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Abstract 

The polynomial residue number system (PRNS) has been considered as a useful tool for digital signal processing (DSP) 
since it can support parallel, carry-free, high speed arithmetic with minimum multiplication count provided that an 
appropriate modular ring is chosen. In this paper, the properties of two-dimensional (2-D) PRNS are investigated in 
detail. It is shown that in the 2-D PRNS system, the theoretical lower bound for multiplication count of polynomial 
products can be achieved in some carefully chosen ring. Application of the proposed 2-D PRNS for computing 2-D 
circular convolution, which involves intensive multiplication operations, is also presented. 

Zusammenfassung 

Das Polynom-Restklassen-Zahlensystem (PRNS) wird als niitzliches Werkzeug zur digitalen Signalverarbeitung 
angesehen, da es fibertragfreie, schnelle Parallelarithmetik mit kleinstm6glicher Multiplikationszahl unterstiitzen kann, 
wenn ein geeigneter Modulo-Ring gewfihlt wird. In diesem Beitrag werden die Eigenschaften des zweidimensionalen 
(2-D-) PRNS im Einzelnen untersucht. Es wird gezeigt, dab im 2-D-PRNS die theoretische Untergrenze der Multi- 
plikationszahl ffir Polynomprodukte in einem sorgf/iltig gew~hlten Ring erreichbar ist. Die Anwendung des vorge- 
schlagenen 2-D-PRNS zur Berechnung der 2-D-Zirkularfaltung, welche einen hohen Multiplikationsaufwand 
beinhaltet, wird ebenfalls vorgestellt. 

R~ume 

Le syst6me fi num6ro de r6sidu polynomial (PRNS) a 6t6 consid6r6 comme un outils utile pour le traitement des 
signaux digitaux (DSP) car il supporte l'arithm~tique tr6s rapide, parall~le et sans retenue avec un compteur de 
multiplication minimum lorsqu'un cercle modulaire appropri6 est choisi. Dans cet article, les propriet+s des PRNS fi deux 
dimensions (2-D) sont pr6sent6es en d6tails. I1 est montr6 que dans le syst6me PRNS 2-D, la limite th+orique la plus basse 
pour le compteur de multiplication de produits polynomiaux peut ~tre obtenue pour quelques cercles soigneusement 
choisis. Une application du 2-D PRNS propos6e pour le calcul de la convolution circulaire 2-D, laquelle implique 
d'intensives op6rations de multiplication, est 6galement pr6sent6. 

Keywords: Polynomial residue number system; Two-dimensional convolutions; Fast Fourier transform: Quotient field 

*Corresponding author. 

0165-1684/94/$7.00 ,:~ 1994 Elsevier Science B.V. All rights reserved 
SSDI 0 1 6 5 - 1 6 8 4 ( 9 4 J 0 0 0 8 3 - C  



296 M.-C. Yang, J.-L. Wu /  Signal Processing 40 (1994) 295-306 

1. Introduction 

To date, many important digital signal process- 
ing applications involving operations like circular 
convolution, skew circular convolution, autocorre- 
lation, and computation of DFT are all multiplica- 
tion intensive. To efficiently perform these opera- 
tions, one and maybe the most effective approach is 
by using the residue number system (RNS). The 
polynomial residue number system (PRNS) which 
is an extension of the quadratic residue number 
system (QRNS) was first proposed by Skavantzous 
[11]. The system enjoys all the advantages of RNS, 
such as parallel computing and carry-free for arith- 
metic operations, which results in very high 
throughput rates. In this paper, the properties of 
two-dimensional (2-D) PRNS are investigated in 
detail. It is shown that in the 2-D PRNS system, the 
theoretical lower bound for multiplication count of 
polynomial products can be achieved in some care- 
fully chosen ring. Application of the proposed 2-D 
PRNS for computing 2-D circular convolution, 
which involves intensive multiplication operations, 
is also presented. 

The organization of this paper is as follows: 
A brief overview of one-dimensional PRNS and 
a different interpretation of PRNS is presented in 
Section 2. The conversion of 1-D PRNS to its 2-D 
counterpart through the index mapping approach 
is then introduced. Also, the relationship between 
the two-dimensional convolution and the proper- 
ties of 2-D PRNS are described in Section 3. It is 
shown that 2-D PRNS meets the theoretical lower 
bound of multiplication count for performing poly- 
nomial products. Concrete examples are presented 
in Section 4 to clarify how the system works. Fi- 
nally, conclusions are addressed in Section 5. 

2. One-d imens iona l  po lynomia l  residue 
number sys tem 

2.1. Prel im&aries  

Consider two polynomials in x, A(x)= 
y~N-1 a .x  i and B ( x ) =  Y~Zo I b lx  i also denoted as i=O 
A = ( a o , a l  . . . . .  au-1) and B = ( b o , b l  . . . . .  b u - 1 )  
and consider that (C)m denotes the operation 

c mod m for integers [7], while (C(x ) ) e ( x )  denotes 
the operation C ( x ) m o d Q ( x )  for polynomials. It 
was shown in [11] that if the polynomials (x N _ 1) 
can be factorized in Zm as 

x N +_ 1 = (x -- ro)(X -- r l) . . . (x -- rN- 1), 

r iEZ , , ,  i = 0 , 1  . . . . .  N - -  1, (1) 

then there exists an isomorphic mapping between 
e (m)  and Z,, u, where P ( m ) =  {Y~YolP,  X', p, e Z , , } ,  

a finite structure containing the ( N -  1)th order 
polynomials with coefficients in Z,., and 
Z~ = @~= ~ Z,., the Nth degree direct sum of Zm, 
respectively. The above statement can be written in 
a more tracible form as 

fN 
(A(x )B(x )>xN±,  , ) 

* * * * * * 
( ( a o b o ) m , ( a l b l )  . . . . . .  ( a N - l b N - , ) , . ) ,  (2) 

where the forward mapping is 

fN:a  = (ao, a , . . . . .  a~ -  l ) -+ 

A* = (ag, a* . . . . .  a~_, ) (3) 

with 

a* = (ao + a lrl + a2r~ + ... + a N - i r a - l ) , , ,  (4) 

and the inverse mapping is 

f u  - I " A *  = ( , a ~ , a ' ~ , . . . , a * _ l )  --, 

A = (ao ,a l  . . . . .  a N - l )  (5) 
with 

ai = ( N - l ( a * r o  i + a'~ri i + a*r~  i + ... 

+ a~ lr~i-1))m, i = 0, 1 . . . . .  N - 1, (6) 

where N -  ~ and r j  i are the multiplicative inverses 
of N and r} in Z~, respectively. Eqs. (4) and (6) can 
be written in a more compact form, respectively, as 

a~ : ( ( a ( x ) ) ( x - r i ) )  m : ( A ( r i ) ) m  , 

i = 0, 1 . . . . .  N - 1 (7) 

and 
N - 1  

A(x) = ~ ai*Q,(x), (8) 
i = 0  
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where 

Q i ( x )  = N-1( I  + r i - l x  -P r i - 2 x  2 "b "'" 

.q- r i - ( N - 1 ) X N - 1 ) .  (9) 

Lemma 2.1. The mapping fN, defined in (3), satisfies 
the following: 
(i) fN is one-to-one and onto, 
(ii) for A, B • P (m), 

fN(A + B) =J~v(A) + fu(B), 

fN(A " B) = fN(A )'fN(B). (10) 

Lemma 2.2. The mapping fN- 1, defined in (5), is the 
inverse offN. 

Lemma 2.3. The necessary and sufficient condition 
for the existence of the factorization as shown in (1) is 

{ N I ( p ' - I ) / 2  f°r x N + l '  (11) 
I(Pi 1) for x N - 1, 

el e2 e 1 where alb means 'a divides b' and m = Pl P2 ""PL 
with Pl distinct prime numbers and N < Pi. 

The proofs of the above lemmas can be found 
in [9]. 

2.2. A different interpretation 

It is well-known that [5] ifml (x), m 2 ( x  ) . . . . .  mL(X ) 
are polynomials which are relatively prime in 
pairs, then the system of congruences R ( x ) =  
ri(x)mod mi(x), for i = 1, 2 . . . . .  L, has a unique solu- 
tion R(x) given by 

L 

R(x) = ~ ri(x)Mi(x)Si(x ) mod M(x), (12) 
i - 1  

where 

L 

M(x) = 1-I mi(x) = mi(x)Mi(x) (13) 
i = 1  

and Ni(x) uniquely satisfies the congruence 

Mi(x)Ni(x) = 1 mod mi(x). (14) 

Now consider the following congruence equation: 

C(x) = ( A(x)" B(x) )x~ ± , (15) 

and let Z,, be chosen such that the condition (11) is 
satisfied. Then, based on the Chinese Remainder 
Theorem for polynomials (CRTP) and (1), Eq. (15) 
can be decomposed into the following N congru- 
ence equations: 

c * = ( a * . b * ) , . ,  i = 0 , 1  . . . . .  N -  1, (16) 

where a* = ( ( A ( x ) ) ( x _ r i ) )  m and b* = 
( (B(x) ) (x  ,,i)m. The polynomial C(x) can be re- 
constructed by using the CRTP. That is, 

N 1 

Mi(x)= l-I ( x - r j ) ,  i = 0 , 1  . . . . .  N -  1 (17) 
j = o , j ~ i  

= (x N __ 1)/(x -- ri) 

= X N -  1 .q_ r i x  N 2 ..~ r 2 x N -  3 ..~ , , .  

+ riN-Zx + ri u-1. (18) 

As a result, 

(Mi(x) )(x-,,i = Mi(ri) = Nri u- I (19) 

Thus, 

Ni(ri) = (Mi(ri))- 1 = N - lr i- (N- 1)mod m. (20) 

It is easy to verify that 

(Ni(ri))m'Mi(x} = N -  l r - (N-  1 ) i  ( x N - 1  + F i x N - 2  

+ . . . + r / N  2 x + r / ~ - l ) .  (21) 

Comparing Eq. (9) with Eq. (21), it tbllows that 
(Ni(ri))m'Mi(x)=Qi(x).  It is easy to check 
(Qi(x))(x-,,) = 1 and (Qi(x))(x-,j) = 0, for i Cj.  
By CRTP, C(x) can be obtained as 

N 1 

C(x) = ~., c*(N,(ri))m'Mi(x) 
i = 0  

N 1 

= ~ c*Qi(x), (22) 
i = 0  

that is, the PRNS can also be interpreted by the 
terminology of CRTP over a finite ring. 
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3. Two-dimensional polynomial residue 
number system 

3.1. Two-dimensional PRNS techniques for ring 
size reduction 

The PRNS has one limitation: the size of the ring 
used for the arithmetic is proportional to the size of 
polynomials to be multiplied. As a result, to multi- 
ply large polynomials in a fixed-size arithmetic 
ring, one must involve two-dimensional PRNS 
techniques. 

3.1.1. Survey of early works 
In order to release the aforecited limitation, 

the one-dimensional PRNS by two-dimensional 
techniques was proposed by Skavantzous and 
Mitash [10]. Consider two polynomials in 
x,A(x) = ~"N=01 ai Xi and B(x) = Y, Ui=ol bixi, where 
N = n * m :  a composite number. Then A(x) 
and B(x) can be represented by two-variable 
polynomials as A(x,y)  = y " - l  A i (y )x  i and i=0  
B(x, y) ,.-1 = Y~i=o Bi(y) xi, where Ai(y) and Bi(y) are 
defined in (24) and (25), respectively. Now changing 
the variables as y = x,., then similar to (15), one 
obtains 

C'(x,y) = ((A'(x,y))(B'(x,y))>t,,2=±l)ty.+l) 

(2,.-1 ,~ 

= i~=o A i ( y ) x i ) ) (  

2m 1 

= ~ C,(Y) xi, 
i=O 

where 

n - 1  

Ai(y) = ~, 
j - O  

n 1 
B,(y) = y 

j = o  

n--1  

C i ( y )  = Z 
j=O 

and 

2 " - 1  . X \  

Z 
i = O  / / ( X 2 m - {  - 1)(yn+ 1) 

(23) 

aj"+i/ ,  i = 0 . . . . .  m -  1, (24) 

bj"+iy j, i = 0  . . . . .  m -  1, (25) 

Cjm+iY j, i = 0 . . . . .  2m -- 1, (26) 

Ai(y) = Bi(y) = O, i = m . . . . .  2 m -  1. 

Eq. (23) shows that to compute PRNS correctly, 
A(x,y) and B(x,y) must be augmented with zeros 

to construct A'(x,y) and B'(x,y), for m~<i~< 
2 m -  1, such that aliasing of the cyclic folding 
along the x-dimension does not blur the correct 
results. Eq. (23) can be performed by applying 
a two-level (two-dimensional) PRNS mapping (as 
described in [10]); a PRNS(n) mapping followed by 
a PRNS(2m) mapping provided that the mappings 
f,,, f , -~ ,  f2" and fzm 1 exist in the chosen ring. To 
obtain the final result, Eq. (23) is converted to 

C(X,  y )  ~-- ( C ' ( x ,  y )  )(x m+ 1)(y"+ 1) 

= C i ( y ) x  i + y .  C i ( y ) x  i - "  
\ i = 0  i = m  ( x  m-t- 1)(yn± 1) 

(27) 

Finally, the corresponding coefficients of C(x) are 
obtained by substituting y = x"  into Eq. (27). 

3.1.2. Another approach 
Index mappings for converting 1-D array to 

multidimensional (Multi-D) one was proposed by 
Agarwal [-1] and Burrus [3]. The Nth degree poly- 
nomials A(x) and B(x) can be represented in matrix 
form as follows: 

A, = 

ao an ""  a N - n  

al a n +  1 ... aN n+ l 

: : . . .  : 

O n -  1 a2n  1 "'" aN 1 

0 0 ... 0 

0 0 ... 0 

0 0 ... 0 

(28) 

B' = 

_+bN n + l  h i  "'" b N - 2 n + l  

+_bN n+2 b2 "'" b N - 2 n + 2  

+bN-1 b.-1 "'" bN- , -  1 

bo b, ..- bN-. 

bl b,+l "" bu- ,+ l  

b,-a b2, I "'" bN 1 

(29) 
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The sign of the first column in B' depends on where 
the PRNS was defined (i.e., positive if it is in 
(x u - 1), negative otherwise). Observing the above 
two (2n - 1) x m matrices, A' is formed by column- 
wise sequencing the coefficients of A ( x )  in the up- 
per-half n x m array and appending (n - 1) rows of 
zeros to the lower-half, while B' is formed by col- 
umnwise sequencing the coefficients of B(x)  in the 
lower-half n x m array and appending the periodic 
extensions of each column data (with period N) to 
the upper-half. Matrices A' and B' can also be 
represented as two-variable polynomials. Each row 
of matrices A' and B' has the similar form as shown 
in Eqs. (24) and (25). Then by applying a two-level 
PRNS technique to obtain matrix C'. Forming an 
n x m matrix C" by taking the elements of the lower 
n x m portion of C'. Then, it follows that the corres- 
ponding coefficients of C(x) can be obtained via 
concatenating the columns of matrix C". For ease 
of implementation with fast transform algorithms, 
the arrays would usually be extended one more 
additional row to form 2n x m matrix C' rather 
than the (2n - 1) x m one. 

An interesting case occurs when n, m is coprime, 
the polynomial products modulo (x N -  1) has 
a useful mapping function to permute coefficients 
to form an n x m array without the necessity of 
extra padding (n - 1) rows of zeros. The mapping 
function of coefficient index is 

N = mN~ + nN2,  

O ~ < N l ~ < n -  1, O <~ N 2 <~ m - 1, (30)  

or more clearly in matrix form as 

map 

(0,1,2 . . . . .  N -  1) ¢~ 

I 0 n ... ( m -  1)n | 
q 

t 
m m + n  ... m + ( m + l ) n  

• . " .  

( n -  1)m ( n - - 1 ) m + n  -.- (n-- 1 ) m + ( m -  1)n 

(31) 

Each element of the above matrix is evaluated 
modulo N. The rank of the matrix is reduced to 
n by m, rather than 2n by m. Since the computing 

process is performed the same as 1-D PRNS, with 
the reduced problem size, to obtain the results; 
therefore, the length limitation has been somewhat 
released. In the rest of this section, we will change 
our subject to investigate the extensibility of the 
PRNS, given in [11], through the computation of 
2-D convolutions. 

3.2• Two-variable  po lynomia l  residue number  

sys tem 

The two-variable polynomial residue number 
system (2V-PRNS) of order N by M, examines the 
problem of multiplying two 2-variable poly- 
nomials, with ( N -  1)th and ( M -  1)th degree in 
variables x and y, respectively, mod(xN_+ 1) x 
( f f  _+ 1) over some modular ring Z,, and is a direct 
extension of one-dimensional PRNS given in [11]. 
Such a system performs the previously mentioned 
polynomial product with only M N  multiplications 
modm in parallel instead of M Z N  2. 

The above statement can be represented by 
a two-variable polynomial product as C ( x , y )  = 

( A ( x ,  y ) B ( x ,  y))(xN + ~)(yM ± 1}, where A(x ,  y) = y , ~ o  1 
N - ' I  " " ~ M - 1  v N - l b  xJl;i Y[j=O ai,j xJy'' B ( x , y ) =  i=o a.j=o i,j . and 

C ( x , y ) = y ~ - I  s ~ " i=o Ej=o ci.jx~y '' Here (P(x ,y) )Q~x,y!  
denotes the operation P ( x , y ) m o d  Q(x,y)in poly- 
nomials. It is clear that the above two-variable 
polynomial product is equivalent to the problem of 
2-D convolutions. 

3.2.1. Factorizat ion (yM +_ 1) in Zm 

In order to factorize the polynomials 
(x N 4- 1)(y M 4- 1) in N M  distinct first degree fac- 
tors, the factorization of (yM _+ 1) in M different 
roots is done first and then the factorization 
of (x N _+ 1) in N different roots, both in Z,,. It is 
clear that the above factorization is commutative. 
That is, 

yM + 1 = (y -- ro)(y  -- rl)---(y - rM-l), 

r i ~ Z m ,  i = 0 , 1  . . . . .  N -  1, (32) 

x N ± 1 = (x -- r'o)(X -- r ' l ) . . . (x  -- r'N 1), 

r~Zm, i = O, 1 . . . .  , N  - 1, (33) 
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where rl and r} are M and N distinct roots of 
(yU + 1) and (x N + 1), respectively, in a modular 
ring Z=. 

Suppose Pl(m) is a finite structure containing 
polynomials composed of(N - 1)th and (M - 1)th 
order in variables x and y, respectively, with coeffi- 
cients in Zm. Then if polynomials ( y U +  1) and 
(x u + 1) can be factorized in M and N distinct first 
degree factors in Zm respectively, there exists 
an isomorphic mapping g~ of Pa(m) onto 
(ZN(x))m = @~=1 (Z(x))=, which is given by 

M - I  
g'M:A(x,y) = ~ a i (x )y  i 

i=0 

A * ( x , y )  = (A*(x) ,A~(x)  . . . . .  A~t - l (x ) ) ,  (34) 

with 

A*(x)  = ( ( A(x,  y) )ty_rO )(xN + l) = ( A(x,  rl) )(x. ± l), 

i = 0 , 1  . . . . .  M -  1. (35) 

The notation (Z ( x ) )m  denotes that each coefficient 
of Z(x)  is defined in Z,,. And the inverse mapping is 

g~v/-1 : A *  (X, y)  = (Ao* (x), A t (x) . . . . .  A ~ / - 1  (X)) "-+ 

M - 1  
a ( x , y ) =  E Ai(x)Y i, (36) 

i=0 

where A(x, y) is defined as 

M - 1  
A ( x , y ) =  ~ A*(x )O*(x ,y )  (37) 

i -O  

and 

Q*(x,y)  = M- l (1  + r / - ly  + ri-Zy z + ... 

+ r/-(N-2)y N-2 + r/-(N-1)yN-1). (38) 

Combining Eqs. (37) and (38), the coefficients y~ in 
ring Zm are given by 

Ai(x) = ( M - I ( A * ( x )  + A*(x)r?  i + A * ( x ) r ;  i 

+ ... + A* - l ( x ) rMi -1 ) ) , , ,  

i = 0, 1 , . . . , M -  1, (39) 

where M -  ~ and r S  are the multiplicative inverses 
of M and r[ in Z,,, respectively. Operations in 
(ZU(x))= = (~,.N= 1 ( Z ( x ) ) , ,  are defined as follows. 

Addition: 

( A ~ ( x ) , A * ( x )  . . . . .  A * _ , ( x ) )  

+ (B~(x), B*(x) . . . . .  B~a-1 (x)) 

= ( ( A t ( x )  + B*(x))m, (A*(x) + B1 *(x)5 . . . . . .  

<A/~/_ 1 (x) -t- S~f _ 1 (x) >m). (40) 

Multiplication: 

(AJ(x), A*(x), ..., A * _  1 (x)) 

" ( B S  ( x  ), B~{ (x) ,  . . . , B~t4 - 1  ( x )  ) 

= ( (  ( A * ( x ) . B ~ ( x ) ) ~ x N ± , 5 ~  . . . . .  

( (A~a_ , (x ) 'B~_l (X) ) (xN±,) )m) .  (41) 

Each term of the right-hand side of Eq. (41) is 
a product of two single-variable polynomial de- 
fined in rood ((x N + 1)),, which can be computed 
by one-dimensional PRNS techniques with only 
N multiplications, as described in Section 2. Eq. 
(41) says that (A(x,y)B(x,y))(xN±l)(y~,±n only 
needs M N  multiplications modm performed in 
parallel and no additions, if the polynomial prod- 
uct is performed in (ZN(x) ) , . .  The same poly- 
nomial product requires M 2 N  2 multiplications 
and M N ( M  - 1)(N - 1) additions modm, if dir- 
ectly performed in P1 (m). In addition, the computa- 
tion of the polynomial product in (ZN(x ) ) , ,  re- 
quires only two levels (row and column transforms) 
of operations instead of the multiple levels (M + N) 
in Vl (m). 

As indicated in Theorem 2 of [8], the number of 
M N  multiplications is optimal for the aforecited 
2-variable polynomial product since it achieves the 
theoretical minimum number of multiplications. 

3.2.2. Factorization (yM +_ 1) in Z (x ) / ( x  N +__ 1) 
Now let us consider another factorization 

method of (xN+ 1)(y M -- 1) based on the ideas 
given in [8]. 

In this approach, the polynomials (x N ___ l)(y M + 1) 
are factorized as follows: 

yM + 1 = (y -- ro(X))(y -- q ( x ) ) . . . ( y  -- rM-I(X)), 

ri(x) ~ Z(x ) / (x  N + 1), i = 0, 1 . . . . .  M -- 1, (42) 

x N + I = ( x  - r ' o ) ( X  - r ; ) . . . ( x  - r ' ~ - l ) ,  

r~ ~ Z,,, i = 0, 1 . . . . .  N -- i, (43) 
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where ri(x) are M distinct roots of (yM+ 1) in 
quotient ring Z(x)/(x N + 1) and r~ are the N dis- 
tinct roots of x N + 1 in a modular ring Z.,. 

If polynomials (yM + 1) and (x N + 1) can respec- 
tively be factorized in M and N distinct first degree 
factors in Z(X)/(XN+ 15 and Z.,, there exists an 
isomorphic mapping g~ of Pl(m) onto (ZN(x) 5,,, 
which is given by 

M 1 

g ~ : A ( x , y ) =  ~ Ai(x)y i --+ 
i = 0  

A°(x,y)  = (A~)(x),A~(x), . . . ,A~- l (x ) ) ,  (44) 

with 

A'~(x) = ( ( A(x, Y) )(r-,,(x))5(x" ± l) 

= ( A ( x ,  ri(x))5(x~±l), i = 0 , 1  . . . .  , M -  1, 

(45) 

where (Z(x)/(xN++_ 1)5., denotes the operation 
that the coefficients of polynomial Z(x) first 
mod(x N + 1) then modm. The inverse mapping is 

gk- '" A°(x, Y) = (A~)(x), A~(x) . . . . .  A~_ 1 (x)) --+ 

M - 1  

a ( x , y ) =  ~ Ai(x)y i, (46) 
i = 0  

where A(x, y) is defined as 

M - 1  

A(x , y )=  ~ A?(x)Q?(x,y) (47) 
i = 0  

and 

Q~(x,y) = M- l (1  + ri-l(x)y + ri-2(x)y 2 + ... 

+ ri - (N - 2 ) ( x ) y N  - 2 ..{_ rl - (N - 1 ) ( x ) y N  - 1 ). 

(48) 

Combining Eqs. (47) and (48), the coefficients yi in 
quotient ring ( Z [ x ] / ( x  N +_ 1)5., are given by 

Ai(x) = (M-x(a~)(x) + A~(x)r?i(x) + a~(x)rfi(x) 

+ ... + A~_ I(X)rM i I(X))).,, 

i = 0 ,  1 . . . . .  M - -  1, ( 4 9 )  

where M - I  and ri-J(x) are the multiplicative in- 
verses of M and r[(x) in Zm and Z(X)/(xN+_ 1), 
respectively. Operations in (ZU(x)5., are defined as 
follows. 

Addition: 

(A~(x),A~(x) . . . . .  A~_, (x ) )  

+ (B~(x),B~(x) . . . . .  B~-I (x) )  

= ( ( (A~(x)  + Bg)(x))(,,,~±l)) . . . . . .  

o ( ( A ~ - I ( x )  + BM l(X)5(x' ±155.,). (50) 

Multiplication: 

(Aa(x),A~(x) . . . . .  A~_I(X)) 

• (B~)(x), By(x),. . . ,  B~_ 1 (x)) 

= (((A~)(x)'B~(x)>(xN± 155 . . . . . .  

((A~-i(x)'B~-l(X)5(~,N±l)Sm). (51) 

Each term of the right-hand side of Eq. (51) is the 
product of two single-variable polynomials defined 
in mod (x N ___ 1 )m which can be computed by one- 
dimensional PRNS techniques with only N multi- 
plications, as described in Section 2. In other words, 
Eq. (51) implies that a polynomial product 
(A (x, y) B (x, y ) 5 (x N • 1 ){yM ± 1 ) only needs M N  multi- 
plications mod m performed in parallel and no ad- 
ditions, if the polynomial product is performed in 
(ZN(X)Sm. 

The following theorems describe the properties 
of the mapping g~ and the simplified rules of multi- 
plication on two-dimensional PRNS. 

Theorem 3.1. I f  the polynomial (yM + 1) can be fac- 
torized in M distinct factors in Z(X)/(xN +__ 1), as 
shown by Eq. (42), then the mapping 9'M of Pl(m) 
onto ( ZN (X) )m satisfies the.following: 
(i) g~ is one-to-one and onto, 
(ii) for A, B E P1 (m), 

g'~(A + B ) = g'~(A) + g~(B), 

g~t(A . B) = g'~(A ). g'~(B). 

Proofi (i): The number of elements in P(m) is m tN ÷ M) 
and so is the number of elements in (ZN(x) )"  
= ( Z ( x ) ) , , Q ( Z ( x ) ) m O . . . O ( Z ( x ) ) . .  It must 

now be shown that for A, B ~ P1 (m) 

A # B ~ g'~(A) ¢ g'~(B). (52) 
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Suppose that for A ---- 2M=o 1Ai(x)y i = ~i~1=ol 

y~;--ol al, jxJy i, B =  zM-1Bi(x)y  i = ~iM_-o 1 V u I b xJ,/ A.,j=O i,j .., i=0 
with ai, j ,  b i , j E Z  m for i = 0 . . . . .  M - 1 and 
j = 0 . . . . .  N - 1, the following is true: 

A # B ~ g~(A)  = g~(B).  (53) 

But 

A # B  

Substi tuting each term (Ai(x) - Bi(x)) in Eq. (57) 
by its corresponding term defined in Eq. (54) we get 

(ko + klr2(x) + k2r2(x) + ... 

-'[- kM_ 1 r ~ -  1 (X) )(X N __q- 1) 

+ (qo(x) + q l ( x ) r j ( x )  + q2(x)r2(x) + ... 

+ q M - l ( x ) r ~ - l ( x )  -- <O>(x~.±l ) 

"¢~ Ao(X) # (Bo(X)>(~N±I) or ... or 

AM l(X) :~ ( B M - I ( X ) ) ( ~ ± I )  

• ~ Ao(X) -- Bo(x) # <O)(xN±I ) o r  . . .  or 

AM I(X) - -  B M - I ( X )  # <0>(xN±l)  

• ~ Ao(x) - Bo(x) = ko(x N +_ l) + qo(x) and 

• " and AM- 1 (X) - -  B M_ 1 (x) 

= kM_l ( x  N + 1) + qM-I(X), (54) 

with ko, kl . . . . .  kM- 1 integers and qo(x),ql(x)  . . . . .  
qM-1(X) e ( Z ( x ) / ( x N +  1))m and at least one of 
qo(x),ql(x)  . . . . .  qM-I(X)  is not zero. 

Fo r  g~(A)  and g~t(B), Eq. (45) gives 

g'~(A ) = (A~)(x), A ? (x) . . . . .  A~t - 1  (X) ) 

=-- <A(x, ro(x)), A(x,  r 1 (X)) . . . . .  

A(x,  r M _ l(X)) >(x .'~ ± 1) (55) 

o r  

M ~ I  M - 1  

g~t (A)=  Ai(x)r~)(x), ~, Ai(x)r](x)  . . . . .  
\ i=0  i=0  

M - 1  / 

2 Ai(X)FiM-I(X) (56)  
i=0 (xN± 1)' 

with a similar expression holds true for g~(B).  
For  9~(A)  = g~t(B) we have 

(Ao(x) -- Bo(x)) + "" 

+ (AM-I (X  ) -  B M l ( x ) ) r ~ - l ( x ) - -  <0>(xN±I), 

(57) 

Eq. (57) is true for j = 0, 1 , . . . , M  -- 1. 

o r  

qo(x) + ql(x)r j(x)  + q2(x)rZ(x) + ... 

+ qM_I(X)FM-I (x )  ~_ <0>(xN±I),  (58) 

f o r j = 0 , 1 , . . . , M - 1 .  
It has been proven [9] that  for r~),r'l . . . . .  rk_ l  

satisfying Eq. (33) the following hold: 

N 1 N - 1  N-1  
r) = ~ rj 2 . . . . .  2 rJ N - l -  (O>m" (59) 

j=O j=O j=O 

Similarly, it can be easily proven that  for ro(x), 
r l(x)  . . . . .  rM- l (x )  satisfying Eq. (42), the following 
hold: 

M - 1  M - 1  M - 1  
r j ( x )=  ~ r~(x) . . . . .  ~ r~t - l (x )  

j=O j = 0  j=O 

-= <O>¢x~± 1). (60) 

Adding all M congruences in Eq. (58) for j = 0 to 
M - 1, we get 

M - 1  M - 1  

Mqo(x) + ql(x)  ~ rj(x) + q2(x) E r~(x) + ... 
j=O j=O 

M - 1  
+ qM-l(X) 2 rM-l(X) ~ <O>(xN±I) (61) 

j=O 

and with the aid of  Eq. (60), Eq. (61) reduces to 

M ' q o ( x )  ---- (0)(xN± 1) (62) 

Since 0 < M < m (so M # (0)m), then Eq. (62) 
gives that  qo(x) = (0>(xN± xr N o w  Eq. (58) becomes 

rj (x) (ql (x) + q 2 (x) rj (x) + ... + qM -1 (X) r M - 2 (x)) 

= <0>(~N:LI), j = 0 , . . . , M  -- i. (63) 
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Adding all M congruences in Eq. (63) for j = 0 to 
M - 1  we get ql(x)=(O)(x~+l) (using again 
Eq. (60) and the fact rj(x) 4: (0)(~,±1)). Repeating 
the above procedure, we obtain 

qo(x) = q l(x) --= ... = qM-1 (X) ------ (O){xN ::[: 1)" (64) 

But it was stated previously that at least one of 
qo(x),ql(x) . . . . .  q~- l (x )  must be nonzero. So Eq. 
(64) creates a contradiction. The contradiction was 
a result of the wrong assumption of Eq. (53), and 
therefore g~(A) 4: g~t (B) and the proof of (i) is now 
completed. 

(ii): Substituting g~t(A), g~(B), g'~(A + B) and 
g'~(A'B) into Eq. (56), the proof of (ii) can be 
derived easily. Since 

M - I  
A" B = ~_~ Ai(x)y i 

i-O 

M - 1  
~. Bi(x)yimod(x ~¢ +_ 1)(y M ± 1) (65) 

i=0 

and 

g'~(A" B) = ( (AB(x,  ro(x)), AB(x, r I (x)) . . . . .  

AB(x, r l -  l(x)) )(xN+ l)Sm 

(%' 
= Ai(x)rio(X) Bi(x)rio(X) . . . . .  

\ i=0 i=O 

M - 1  M - 1  t 
A,(x)r~_l(x) ~ Bi(x)r~-l(x)  . (66) 

i=O i=0 

Evaluating g~(A) .g~(B)  and taking into account 
that x N= ± l m o d ( x  N ± I ) ,  it follows that 
g'~(A'B) = g~(A)" g~(B). In a similar way, it can 
be shown that g'~(A + B) = g~(A ) + g~(B) and (ii) 
is proven. Therefore, g~ is an isomorphism map- 
ping from Pl(m) onto (ZN(x)), . .  [] 

The theorem shows that if (yM ± 1) can be fac- 
torized into M distinct roots, represented by 
powers of x, in quotient ring Z(x)/(x N +_ 1), rather 
than in ring Z,,, the forward mapping g~ and 
inverse mapping g~-~ can simplify the hardware 
design, i.e., with only addition and shifting but not 

any multiplications. When N is a power of 2, the 
computation can be sped up by using an FFT-like 
structure. 

Theorem 3.2. The mapping g~-1 described by Eqs. 
(36)-(38) is the inverse of g~. 

Proof. Consider A(x,y)~Pl(m) with A ( x , y ) =  
~M=oI A i ( x ) y  i. Then by Eqs. (32) and (35), q~(A) = 
(A~) (x), A? (x) . . . . .  A ~ _  1 (x)) with 

A'~ (x) = ( ( A M - l ( x ) r y  l (x) + AM- 2(x)riM- 2(X) 

÷ ... ÷ A o ( X ) ) ( x N + l ) ) m ,  

i=O,  1 . . . . .  M -  1. (67) 

Substituting A~(x) and Q'2(x,y) respectively into 
Eq. (37) and Eq. (38), one obtains 

M - I  
A( x , y ) =  ~ A?(x)'Q?(x,y) 

i=0 

= 2 ~ Aj(x)r{(x) (M-l(1 + r f t ( x ) y  
i=0 j=O 

+ ... + rf(M-1)(X)yM-I)) 

= M-I (MAo(x)  + MAl(x)y  + .." 

+ MAM_I(x)yM 1) 

= Ao(x) + AI(x)y + "" + AM l(x)y t~-I 

(68) 

The proof is now completed since it has been 
shown that g'~- l(g'~(A(x, y)) = A(x, y). [] 

The readers can also prove that the isomorphic 
mapping g~ possesses the same properties with g~, 
as described in the aforecited theorems. 

Some special cases of two-dimensional PRNS 
are of interests especially for both M and N are 
powers of 2. The following lemmas show the poly- 
nomial (yM _+ 1) can be factorized in M distinct 
factors in Z(x)/(x N + 1) as suggested in Eq. (42) 

Lemma 3.1. (yM + 1) can be factorized into M dis- 
tinct factors in quotient field Z(x)/(xS + 1) as 
(yM + 1) = r]2'a-1 (y -- (xN/M) 2k+1 ) i f  M = 2 '2 and l lk=O 
N = 2 t', 1 ~< t2 ~ tl ~Z. 
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Proof. In the following proof, we use the fact 
x u = - 1 mod Z(x)/(x u + 1): 

2 t2 -- 1 

U (Y  - -  ( x N / M ) ) 2 k + I )  

k = O  

2 u-  1 _ 1 
= H [ Y  - -  ( x N / M ) 2 I + I ] E y  - -  ( X u / M ) 2 ( k + 2 u - 1 ) + I ]  

k = O  

2,2 1 _  1 

]-I (y2 - -  ( X 2 ' N / M ) 2 k + I )  

k = 0  

2 t2-2 -- 1 

H [y2- (x~U/M) ~+'] 
k = O  

• [ y ~  _ ( x  2 .u /M)2~k+ r , - ~ +  1 ]  

2 u - 2 _ 1 

H ( y 4  - -  ( X 4 . . N / M ) 2 k + I )  

k = O  

2r2 2_  1 

= l q  (y~ - (x"~u/M)  ~) 
k = O  

1 

= 1-I (Y2"-' - (x~"-"~' /M) ~) 
k = 0  

= y2'~_ 1 

= y M  1. [] 

The 2-D circular convolution of size N by M 
is equivalent to the 2-D polynomial product 
mod(x N -  1)(y M -  1). To factorize ( y M _  l) in 
quotient field Z ( x ) / ( x  u -  1) is not easy. By the 
technique presented in [2], the problem is con- 
verted to factorize ( y M _  1) in quotient field 
Z(x ) / ( x  N + 1). Therefore, 2-D circular convolution 
can also be realized by 2-D PRNS techniques. 

1 

= 1-[ (y2,,-1 _ (xV.-~.,,/M)~k+~) 
k = O  

= (y2',-' _ x z . . . .  mM)(yZ" ~ + X 2''-~.mM) 

= y M + l .  [] 

Lemma 3.2. (yU _ 1) can be factorized into M dis- 
tinct factors in quotient field Z(x) / (xU + 1) as 

2t2-1  
(yM _ 1) = l - I k = o  (y _ ( x 2 N / M ) k )  if M = 2 t~ and 

N = 2 r', 1 ~< t 2 < tl eZ .  

Proof. In the following proof, we use the fact 
x u = - 1 mod Z(x)/(x u + 1): 

2 u - 1 

l-I (Y -- (xEN/M) k) 
k = 0  

2 u l _ 1 

= 1-[ [ y  - (x2u/M)k]EY -- (x~U/M) k+2'2- ']  
k = 0  

2~2 1 _  1 

= I-I (Y2 -- (X2"2N/M) k) 
k = 0  

2t2- 2 _ 1 

= I ]  [yE_(x2.2u/M)k][y2_ (X2.2u/u)k+2 '2 2] 
k = 0  

3.3. Time complexity 

The complexities of the proposed approach can 
be analysized as follows. Without considering the 
forward and inverse transforms of PRNS, the row 
and column transforms of the input sequences can 
be neglected• After performing PRNS(M) and then 
PRNS(N), we obtain a tuple of M N  transformed 
data. M N  multiplications are required in the com- 
ponentwise products between the tuples. By inverse 
transforming P R N S - I ( M )  and then PRNS-I (N) ,  
the task is completed. 

In fact, based on the interpretation given in Sec- 
tion 2, the above processes can be executed in the 
M N  fully decomposed distinct residue subrings 
modulo (x - rl)(y - r j), 0 <~ i < N, 0 ~ j < M. In 
other words, only MN corresponding compon- 
entwise products and the CRTP reconstruction 
process are required. As a result, the product of two 
2-variable polynomials can be performed by 2V- 
PRNS with a multiplication-complexity which 
meets Winograd's lower bound [6]. 

4. Examples 

First, a concrete example of computing a 
2 x 4 cyclic convolution is given to have a better 
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understanding of Section 3.2.1. Consider the 
following 2-D cyclic convolution: 

I23 1 5 271 I21 4 2 351 (69, 
4 6 (*c) 3 2 ' 

where '*c' denotes the operation of 2-D cyclic con- 
volution. Eq. (69) can be represented in 2-variable 
polynomial form as 

C(x,y)  = (A(x ,y ) 'B(x ,y ) )~x , -1)~y~- l t ,  (70) 

where 

A(x ,y )  = (2 + lx + 5x 2 + 2x 3) 

+ (3 + 4x + 6x 2 + 7x3)y, 

B(x, y) = (2 + 4x + 2X 2 + 3X 3) 

+ (1 + 3x + 2x 2 + 5x3)y. 

The modular ring Zm is chosen to be integer m with 
m = 1 7 3  which satisfies N = 4 J ( 1 7 3 - 1 )  and 
M = 21(173 - 1). 
Step 1. Let us factorize (y2 _ 1) in ZI7 3 as 

y2 _ 1 = ( y -  1)(y + 1). (71) 

Step 2. 

,o'2 
A(x , y )  , A*(x , y )  = (A~(x) ,A*(x))  

= ( 5 + 5 x +  l lx  2 + 9 x  3, - 1 - 3 x - x  2 - ' 5 x 3 ) ,  

ol 
B(x, y)---+ B'Ix,  y) = (t~*tx), B*(x)) 

= ( 3 + 7 x + 4 x  2 + 8 x  3, 1 +  l x - 2 x 3 ) .  

Step 3. By one-dimensional PRNS technique, we 
get 

C*(x ,y )  = A*(x ,y)"  B*(x ,y )  

= (162 + 174x + 160x 2 + 164x 3, 

- 2 x  + 6x 2 - 4x3). (72) 

Step 4. Reconstruct CAx) from 
i - 1  

CIx, y)= Y~ C*(x).O.*tx, y) 
i = O  

= c~'(x). 2-'(1 + y ) +  C*(x)(1 - y )  

= (81 + 86x + 83x 2 + 80X 3) 

+ (81 + 88x + 77x 2 + 84x3)y. 

That is, 

I 2  1 5 27] [ ~  4 2 35] 1 81 
3 4 6 (*c) 3 2 = 81 

86 83 80 1 
88 77 84 " 

(73) 

As shown in this example, the modular ring F must 
be chosen such that [FI >/(2- max(al,j) II hi,ill + 1) 
[4], where ]FI denotes the cardinality of F, 
max(ai, j) denotes the largest value of the 2-D array 
a~,j and H b~,j II is the sum of the magnitudes of all 
the elements of b~,j. 

Another concrete example by utilizing the full 
power of two-dimensional PRNS in computing 
2 x 4 two-variable polynomial products is given to 
clarify the approach of Section 3.2.2. Consider the 
following 2-D PRNS mod(x 4 + 1)(y 2 + 1): 

E 20II [2'3'0] 
1 1 0 1 ( * + )  1 2 1 ' 

where '*+' denotes the operation mod(x4 + 1)x 
(y2 + 1). Eq. (74) can be represented in 2-variable 
polynomial form as 

C(x,y)  = (A(x,y)'B(x,y)>tx4+x~o.2+l), (75) 

where 

A(x ,y )  = (2 + 2x + 0x 2 + lx 3) 

+ (1 + lx + 0x z + lx3)y, 

B ( x , y ) = ( 2 +  l x + 3 x  2 +  lx 3) 

+ (1 + 2x + l x  2 + 0x3)y. 

The modular ring Z,, is chosen to be integer m with 
m = 17 which satisfies N = 41(17 - 1) and M ~< N. 
Step 1.Let us factorize ( y 2 +  1) in quotient field 
Z(x) / (x  4 + 1) as 

y2 + 1 = (y - x2)(y  + x2). (76) 

Step 2. 

A (x , y )  0'~ ,A°(x,y)  = (A~(x),A~(x)) 

= (2 + lx + 1x 2 + 2x3,2 + 3x - lx 2 + 0X3), 

81x, y) "~ , 8°(x ,y)  = (Bg,{x), B~(x)) 

= (1 + lx + 4X 2 q- 3X 3, 3 -4- lx + 2X 2 -- 1X3). 
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Step 3. Let us factorize (x 4 + 1) in field Z17 as  

x 4 + 1 = (x - 2)(x - 4)(x - 8)(x - 16). (77) 

By 1-D P R N S  technique, C ° (x, y) can be obtained 
as 

C°(x , y )  = A ° ( x , y ) . B ° ( x , y )  

= ( - 7 - 8 x + 4 x  2 +  13x 3, 

11 + 10x + 4X 2 + 3x3). (78) 

Step 4. Reconstruct  Ci(x) from 

i : l  

C(x,y) = y C?(x). Q?ix, y) 
i=0 

= C~(x) .2-1(1  - xZy) 

+ C f ( x ) . 2 - 1 ( 1  + xZy) 

= (2 + lx  + 4x 2 + 8x 3) 

+ (0 + 5x + 9x 2 + 9x3)y. 

That  is, 

1 0  2 1  5 9  

(79) 

5. Discussions and conclusions 

In this paper, from the derivations given in Sec- 
tion 2, the polynomial  residue number  system can 
be interpreted by the terminology of Chinese Re- 
mainder Theorem for polynomials  over a finite 
ring, which is more  familiar with the computer  and 
signal processing societies. The index mapping  
techniques is proposed to implement long length 
1-D P R N S  by Mult i -D PRNS.  2-D P R N S  system 
has been investigated in detail. This system pro- 
vides a powerful tool for comput ing  polynomial  
products  mod(x  u _ 1)(yU + 1) with a minimum 
multiplication complexity and full parallelism. The 
proposed 2-D P R N S  has the advantage of better 
extensibility, it can be applied to define Mult i -D 
P R N S  directly. 

This work is principally theoretical and strictly 
mathematical ly oriented. Applications are dis- 
cussed but no complete design implementations are 
given. One limitation of such approach  is the size of 
the ring used for the arithmetic is propor t ional  to 
the size of polynomials  to be multiplied. As a result, 
one must  involve the expensive-cost of hardware 
design or table lookup implementations. Future 
research may focus on applications which are im- 
plemented using the P R N S  to provide high-speed, 
low-cost, low complexity designs. The present work 
provides the necessary theoretical backgrounds  
and mathemat ic  tools for the researchers, in this 
direction, for further works. 
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