Fig. 2 Fuzzy vector QZ
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51
X(0)=(2,3)
U(0)
O

. —= ==
Fig. 3 Fuzzy vector XY, UV
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Fig. 4 Fuzzy inner product of XY, UV
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