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The Homology Theory of Graphs

by

Su-Win Yang and Ching-Hsiang Yu

Department of Mathematics
National Taiwan University
Taipei, Taiwan

Abstract

For a graph, the contraction of its edges produces some other graphs. The con-
tractions are considered as the boundary operator, and we have a chain complex of
graphs. Motivated from the theory of knot invariant, we consider the graphs with a
special fixed set of points as part of the vertices and the associated chain complex. If
we can get some particular results for such chain complexes of graphs, we can show
the important results for the knot invariants from the perturbative Chern-Simons
theory.

A graph is an abstract 1-dimensional simplicial complex, that is, a set of vertices and
a set of edges, each edge consists of two distinct vertices.

We shall define chain complexes of modules ( or vector spaces ), each module is freely
generated by a set of graphs. Similar to the simplexes in simplicial homology, the graphs
need orientations. There are different methods to define the orientation of graph, one of
the simplest way is to choose a linear order for the edges, two orders represent the same
orientation if they are different by an even permutation. For a graph, a simplicial isomor-
phism from the graph to itself is said to be an automorphism, if the simplicial isomorphism
preserves all structures which are assigned to the graph; the set of all automorphisms forms
a group which is called the automorphism group of the graph. If there is an automorphism
of the graph, which reverses the orientation of the graph, then this graph is said to be
non-orientable. The non-orientable graphs are considered as zero in the chain complex,
when we use the real number as the coefficients.

Next important thing for chain complexes is the boundary operator. For a graph and

an edge of the graph, we can contract this edge to a vertex and get a quotient graph;

1




the summation of all such quotient graphs multiplied by a proper sign is defined as the
boundary of the graph. Suppose we use the linear orders of edges as the orientation and
I is a graph with orientation, then the boundary 8(T') = }_(—1)78Y)(T"), where 89 (T)
is the quotient graph of I' by contracting the j-th edge, with orientation the restriction
order. Similar to the boundary operator in simplicial homology, 3(8(I")) = 0, it is the only
geometric property of a chain complex.

Remark: In Perturbative Chern-Simons theory, the graphs represent differential
forms and the boundary operator is exactly part of exterior differentiation of the associative
differential forms. Thus the above homology theory of graphs is usually called the graph
cohomology as in Bott and Cattaneo []. But, in spirit, it is a homology theory and is dual
to the cohomology theory of differential forms by the Stoke’s Theorem.

1 Graphs and chain complex

1.1 Based graphs

In this subsection, we will introduce the notion of graphs based on a set.
We always assume these graphs with some particular points as part of the vertices,
such vertices are called the base points of the graphs and the graphs are called the based

graphs.
Definition 1.1.1: Suppose z,,%s," -, Z, are m distinct points. A graph I' is said to

be a graph based on the ordered set (z1,z2, -, Zn), if the points z,,2,,- -, z,, are part
of vertices of I'. The points z,, z3,- - -, Z,, are called the base points of I'.

Notations 1.1.2:
(i) WeuseI, I, ', I'; to denote the graphs.

(ii) For a graph I', V(I") denotes the set of all vertices of I' and £(I") denotes the set of all
edges in I. Thus, for any FE € E(T'), E = {v,w}, v,w € V(I'), and v # w.

(iii) The vertices other than the base points are called the inner vertices of I'.

Equivalence of based graphs

Definition 1.1.3: Suppose I'; and I'; are two graphs based on (z;, 23, -, Zm). A bi-
jection f : V(I';) — V(I'2) is an equivalence of based graphs, if f(z;) = z;,i = 1,2,---,m,
f(E) € E('2), for E € £(T1), and f~}(E') € E(Ty), for E' € E(T). ( The last two con-




ditions on the edges are the conditions for the bijection f to be a simplicial isomorphism.
)

If two graphs are equivalent, it is hard to distinguish one from the other. Thus we need
only to choose one graph from each equivalence class of graphs, or just consider the whole
equivalence class instead of the particular graph. There are a few assumptions which are
crucial to our result. Under these restrictions on the graphs, there are only finite number
of equivalence classes of based graphs.(See the Proposition 1.1.5).

Assumption 1.1.4:

(i) Valency Assumption: The valency of a vertex in a graph is the number of edges
which contain the vertex. Now, we assume that every inner vertices of a based graph
are of valency at least 3. For the base points z;, there is no restriction on the valency,
it could be 0 or any positive integer.

(ii) Order Restriction: The order of a graph is defined as the number of its edges minus
the number of its inner vertices. The definition of order makes sense only under the

above Valency Assumption.

Because the order is invariant under edge contraction, we usually fix the order of graphs

in a chain complex.

Proposition 1.1.5: Under the valency assumption and the order restriction, we have
only finite number of equivalence classes of graphs based on (z1,zs, -, Zm).

Proof: First, we show that there are only finite graphs in which the inner vertices are
all of valency exact 3.

Assume the order of graph is n.

Let s; denote the valency of the base point z;, 1 =1,2,---,;m,s =8+ 83+ -+ 8m, T
denote the number of inner vertices and k£ be the number of edges.
Then s+ 3r = 2k.
Thus r<s+r=2k—-2r=2n,
and hence, k=n+r < 3n.

Up to equivalence, we may assume that all the graphs have the vertices in the set
{z1,Z2,"**yZm,¥Y1,Y2," **» Y2n}. Thus the possible graphs is finite.

From such “trivalent” graphs, we can have all the order n graphs by contracting the
edge a finite number of times, and each “trivalent” graph can only produce finite number

of graphs. Thus all possible order n graphs are finite.

1.2 Chain complex of graphs




All graphs satisfy the valency assumption: the valency of inner vertices are at least
three.

We also need a number, the degree of graph. Suppose the vertices of graphs are points
of a-dimensional Euclidean space. ( We may say that the graphs are on R®. ) Each
edge gives a (o — 1)-form and each inner vertex can move in R*. If I" has k edges and
r inner vertices, then the integration of the wedge of the k¥ (a — 1)-form on the r x a-
dimensional configuration space produces a differential form of degree k£ x (a —1) — r X a.
But the degree is only good for cohomology theory. To get a homology theory, we define
the degree as —k x (a — 1) + r x a. ( For the details of the relations of graphs and the
differential forms, please see the historical backgrounds in Appendix. ) For the purpose of
our main applications, we may consider only the graphs in R? temporarily. We shall also
be interested in the graphs in R? in the following related works. Thus we give the following

definition.

Definition 1.2.1: (Degree of plane graph) The degree of a based graph is the double
of the number of its inner vertices minus the number of its edges.

Definition 1.2.2: For a positive integer m and an integer i, let C* be the vector space
over the real number generated by all oriented degree i graphs based on (z1,zs,: -, Zm),
modulo the following Orientation-equivalence relation:
Two oriented graphs having an orientation preserving equivalence between them are
considered as the same element in C7*; if the equivalence is orientation reversing,
one is equal to the other multiplied by a negative sign.

Orientation systems
There are two different orientation systems, including the linear order of edges men-

tioned previously.

Orientation system (I): ( Linear order of edges )
It is the orientation system used in the proof of the theorems in the paper.
Suppose a based graph I" has k distinct edges Ey, Es,- - -, Ex. Consider a linear order
(Ey, Es, -+ -, E}), all the informations of the graph are contained in (E}, Ey, - - -, Ex). Thus
we still use (E, E,, - -, Ex) to denote the oriented graph, and also use the same notation
to denote the corresponding element in C/*. Interchanging the positions of two edges in a
linear order set, we get the negative element. Thus, if E; = Ej, for some 1 < j < j' <k,
then (E, E,, - - -, E;) = 0; ordinarily, we do not meet such an oriented graph, but it does
happen on the “degenerate boundary” of a graph discussed in the following section.
If f: V(I') — V(I") is an equivalence of based graphs from I to I/, then (f(E), f(E2),-- -, f(Ex),




is an oriented graph and

(f(BL), f(Ba), -+, f(Ek)) = (B, Ba, -+, By) .

When I' = I, f is an automorphism and (f(E), f(E2), -, f(E})) is a permutation of

(Er, Ey, - - -, Ey); if the permutation is odd, then the above equality implies that (Ey, E, - - -, Ex) =

0 in C*. In this situation, I' is said to be non-orientable.

Orientation system (II): ( Linear order of vertices together with directions on every
edges )

If the graphs are on R?, we should get this orientation system from the differential
forms. ( For the graphs on R?, we get the Orientation system (I). )

For an orientation of I, we need to choose a linear order of the vertices of I' and
directions on every edges of I'. Two such orientations for I" are the same , if the total
number of changes in the order of vertices and the directions of the edges is an even
number. Because the direction of an edge is also an order of the two endpoints, we may get
the order by restricting the linear order of vertex set. Thus the linear order (v;, v, -+ -, vs)
of vertices can determine an orientation, denoted by [vi,vs,:--,v,], in the Orientation
system (II).

What happen when interchanging the positions of two vertices? If {v;, v} is an edge
of ', then

[v2)vla'°'1'va] = ['Ul,'Ug,"','Us] )

if {v1,vo} is not an edge of T, then
['02,'01,"','03] = —'[vZ’vla"'avsl .

We may also have the non-orientable based graph in the Orientation system (II).

Remark 1.2.3: Because the two orientation systems have different non-orientable
based graphs for the same numbers m and ¢, C[" can not be the same vector space in the
two systems. But the main results of the paper hold in both systems. ( The proofs are
also completely similar in both systems. )

The boundary operator

To obtain a chain complex, we need a boundary operator from C" to C*,. For both
orientation systems, the boundary operator can be defined. Here we define it only in
Orientation system (I). For Orientation system (II), please see Bott and Cattaneo [].

The boundary operator is the sum of edge-contractions, but the edges consisting of two
base points can not be contracted, such edges shall be shown to have essential contributions
to the graph homology. Thus we need the following definitions.




Definition 1.2.4: (Basic edges) Suppose I is a graph based on (21,3, -+, Tm). An edge
E is said to be a basic edge, if F consists of two base points, say, zj,,Zj,, 1 < j1 <j2 <m;
otherwise, it is called the non-basic edge. .

Thus a non-basic edge may consists of two inner vertices, or, a base point together with
an inner vertex.

Suppose I' is a graph based on (21, %2, *,Zm) and (Ey, E»,- - -, E) is a linear order of
the edges of I'.

For each non-basic edge E;,1 < j <k, let 7j : V([') — V(I')/E; denote the quotient
map. Then (m;(E1),7;(E2), -+, m;(Ej-1), ®j(Ej+1),- - -, m;(Ex)) is a linear order of edges
of the quotient graph I'/Ej;.

Convention 1.2.5: If the edge E; consists of a base point z; and an inner vertex v, then
we identify the quotient point ;(z;)(= 7;(v)) with the base point z;.

Thus the quotient graph I'/E; still be a graph based on (21, Z3, - - +, Tmm) and (7;(E1), mj(Ea), - - -, 5(
is the associated oriented graph; it is the j-th boundary of (Ey, E,,- -, Ex) as in the fol-
lowing notation.

Notation 1.2.6: If E; is a non-basic edge of T,

aU)(El’ Ey,--- ,Ek) = (Wj(El): 7TJ'(E2)’ Tty ”j(Ej—l)’“j(EJ'+l)a B Wj(Ek)) .

If E; is a basic edge of T', 0YU)(E,, Ey,---,E;) = 0.

Now, we can define the boundary operator

by the formula
k
OBy, B, -+, Ex) = Y (-1/09(Ey, By, - -, Ey)

i=1

For a non-basic edge E;, 8Y)(E,, E,,-- -, Ey) usually is not equal to zero except that
the graph I'/E; is non-orientable or the edge E; is part of a triangle, as described below.

Degenerate boundary ( Triangular edge )

E; = {v,w} is said to be a triangular edge, if there is a vertex u of I' such that
both {u,v} and {u,w} are edges of I'. For the edge Ej;, we consider the boundary
89 (Ey, Ey,---,Ey). mj({u,v}) = mj({u,w}). When interchanging the two edges, we
have the equality

a(j)(El,Eg, o By) = —60)(E1,E2,-- -, Ey) .

Thus BU)(El, Ez, o ,Ek) = 0.




Therefore, for any positive integer m, we have the chain complex
cr={Ccr, 9:Cc* —Cr,,i=---,-2,-1,0,1,---}

Our main result is the following theorem.

Theorem 1 Let C(m,R?) = {(21,22,"**,2m) € [[R? : 2, # 2z, for p # ¢}, the
m

configuration space of m distinct points in the plane. Then
H;(C™) = H*(C(m,R?),R)

where H~(C(m,R?),R) is the cohomology group of the space C(m,R?) with the coefficient
R at the dimension —i. I

Thus H;(C™) is non-zero only at the degree < 0.

Remark 1.2.7: The homotopy structure of C(m,R?) is easy to describe, this space
is homotopy equivalent to the product space Xpy,—1 X Xpm—2 X -+ X X;, where X, = S'Vv
Slv...v 8!, the wedge of p copies of S, S! is the unit circle. Thus we can compute the
graph homology easily by this theorem. We give some applications in the following.

Splitting C™ by the order restriction
As mention before, the order of a graph is the number of edges minus the number of

inner vertices and it is invariant under the boundary operator.
Let C™" = {C[™"} be the subchain complex of C™ generated by the order n oriented

graphs based on (z;, 2, -, Zsy,). Then

c™ = @ cmn

n

We have shown that there are only finite equivalence classes for a fixed number of base
points m and a fixed order n. Thus C™" is a vector space of finite rank ( finite dimension
), C™ can not be a finite rank vector space.

There are some trivial examples:
(i) For any positive integer m, the unique graph of order 0 is the graph I'y without any

edge ( £(To) is empty ), it is in degree 0. Thus Cj*° =R, C™® = 0, for i # 0, and the
homology H;(C™°) = C™°, for all degree i.

(ii) The graph of order 1 is a graph with one edge and no inner vertex. Thus all the order
1 graph are of degree —1. H;(C™!) = C!™' =0, except i = —1.




(iii) Consider the case m = 2. The unique graph of order 1 is the graph with the unique
basic edge {z1,2,}. Thus H;(C*!) = C*' =0, for i # —1, and H_,(C>!) = C*! =R.

Consider the “simplest” configuration space of 2 points, C(2, Rz), it is homotopy equiv-
alent to S'. By the theorem, H;(C?) = 0, for i # —1, and H_;(C?) = R. The results
H_;(C*') = R and Hy(C?®) = R imply that H;(C>") = 0, for all order n > 2 and all
degree i. This simple fact is related to the problem of zero-anomaly in the perturbative
Chern-Simons theory for knot invariant.

Using the same way, we can compute all homology of C™" easily. For example,
Hy_pn(C™™1) has rank (m — 1)}, it is the lowest degree in which the homology of C™
is non-zero, and H;(C™™~!) =0, for ¢ # 1 —m. These are important to the theory of knot

invariant.
2 The subchain complexes of C™"

In Section 1, we find that when the number of base points, m, and the order of graphs,
n, are fixed, the homology of the chain complex C™" are completely determined. And for
many cases, the homology of C™" are trivial group, such chain complexes C™" are called
acyclic. To apply the acyclic results of C™" from Section 1, we should find a subchain
complex of C™", which is generated by the based graphs with trivalent inner vertices, and
is chain homotopy equivalent to C™™.

2.1 A filtration of C™"

We need some notations to formulate the theory.

Definition 2.1.1: Suppose I is a graph based on (z;,zs,-*,Zy). An edge E of T
is said to be an inner edge, if E consists of two inner vertices. An edge E of I is said to
be an outer edge, if E consists of a base point and an inner vertex.

Thus these two types of edges are the edges we can make the edge contraction, and the
edges other than these two types are the basic edges which contain two base points.

It is easy to see that the inner vertices and inner edges form a subgraph, which is called
the inner subgraph of the based graph.

For a based graph T', let s denote the number of outer edges of I, ¢ denote the number
of inner edges of I', and « denote the number of basic edges of I'. Thus I has s + ¢ + u
edges. In the theory of knot invariants, the uni-trivalent graphs are considered and the
number s + 2u is related to the number of univalent vertices, i.e., the number of legs. We




shall use the number s + u to give a filtration of C™". Precisely, for a based graph I, let
p =n — s — u denote the base degree of I. ( n, the order, is fixed, thus p is just a shift of
s+u.)

Let F(p) denote the subchain complex of C™" generated by the based graphs with base
degree not larger than p. ( or, equivalently, generated by the based graphs for which the
number of outer edges and basic edges is at least n — p. )

C™"=Fn)DFn-1)D---D>F0)DF(-1)D--- D> F(—n)

2.2 The double sequence D,,

Let D™ be the quotient chain complex F(p)/F(p—1), its degree i vector space (Dy*");
shall be denoted by D,;",, or, simply, Dy;_,. Then we have a double sequence of vector
spaces {Dpg,p=--+,—1,0,1,2,-+-,¢="-++,-2,-1,0,---}. The vector space D, can be
interpreted as the real vector space generated by the degree p + g based graphs for which
the number of outer edges and basic edges are equal to n —p. The number pand g =i —p
is an important number of the graphs and there are some observations as follows:

(i) For a based graph T, let r denote the number of inner vertices. Then the order
n=3s8+t+u—r, thus p =t —r. pis the negative Euler Characteristic of the inner
subgraph.

(i) The degree i = 2r — (s+t+u). g=(2r—s—t—u)—(t—r)=3r—s—2t. s+2t
is equal to the sum of valencies of all inner vertices. By assumption, the valency of inner
vertex is at least 3, thus —q is the summation of (Valency — 3) over all inner vertices. ¢ is
a non-positive integer.

(iii) If ¢ = 0 for a based graph, then this graph is a trivalent graph ( the valency of
inner vertices are all equal to three ).

The study of the chain complex D;*" is an important step for the further works. As
Yu’s work, in many cases ( order n < 5 ), the homologies of Dp*" are all equal to 0 except
g = 0. Thus, originally, we conjecture that the homologies of D" are all equal to 0
except ¢ = 0, for any m,n, and p. ( In Section 4, we prove the conjecture for the case
that m = 2 and n = 5. ) If the conjecture is true, then the acyclic property C™" implies
the acyclic property of K™" = {K;’"”,E}, where K" is the kernel of 8 : Dp,g — Dy,
and @ : K™ — K“7 is a natural boundary operator induced from C™". Thus an
element of K7*" is a linear combination of oriented trivalent based graphs. By Bott and
Taubes’ result, the formal boundary relationship of graphs produces the same formula
for the corresponding differential forms. But, after a long time trying, we can not find

a reasonable method to attack the conjecture. Therefore, we weaken the conjecture such




that it is still good enough for our purpose. Finally, we find that the new conjecture looks
much more reasonable. For our special purpose, we may restricts ourselves to the based
graphs in which the inner subgraphs are connected.

Definition 2.2.1: Suppose I' is a graph based on (z;,2s,- -, Z,,). Let I'* denote the
subgraph of I" consisting of all the inner vertices of I" and the edges connecting two inner
vertices in I'. The graph I'® shall be called the inner subgraph of I'. T’ is said to be
quasi-connected, if the inner subgraph I'* of I is connected.

Definition 2.2.2: The loop number of I" shall denote the loop number of its inner
subgraph I'°, that is, the first betti-number of I'°. If I' is quasi-connected, then its loop
number is equal to the number of inner edges minus the number of inner vertices and plus
1.

Obviously, for a quasi-connected based graph, the loop number [ is exactly equal to
p+1 ( note: p=t—r ). Because the loop number can be read from the graphs directly, we
shall use the number / instead of the number p when we consider only the quasi-connected

graphs.

Let Q™ be the sub linear space of D;"7, generated by all quasi-connected based
graphs with order n and with loop number I. Furthermore, let Q™"™* denote the following
chain complex:

. Ammil 01, Ammnl 81, ~Ammn,l 9
= QG = QT = QT ey,

where 0y : Q;"’"" — Q,’;ﬁ'{" is the boundary operator induced from the quotient chain
complex of C™" and can also be defined explicitly on the based graphs in D;"7 as follows:
For an oriented based graph (E, E,,- - -, Ex) in Q;’"”" ,
01(Ey, Ey, -+, E}) = Z(—l)fa(j)(El,Eg, o, By,
over all inner edges E;.
The operator 9; is called the inner boundary.

In our consideration, the base points (z1, s, -+, Zm) and the order number n are always
fixed. Thus we may simplify the notations Q™™ and Q7™ to Q', and Qf, respectively,
without any ambiguity.

Actually, as long as we have the number u of basic edges and the number s of outer
edges, the loop number [ also determines the order n =s+u+1—1.

Our future main work shall be to prove the following

Conjecture 2.2.3: Assume the loop number [ is larger than 1, then H,(Q') = 0, as

10




g<-l.1

For the case that the loop number [ = 0, the corresponding statement of Conjecture
2.2.3 is not adequate. But we already know that the homologies of Q° are all trivial except
the top dimension g = 0; it is the correct statement we need. When the loop number is
small, say, | < 4, it is not hard to check the conjecture in some way. We shall mention

these results in further works.

2.3 Restricted based graph and standard graph

In this subsection, we define the notion of restricted based graph I"' and the associated
base-map or.

For a quasi-connected based graph, the inner loop number [ and the order n can deter-
mine the number of edges which are not in its inner subgraph, that is, the number s + u.
In applications, there is no basic edges usually. Thus, in @', all the graphs have the same
number of outer edges, no matter how many base points z,,zs, - -+, Z,, are under consid-
eration. Therefore, it looks that the conjecture is nothing to do with the base points, and
we may assume that different outer edges have different base points in the edges, that is,
forgetting the existence of basic edges temporarily, the base points are all univalent.

Precisely, let R™™! be the subchain complex of Q™" generated by all the based
graphs I' for which each base point of I' has exactly one outer edge connecting to it,
such based graphs are called the restricted based graphs. Then we have the following
straightforward result.

Proposition 2.3.1: Now we fix the loop number / and the order number n and consider
the chain complexes R™™, for all possible m. If the Conjecture 2.2.3 holds for all R™"4,
m=1,2,---, then the Conjecture 2.2.3 holds for all Q™™ , m =1,2,.--. §

( Thus in the proposition we consider the graphs on different based set (21,22, -+, Tm).

Therefore, to prove Conjecture 2.2.3, it is enough to consider the restricted based graphs
and the chain complexes R™™. For convenience, we also simplify the notations R™"* and
Ry to R', and R} and consider the following conjecture.

Conjecture 2.3.2: Assume the loop number ! is larger than 1, then Hy(R') =0, as
g<-l.1

Definition 2.3.3: (Base-map of restricted graph) For a restricted based graph T,
there is a map ¢r from the based set {z1,z2, , I} to the set of inner vertices, which

11




assigns each base point to the inner vertex connecting to it by a unique outer edge of T'.
For simplicity, we write ¢r as {1,2,---,m} — V(I'*).
Thus, for each i, 1 < i <m, {z;,¢r(i)} is an outer edge of I'.

Definition 2.3.4: A restricted based graph I' is said to be a standard graph, if its
base-map ¢r is a one-to-one map; or else, it is a non-standard graph.

It is easy to see that all the non-standard restricted based graphs form a subchain
complex N* of R', and the associated quotient chain complex R'/AN?, denoted by S, can
be considered as the chain complex of standard graphs with the following “partial” inner
boundary:

For an oriented standard based graph I' = (Ey, Eo,- -, Ex) 0,(Eh, Es, -+, Ex) =
> (-1)Y98Y)(E,, Ey, - - -, E;), the summation is over the edges E; which are not
contained in the image set of ¢r. ( Thus the graph 8Y)(E,, E,,---, E}) is also a
standard graph. )

In the following, for a standard graph, the “partial” inner boundary defined above shall
be called the standard inner boundary, or simply, the standard boundary.

Proposition 2.3.5 The homology of N are all trivial, and hence, the two chain complexes
R' and &' have isomorphic homologies. ( The isomorphism is naturally induced from the

quotient map. ) §

The proof of the proposition is similar to that of Theorem 1, and it is given after the

proof of Theorem 1.

Remark 2.3.6: In the study of R! ( or, @ ), we may assume the number of basic edge, u,
is a fixed number. Then the number of the base points is already determined by the order
number n and the loop number [, that is, m = s =n —u — [+ 1. If we forget the basic
edges, or substitute the order number n by the number n — u, we shall finally find the loop
number is the only essential thing we really need and the n — u — I + 1 base points appear
as the coefficients in some homology theory.

Structure of standard graph:

(i) The inner subgraph of a standard graph I' does not admit any univalent vertex.
Each bi-valent vertex of the inner subgraph must be equal to ¢r(j), for some base point
X;.

(ii) There is a “graph” with every valencies at least 3 and homeomorphic to the inner
subgraph of I, such a “graph” is called the central graph of the standard graph. Thus, for
a standard graph, its central graph is the inner subgraph forgetting the bivalent vertices.
The central graph admits double edges and is not a simplicial complex.

12




Utilizing the concept of central graph, we may consider the standard graph as a central
graph together with a one-to-one map from {1,2, - - -,m} into the central graph. Thus, the
central graph is actually the “central part” of a standard graph.

3 The proofs
3.1 Proof of Theorem 1

We shall define a chain homotopy type linear map 7 : C* — C}, and consider the
associated chain map A =708+ o7 of C™. We can show that (1) the subchain complex
Ker()) = {z € C™ : A(z) = 0}, the kernel space of ), is chain homotopy equivalent to
C™, and (2) Ker()) is equal to the tensor product of C™~! and £™1, €™~ is the dual of
H*(Xy-1), as in Theorem 1.

Definition of 7 : C* — C[};:

For any degree i graph I' with orientation (Ej, E,- -, Ey), let n(I") be the graph I
with an additional vertex a and an additional edge E},, = {a,z:}. We assign n(T') the
orientation (Ey, Es, - -, Ex, E},,). Let ¢ be the permutation of the vertex set V(I') U {a}
interchanging a and z, that is, ¢(a) = 1, #(z1) = a, and ¢(v) = v, for any other vertices

v.

Define 7(Ey, Es, - - -, Ex) = (=1)¥*}(¢(E), ¢(Ez), - - -, #(Ex), $(Ey,)), the correspond-
ing graph is denoted by 7(T'). Then 7(T') is also a graph based on (z;, T2, -, Zx), with an
additional inner vertex @ and is simplicially isomorphic to n(I’). If the valency of z; in I’
is at least 2, then the valency of a in 7(T') is at least 3, and hence, the associated oriented
graph 7(E,, Ey, - -, E}) is a qualified element in C7},, ¢ is the degree of T’; if the valency
of z; in I is equal to 0 or 1, then 7(I') can not satisfy the valency assumption and we just
define 7(Ey, By, -+, E;) as 0 in C,. If I is a graph equivalent to I, then 7(I") is also
equivalent to 7(I') and it is straightforward to prove the remaining well-defined property.

Because in the graph 7(T"), the valency of z; is equal to 1, 7(7(Ey, Es, - - -, Ey)) is always
0 in C7},. This proves the following lemma.

Lemma 3.1.1: The linear homomorphism 7 o 7 : C* — C}, is a zero-map.

Lemma 3.1.2: Suppose I' is graph based on (1,2, -, Zm).
If T satisfies the following x-condition:
(%): every edge containing z; is basic and the valency of z; < 1, then

(rod+ado7)([T})=0 ;
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if I does not satisfy the x-condition, then
(Tod+0do7)([I]) = [I]
where [I'] denotes the graph I" with orientation. 1

We prove Lemma 3.1.2 later and use it to prove Theorem 1.

At first, we check that the linear homomorphism A = 70 &+ d o 7 is a chain map, that
is, to show the equality A 0 @ = d o A as follows:

Aod=(100+007)0d=T70000+00T700=007T00,

0dol=00(Tod+0071)=00700+00d0oT=00700d.

Let Ker(A) = {z € C™ : A(z) = 0}, the kernel space of A, and Im()\) be the image space of
A. Then both Ker(A) and Im()) are subchain complexes of C™.

By Lemma 3.1.2, Ker(\) contains the linear subspace D; of C™, generated by the
set {[I'] : T satisfies the x-condition }. We may also consider the linear subspace D, of
C™ generated by the set {[I'] : I does not satisfy the x-condition }, then C™ = D; & D,.
Because ) is equal to 0 on D; and is equal to the identity map on D, ( also by Lemma
1.4.11 ), X is a projection map of C™, that is, satisfying the equality Ao A = A.

Of course, this leads to the result that D; = Ker(\) and D, = Im(A).

By Lemma 3.1.1 and a similar computation as above, A o 7 = 7 o A\. Thus 7 provides
a chain homotopy between the identity map and the 0-map in the chain complex Im()),
and hence, H,(Im()\)) = 0.

This implies that H,(C™) & H,(Ker())).

We summarize the arguments above to the following proposition.

Proposition 3.1.3: Suppose C = {C",§;: C"* — C™*,,i=---,—-2,-1,0,---} is a
chain complex ( §;-100; =0, ),and 7; : C* — C};, 4 = +-+,-2,~1,0,- -, are linear

maps increasing the grade by 1 which also satisfy the condition of coboundary, 7;;,07; = 0.
Furthermore, assume that the associative chain map of {r;}, {\ = i1 00+ Oiy107 :
cr — CM* i = --.,-2,-1,0,--} satisfies the condition of projection map, that is,
;0 Aj = Ay, for all 4.

Then the kernel subchain complex Ker(\) = {kernel of )\;, for all i} has the homologies
isomorphic to that of C. B

For the different possible basic edge containing z;, we split Ker()) into the subchain

complexes which are isomorphic to C™1,
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Let (1) be the subchain complex of Ker(\) generated by all oriented graphs in which
the valency of z; is 0.

For each j, 2 < j < m, let K(1, ) be the subchain complex of Ker()) generated by all
oriented graphs in which {z,,z;} is the unique edge containing z;.

Then Ker(\) = K(1) @ K(1,2) 8 K(1,3) & --- & K(1,m).

K(1) is exactly the chain complex of oriented graphs based on (z3,z3,-*,Tm), it is
canonically isomorphic to C™~!, and for other j, K(1,7) is isomorphic to (1) with the
elements decreasing the degree by 1.

To describe the structure precisely, for any positive integer p, let £7 be the chain
complex defined by: for degree 0 and —1, €5 = R, £?; = RP; for other degree i, £F = 0.
The boundary operator in £P are all the zero-map. £F & H~*(X,,R), for all i.

Then Ker(\) ¥ E™ 1@ K(1) X E™1@C™ .

Thus H,(C™) & H,(E™ '@ C™ 1) 2 ™1 @ H,(C™ ).

By induction, we have
H(C™)=2E™ 1020 @£,
it is the isomorphism needed in Theorem 1.
Proof of Lemma 3.1.2

Choose a linear order (Ey, Es, - - -, E}) for the edges of . If T" satisfies the (x)-condition,
then, for the non-basic edge E;, E; does not meet z; and I'/E; also satisfies the (x)-
condition. Thus, for the non-basic edge E;, 7(8¥)[']) = 7([[/E;]) = 0, and for the basic
edge E;, O[T is defined as 0; this concludes that

7(3[r]) = i, (-1) (r(@9(IT])) =0 .

By the valency assumption, 7([']) = 0, and hence, (0 o 7 + 7 0 8)([[']) = A(7([['])) +
7(8([T'])) = 0, this proves the first part of the main lemma.

For the second part, assume that the valency of z; in I is larger than 1, or, the unique
edge containing z, is equal to {z, v}, for some inner vertex v.
(Case 1): Valency (z;) > 2.

In this case, 7([I']) is non-zero. Consider the orientation (Ey, Es, - - -, Ey) for I'. 7([Ey, By, - -+, Ey]) -
(—1)k+1(¢(El)’ ¢(E2), -+, ¢(Ek), ¢(Ek+1,))
( Note: ¢ is defined in the definition of 7 ). Thus

k+1

(90 7)(Br, By~ By) = (~1)F Y (~1Y09 ($(En), -+ - $(E)-

=1

The last term in the summation above,
(—1)F* - (—1)¥+10*+ D (9(Er), §(B2), -+ -, $(Bk), (Ei41))
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is exactly equal to (E, Es,:-- Ey), the oriented graph of I'. For 1 < j < k, we should
check that
(=1 (1180 (§(Er), $(Ez), - - -, (Er), ¢(Eiy1))

is equal to —7((—=1)10Y)(E,, E,, -+, E;)). As in the definition of 89, let 7; : V(') —
V(T')/E; denote the quotient map.

0Y)(Ey, By, -+ Bg) = (mj(En), - -+, mj(Ej-1)), mi(Bjna), - - -, mi(Ex))-

Thus 7(89)(Ey, By, ---Ex) =
(=1)¥(¢(mi(En)), - -, @(m3(Ej-1)), $(m(Ejs1)), - - - 6(mi(Ek)), d(m;(ER)))-

On the other hand, to study 09 (¢(E;), d(E2)," -, d(Ek+1")),
let 77 : V(T) U {a} — (V(T") U {a})/¢(E;) denote the quotient map, where a is the new
inner vertex in the definition of 7(I).

Then 8% (¢(E1)’ R ¢(Ek)» ¢(Ek+1’))
= (OB, - TH(HEs1)) T (B Essa))s - TS(E)), T5(#(Berr')).
It is straightforward to find that ¢(m;(E;)) = T;(¢(E1)), for 1 <1 < k,l # j, and ¢(E}) =
7;(¢(Ek+1")), which imply the equality

_T((_l)iai(Eh Ey,- -, Ek))
= (—1)**+1(=1)/80)($(En), $(E2), - -, ¢(Ei), $(Er41')),

and hence, we have
(aoT)(El,E2" * 'aEk) = (EI)E21' : ')Ek) - (Toa)(E17E27 " "Ek) .

(Case 2): Valency(z;) = 1.

There is some edge E, = {z;,v}, for some s, 1 < s < k and for some inner vertex v.

In this situation v can not be a base point, or else, I' satisfies the (x)-condition.

By the definition of 7, 7([[']) = 0. For the integer j # 5,1 < j < k, z, is also of valency
1 in 89)(I). Thus 7(8Y (")) = 0, for j # s. And it is easy to see that for the particular
boundary 8®)(T"), its 7-value, 7(8®*)(T)), is equivalent to the original graph I'. Together

with the orientation, we have

7(8(E1, Ea, - - -, Ey))
= 7((-1)°(ms(B1)), - - s Ms(Eism1), Ta(Eo1), - - -, Wa(Ei))
= (=1)F(=1)*(¢(ms(E1)), - -+, $(7s(Es-1)), §(Ms(Esr1)), - - -, #(ma(Eix)), #(ma(Ey))).-

In the equivalence of 7(8®)(T')) and T', the edge ¢(7,(E})) is correspondent to E,. When
changing the position of ¢(m,(E})) to the original position of E;, we get an additional sign
(-1)k-¢, Thus 7(8(E1, Es,- -+, Ex))
= (—1)**e(=1)**((ms(E1)), - -+, §(7s(Es-1)), ¢(ma(ER)), $(ms(Es1)), - - - #(ms(Ei))),
which is exactly equal to (Ey, Ea, - -, Ey).
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That is,
T(a(Ela E2> R Ek)) = (Ela E2, Ty Ek) .

This completes the proof of Lemma 3.1.2.

3.2 Proof of Proposition 2.3.5

Suppose I' is a restricted based graph with loop number ! > 0. I'° is the inner subgraph.
In the subgraph I'°, there is a minimal subgraph I'° which has the same betti number as
I'*; this subgraph I'° can be called the central subgraph of I'. I'° shall have no univalent
vertex and is a deformation retract of I'°.

For each base point z;, 1 < j < m, there is a unique simple path o; from z; to a vertex
y; of I'° such that o; only meets I'* at the point y;. The map ¢r: {1,2,---m} — V(I'*),
sending j to the vertex y; of I'°, is a well-defined map. For any two number 7 and j,
1 < i< j < m, y; may be equal to y;, or not. Thus the image set {y1,%2, -, ym} of ¥r is
not necessary to consist of m distinct elements. ( If y; = y;, the two paths o; and a; may
intersect a few edges of I". )

Let ¢(I’') denote the number of distinct elements in {y1,y2,--+,ym}. For each k, 1 <
k < m, let R}(k) denote the subchain complex of R' generated by the oriented restricted
based graphs I' with ¢(I') < k. Then we have the following filtration:

R(1)cR'@Qc---cR(im-1)cR

It is easy to see that R'(m — 1) = N'. If m = 1, M is trivial; thus in the follow-
ing we assume m > 2 and we shall show that the chain complexes R'(1), R!(2)/R'(1),
R'Y(3)/R2),- -+, R'(m — 1)/R!(m — 2) all have trivial homologies. These conclude the

result we need.

Lemma 3.2.1: Suppose m > 2. For the chain complex R!(1), there is a chain
homotopy linear map 7 : R! (1), — R!(1)441 such that 7 o 8; + 8; o 7 is equal to the
identity map. And hence, R'(1) has trivial homologies. i

Proof of Lemma 3.2.1:
Suppose T is a restricted based graph with orientation (Ej, Ea, - - -, Ex) and ¢(T) = 1;
thus yr(1) = ¢r(2) =--- =yr(m) = y.
Let 7(T') be the graph I"' with an additional inner vertex a and an additional inner edge
++1 = {@,y}, furthermore changing the edges {y, w} in I'* to the edges {a,w}. Precisely,
for each edge Ej; of T', let E be the edge defined as follows:
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(i) E; = E;, if y is not in Ej,
(ii) B} = Ej, if E; is not an edge of I'°,
(iii) E; = {a,w}, if E; = {y,w} and it is an edge of I'"°.

And 7(T') is defined as the oriented restricted based graph (—1)¥*(E}, Ej, - - -, E}, E} ).
If the valency of y in I' is equal to 1 plus the valency of y in I'°, then y becomes a bivalent
vertex of 7(I'); in this situation, 7(I') is not adequate in our theory and it is redefined as
0.

It is easy to check that the linear map 7 satisfying the assumption of Proposition 3.1.3
and the associated chain map A = 70 8; + 8y o T is equal to the identity map of R'(1).
This completes the proof of the lemma.

Now, for some k, 2 < k < m — 1, the quotient chain complex R'(k)/R'(k — 1) splits
into the direct sum of many chain complexes, each of them is of the following form:

Assume P = {A,, A,, - -, A} is a partition of {1,2,---,m}. Let R(P) be the subchain
complex of R*(k)/R!(k — 1) generated by the oriented restricted based graphs I' for which
¥r(4;) = {2}, for some vertex z;, i =1,2,--+,k, and ¢(I') = k. ( Thus z;, ¢ =1,2,---,k,
are all distinct vertices. )

Lemma 3.2.2: The homologies of R(P) are all trivial.

The proof is just completely similar to that for R'(1). Choose any A; containing more
than one integers, then the vertex z; is good for the position of y in the proof of Lemma
3.2.1.

And this finishes the proof of Proposition 2.3.5. ]
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4 The acyclic property of based graphs of order 5

In this section, we concentrate on the case of two base point (m = 2) and consider only
the graphs of order 5. Our purpose is to show that Hy(D2*°) = 0, for all ¢ < 0 and for all
p, where D25 is a chain complex defined in Section 2.2; it is equivalent to H,(Q**) =0,
for ¢ < 0 and for all I. ( There is some relation between p and !, stated also in Section 2.2.
) This is much stronger than that of Conjecture 2.2.3.

In the following, we also denote the chain complexes D25 and Q*5* simply by D, and
@', respectively; and, denote the vector spaces D23 and Q%% simply by D, , and QF,

respectively.
Finally, we have the following

Theorem 2: The chain complex C>° of oriented plane graphs of order 5, based on
(z1,72), has a subchain complex {K,,p = —1,0,1,2,---} with trivial homology and satis-
fying that every elements in K, are linear combination of trivalent based graphs. §

Now we sketch the proof of Theorem 2 and outline our study as follows:
Step 1. List all possible central subgraphs of based plane graphs of order 5.

Step 2. For each central graph, draw all the based plane graphs of order 5. And
partition all the graphs into different spaces in the double sequence {S;}.

Step 3. Construct the chain complex {Df], 0Or}, for all p and q.

Step 4. Write out explicitly the inner boundary operator 0y for each horizontal se-
quence, actually for each graph considered. And show that H,(Q%%!) = 0, for ¢ < 0 and
for all [, in a straightforward way.

Step 5. Claim that the sequence {K,} under the outer boundary operator is an
acyclic, where {K,} are the kernel of the top stages of all the horizontal sequences.

By step 4 and step 5, we reach the conclusion that the chain complex of based plane
graphs of order 5 is acyclic, and hence, we finish the proof of Theorem 2.

Now we explain the above steps one by one in the next subsections.

4.1 Listing all based plane graphs of order 5

Now we use the central subgraph which is defined in section 1 to classify all the based
plane graphs of order 5. We only give some examples of the connected central subgraphs

as follows:

19




The connected central subgraphs:

(1). Examples of loop 1 is listed as follows:

Q

). Examples of loop 2 are listed as follows:

Q@@O—Q

). Examples of the central subgraphs of loop 3:

OD O @ OO

(4). Examples of the central subgraphs of loop 4:

OO ® O-D
SPASANSAS)

Remark 4.1.1: In the above examples of central subgraphs, we have some spacial
graphs are called splitting graphs which becomes disconnected as take a vertex or an edge

away.
For example:

o0 OO

The graphs with splitting central subgraphs will become an acyclic chain complex and
then we can omit the computation of the graphs with such central subgraphs. For the
detial, please see [Yu].

We will classify all the oriented based plane graphs of order 5. In order to simplify the
notation of the based plane graphs by the central subgraphs, we denote the base points a
and b locating on the left and right sides, respectively. Mark the ex-internal vertices by
ai,as, -+, as; which join to the base point a and mark the ex-internal vertices by b1, b, - - -, b;
which join to the base point b. See the following example:
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= @) . The graph I' can be denoted by the central subgraph
a3 b2

From the central subgraph, we can not change the based plane graph when we change
the indexes of the labels of {a;} and {b;}. From now on, we will only mark a and b on the
central subgraphs to denote the based plane graphs. Thus the above example will become

as follows:
A

Before the classification of the based palne graphs of order 5, we will give the notation
of the central subgraphs as follows:

A= ,B=Q,C=<D,D=@,Ez®,F=@,G
O RO D@ D=®
@) =O DO

For example, we will use S3,[D] to denote the subspace of S3; with central subgraph

D( @ ) and the same notation for the other central subgraphs.

Now we will use the central subgraphs to classify all the based plane graphs of order 5

as follows:

(A). For the central subgraph

SY[A] has the following generators:

ab, ab, a

(B). For the central subgraph Q

S3[B] has the following generators:
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OO0
(C). For the central subgraph @

(Ch). SE[C] has the following generators:

QQDDDD
DO DD
SLGACRGRD,

C,). 82%,[C] has the following generators:
1

D ODO
CINOIO
OO DD

(C3). 82,[C] has the following generators:

(D). For the central subgraph @

(Dy). Let S3[D] be a subspace of S and have the following generators:
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@ QD
20 QO
VIV IYAY)

(D,). Let 83,[D] be a subspace of 82, and have the following generators:

VIVEVEVEY

(E). For the central subgraph @

(E;). Let S3[E] be a subspace of S§ and have the following generators:

LD OO
QOO O

(E2). Let S3,[E] be a subspace of S, and have the following generators:
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e Yacas
DD
e Taeras
QDD

SONSVARIRRY
SEESVASEASS;

(E3). Let 83,[F] be a subspace of S3; and have the following generators:

SUASUSIASY
AL D
SYASUISUASY

ORI
D DO

(F). For the central subgraph

(F1). Let S§[F] be a subspace of S§ and have the following generators:

O

(Fy). Let 82,[F] be a subspace of S3, and have the following generators:

=l
& D
D
=
=
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(G). For the central subgraph @

(G1). Let S82,[G] be a subspace of S*, and have the following generators:

OB

(G2). Let 8%,[G] be a subspace of S*, and have the following generators:

(H). For the central subgraph @

(Hy). Let 8%,[H] be a subspace of S*; and have the following generators:

U CRORIIRC:

H,). Let S*,[H] be a subspace of S*, and have the following generators:
2

(I). For the central subgraph @

(5). Let S3[I] be a subspace of S§ and have the following generators:

00O

(I). Let 8*,[I] be a subspace of S*; and have the following generators:

PAGRSISYEAE)

(I3). Let S4,[I] be a subspace of S, and have the following generators:
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(J). For the central subgraph @

(J1). Let S8%,[J] be a subspace of S*, and have the following generators:

D

(J2). Let S%,[J] be a subspace of S?, and have the following generators:

(K). For the central subgraph @

Let S*,[K] be a subspace of S*, and have the following generators:

(L). For the central subgraph @

Let S%,[L] be a subspace of 8¢, and have the following generators:

(M). For the central subgraph @

Let 8*,[M] be a subspace of 8%, and have the following generators:

(N). For the central subgraph @

Let S*,[N] be a subspace of S*, and have the following generators:
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(O). For the central subgraph @

(01). Let S§[O] be a subspace of S§ and have the following generators:

CXCRCAT

(O2). Let 8%,[0] be a subspace of S*; and have the following generators:

(P). For the central subgraph @

Let S*,[P] be a subspace of S*, and have the following generators:

(Q). For the central subgraph @

(Q1). Let S§[Q] be a subspace of Sj and have the following generators:

S

(Q2). Let S%,[Q)] be a subspace of S*; and have the following generators:

(R). For the central subgraph @

Let S§[R] be a subspace of S§ and have the following generators:

(D
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(S). For the central subgraph @

Let 8%,[S] be a subspace of S*; and have the following generators:

O

From the above classification, we have the relation of spaces {S;} as follows:

= S[A].
= S;[B).
= S[C).
: 831 = &2,[C)].
. 332 = 82,[C).
= S3[E] & S{[F).
. .sil = S3,[D) @ 8%, [E]® S3,[F].
s = 83,[D] @ 83,[E).
= Si[I] @ S§[0) & S3Q] & S§[R].
10. 341 = 5,[G] ® 8%, [H) @ S4,[I] @ 8%, [J] & 8%, [0) ® S, [P] @ 54, [Q] @ 84, [S].
11. 84, = S§4,[G] ® 8%, [H) ® 8%, 1] @ S%,[J] ® S, [K) @ S4,[L] @ 82, [M] & S2,[N].

<°9°~'.°’°‘“=9°5°.H

Combine the above classification, we obtain the following sequences:

0 S % 53, 28 2

00— 82 X 52 o2 %
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Remark 4.1.2:

(1). For the above sequences {S},d;}, we have p =1 —1 and then ] = §;_14 = S,
We will compute the chain complex {S, 4,0} and then complete the Theorem 2.

(2). For the sequences {S,q,0r}, p fixed. As p = —1, we have the boundaries of I in
S{ under 8; are all nonorientable, thus we define ;' = 0. For this reason, we have the

sequence:

082 0.

For the other sequences, we have the same reason to explain why the sequences stopped.

4.2 Construct the chain complex {D?® 8}

For the application of the conjecture in the subsection 2.2, we want to compute the
inner edge contraction and the homology groups of the chain complex of inner boundary
operator d; can be shown to be zero except top dimensional one.

We compute the homology of the sequences order 5 under the inner boundary operator.
The inner boundary operator is to clean the graphs which are not trivalent and the outer
boundary operator is to compute the remaining trivalent graphs. By the sequences, we can

infer the conclusion we want.
By the structure of the chain complex {D%:} and the boundary operators 9;,80 we

obtain the following sequences:
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8 o 9
5 2 Dy, 4 DY, A4 oo

5 & 2,5 9 2,5 [/}
0 '4 D2,—l 4 Dz’__2 — 0

9, 8, ;)
0 » Dy 23 DM, B D}, A o

0 » DX, M

Propsition 4.2.1:

Hy(D**) = H,(@*%) = H,(8%>%!) = 0, for ¢ < 0 and for all I.

Proof:

(1). For I = 0, we have the graphs with two based edges or with one based-edge in
the space D254, but not in the space $>5! and Q%%. Such graphs are all nonorientable in
our consideration, and then we can omit them in our computation. So the equality of the
homologies hold for [ = 0.

(2). As for I = 1, we have the graphs with just one based edge in the space D%, but
not in the space S>® and Q%%'. Such graphs are some nonorientable, and smoe of them
become an acyclic chain complex in our consideration( For the detial, please see [Yu]), and
then we can omit them in our computation. So the equality of the homologies hold for
l=1.

(3). For I > 2, there are no based edges in graphs, and the inner graphs of all based
plane graphs are connected. Thus from the statements in the section 1 and 2, we complete

the equality of the proposition. ]

From the proposition, we only compute the sequences {83;2,61} in section 4.1 and
then we can complete proof of Theorem 2.

4.3 Computing the row sequences
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Before the computation of the row sequences, we will give some explanations for the
boundary operator. Consider the following example:

YGRGIIOI

Since the above example is so difficult to describe, we will omit the labels of the edges
and the short segments on the circle. For the following computation, all the equalities are
with the same style as the above example and we will use the orientations of graphs by
labeling the numbers from left to right and from up to down.

Now we compute the row sequences under the inner boundary operator and list some
tables for our computation. For convenience, we only list the computation the following

sequence:

0 81,0 9’4 81’_1 2!3 81’_2 -t?i) 0.

(A). 814(S1,0) is showing in the following table:

G Q@
RO RO

Yol
N
©
<

(B). 014(S1,-1) is showing in the following table:
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(D)0

Now we describe the matrix representations of boundaries 0y, and y,.

We compute all the graphs in 94(S1,0) and 03(S1,-1) as follows:

In 014(81,0), we take a graph from each isomorphic class and fix the orientation of
the graph. And then we compare the orientation of each graphs which is isomorphic to the
fixed orientation graph. The work for 9;,(S;,~1) is just the same, thus we can obtain the
two matrix representations of these two boundary operators. We pay attention to the
comparison between the isomorphic graphs in 9y,(S1,0) and S;,—1. This is an important
thing we want to emphasize. From the computation of 01,(S1,0) and 015(S1,—1) and the
matrix representations, we define that the matrix of 9;,(S1,0) as M; o and that of 91,(S1,-1)
as M; _;. The matrices are listed as the following:

0 -2 01 0 o0
0 -2 -1 0 0 0
1 0 0 0 -2 0
Mo = -1 0 0 0 0 =2
-1 0 0 1 0 0
-1 0 -1 0 0 O

Ml’_1=(1 -1 0 0 -1 1)

We have the multiplication of these two matrices to be zero matrix and conclude that
& = 0.
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4.4 The acyclic property of based plane graphs

The main purpose of this subsection is to prove that the image of J, is contained in
the kernel of 0y, and that the image of 0;. is contained in the kernel of d;4 and similarly
for 6;,, and 6;;.

We compute the kernels of Oy4, O¢, Ore,014, Orn, and denote the kernels K o, K3, K3,
Ko, K_1,, respectively. Thus we have the generators of them as follows:

(1). K_1 contains the following 3 generators:

a = b ’
a2=§; )
Q3 = b

b

(2). Ko, contains the following 6 generators:

Ty
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SO0 6 OO

-
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>

&
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-

»
i

(3). K contains the following 3 generators:
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). K2y is trivial.
(5). Kj is also trivial.

By the computation of the outer boundary operator for { K, ¢}, we have the result that
the rank of K is 3 and the rank of Ky is 6 and that of K_,¢ is 3. Thus the Euler
characteristic number is zero. This is a good information for the acyclic property of the
above sequence. We have computed the following sequence:

0 KI,O 29) Ko’o @) K—I,O 2% 0.

By the relation of the image and kernel of 8p, and the number of the rank of {K,p},
we conclude that H_, o = Hyg = H; o = 0. By the above consequences, we complete the
proof of the Theorem 2. a

From the subsections 4.1 to 4.4, we have proved Theorem 2 in this section.
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Appendix

In this appendix, we describe the historical background about the homology theory of
based plane graph.

1 Knot invariants from the perturbative Chern-Simons theory

Knot invariant is a knot function which is invariant under the isotopy deformation.

The Chern-Simons theory is the most popular example of topological field theory
in 3 dimensions. This theory associates some topological invariants and there are several
ways to define the knot invariants, which are all closely related to one another. First of
all there are the non-perturbative methods by Witten, Reshetikhin and Turaev: Witten
[W] used fundamental properties of quantum field theory, in particular, the path inte-
gral formulation, and Reshetikhin and Turaev [RT] used quantum groups. These two
definitions are equivalent to each other.

Around 1989, several efforts had been made with the perturbative approach. The first
of them is given by Guadagnini, Martellini and Mintchev [GMM] in the case that a knot
K in the 3-dimensional space M = R3, using propagators and the trivalent graphs which
are composed of base points on the K, inner points in R® and all of the inner points are
trivalent, all the base points are univalent. This approach was then elaborated by Bar-
Natan [B1] [B2] to all order. The case that the space M is a general closed 3-manifold
without any link, was treated by Axelrod and Singer [AS]. A common feature of all the
work is the trivalent graphs expansion that is familiar in perturbative quantum field
theory. Invariants are defined at every order in the expansion, where the order of a graph
is defined to be the number of edges minus the number of inner points of the graph; each
is a formal sum of several terms corresponding to the graphs of the given order and each
term is an integral over the configuration space of the graph. As in the paper, I' denotes
a graph, V denotes the set of all vertices of I', and U denotes the subset of V' consisting
of the univalent vertices, that is, the base points. The configuration space is defined as
Ck(T) = {f : V. » R?| f is a one-to-one map and f|y is an order preserving map from
U to K}. ( The univalent vertices are supposed to have a cyclic order. ) Here, the map
f : V — R? represents the graphs f(I') which is equivalent to T, thus Ck(T') is the set of
all the graphs which is equivalent to I'. For such a graph I, K is called the support of the
graph.

Meanwhile, Vassiliev studied the topology of the complement of knot space in smooth
function space and used the Vassiliev complex to present its topology construction. The
homology group of the Vassiliev complex was shown to produce the knot invariants. The
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subject of Vassiliev knot invariant, also known as finite type invariant, was developed
rapidly. The starting point of Vassiliev [V] was the space of all immersions of S! in S3.
In this space, a knot type is a cell whose faces are singular knots with a finite number
of transversal double points. Any knot invariant can be extended to the kind of singular
knots. It is said to be a finite type invariant of order < n, if it vanishes on all singular knots
with more than n double points. Let V" be the space of invariants of order < n, Bar-Natan
found that V*/V"~! embeds in the dual of the space A, of BN diagrams of order n, where
the BN diagrams are proposed by Bar-Natan in papers [B1], [B2]. Kontsevich showed that
these two spaces are in fact isomorphic.

In the following, A denotes the direct sum of all the BN diagram space A,, n =
0,1,2,---, it is an algebra under the connected sum multiplication; and this is the famous
“algebra of diagram”, or “algebra of uni-trivalent graph”.

In 1991, from the Perturbative Chern-Simons theory, Kontsevich and Bar-Natan inde-
pendently achieved a universal Vassiliev invariant integral over the configuration space of
Feynman graphs of any order with value in the algebra of uni-trivalent graph .4, that is,

2(6) = L 12,
r
in which I(T') is the configuration space integral of I and |T'| is the number of elements in
its automorphism group.

To get the configuration space integral I(I") of I', we give each edge an orientation, then
there is a canonical map ¥ : Ck(T') — [] S? defined by ¥(f) = ( |§($: :f(::) )E_,, where v;
and w; is the two vertices of the i-th edge of I'. Let wy be the normalized Gaussian form
on S? and w be the product of wp which is the normalized volume form on [] S%. Then we

k
define the configuration space integral of I as I(T') = [ ¥*(w). Although the formula
Ck(T)

was written out, there was no rigorous proof.

Fortunately, in 1993, Kontsevich by adopting the iterated integral theory of Kuo-Tsai
Chen, and the Cauchy form in the integral, arrived the Kontsevich integral Z(K), and was
soon proved to be the “Universal Vassiliev invariant”, also known as universal Quantum
Invariant. And so, the framework on Quantum Invariant initiated by Jones since 1984 had
been combined.

Nevertheless, a breakthrough on the theory of the configuration space was made in 1994.
Bott and Taubes [BT] used the construction of compactification of the configuration space

due to W. Fulton and MacPherson [FP], to get a compact manifold with corners and to
prove finiteness of the configuration space integral. In order to show that the contributions
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of graphs of a given order summed up to an invariant, we must compute the variations of
these integrals under a small change of the embedding of K; this procedure was proved to
be quite difficult and lengthy.

By the standard argument of Stokes’s Theorem, the variation of the integral I(I') can
be expressed in terms of integrals of U*(w) restricted to the boundaries of the configura-
tion space of I'. Bott and Taubes [BT] showed that the variations could be split into two
parts, the “diagrammatic” variation and the “anomalous” variation. The diagrammatic
variation can immediately be read from the trivalent graphs which correspond to the
differential of Kontsevich graph complex, obtained by collapsing the edges. The anoma-
lous variation is more difficult to compute, but is well-behaved of proportional to the
variation of the first order contribution, the “self-linking number”. The constant of the
proportionality is however unknown in general, except the independence of the embedding.
Thus the anomalous boundaries couldn’t be neglected besides the principal diagrammatic
boundary considered by Kontsevich and Bar-Natan.

2 Anomalous boundary and its universal configuration space

The anomalous boundaries contain graphs concentrated on a certain point of the knot.
These graphs are called infinitesimal graphs on knots. By the smoothing condition, the
infinitesimal part of knot can be considered as a straight line, that is, the tangent line at
the point . Therefore, as the whole graph collapses into a point P on the support, it can
be considered a graph lying on the tangent line, that is, with the line as the support.

When the knot deforms in the 3-space, the tangent direction of knots varies on a portion
of S2. Thus Bott and Taubes constructed a universal configuration space of infinitesimal
graphs, which we describe as follows:

For a unit vector z € S?, [, denotes the line {tz, ¢ € R} with increasing order. Let C_(T’)
be the configuration space of I with the support I, then define W, = C,_(T')/T.D., where
T.D. denotes the translation and dilatation relations. Also define W (I') = Uzese Wi (T),
it is a fibre bundle over S? with fibre W,(T"). W(I') is the universal space of infinitesimal
graphs equivalent to I'. The dimension of W (T') is the same as that of Cx(I') and we may
also consider the configuration space integral over W(I'). W(T') is called the configuration
space of the anomalous boundary of I'. And I(W(I')) denote the integral over the space
W (I), it is called the anomalous integral of I

Altschuler and Freidel [AF] proved the following results about the anomalous integrals
I(W(T)):

(a). If T is even order, then I(W(I')) = 0.
(b). If T is not primitive, then I(W(I')) = 0, where “primitive” means that I' is
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connected when we take away the support of I'.
(c). I(W( @ )) = 2, where ¢ @ ” is the one chord graph.

Therefore, to solve the case of order 3, we need to compute the anomalous integral

I (W(@)) As far as infinitesimal graphs are concerned, we should compute the two
integrals, I(W(—AA)) and I(W(A)) . It was guessed that I(W(@)) # 0 . But

the first author used the degree theory proving that I(W(_AZ\ )) and I (W(_A‘))
were both equal to ﬂlﬁ. It results in zero when the two integrals are summed up together.
Thus, for the case of order 3, there is no graph of non-zero I(W(I')), that is, the zero-

anomaly in order 3, explained below.

3 “Anomaly” and Universal Vassiliev Invariants
As in the construction of universal Vassiliev invariant, we combine the graphs multi-
plying with the associated anomalous integrals,

a= 3 I(?,’P(P)lrl =0,

I:Primitive
it is the “anomaly”, also an element in .A. In the future work, we shall show that Conjecture

2.4 implies the zero-anomaly, that is, @ = 0 in 4.

With the help of the anomaly «, Altschuler and Freidel [AF] adjusted the configuration
space integral Z(K') and obtained a framed knot invariant. They reached a conclusion that
for a knot K and a framing v of K, Z(K,v) = Z(K)(exp(a - 7(K,v))) is a framed knot
invariant, where 7(K,v) is the total torsion, given by 7(K,v) = L [ dsé(s)%ﬁ%}n
and ¢ is the embedding of the knot K. ( The framing v is a normal vector field on ¢. )
Z(K,v) is also a Universal Vassiliev invariant.

Altschuler and Freidel’s computation strongly depends on the theory developed by
Bar-Natan, we describe their theory in the following.

A key step of the computations was deriving the logarithm of Z(K).

Ix(T
tog(2(k)) = 3 2 c(ry
(r]
where C : A, — A, is an endomorphism of vector space proposed by Bar-Natan, satisfying
the following equality

__f [T], ifT is a primitive graphs,
c(r) = { 0, ifT is not prime,
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where, a graph I' is prime if I" cannot be expressed as a product of two or more non-trivial
subgraphs; and a graph I' is primitive if the resulting graph is connected after taking out
the support of I.

Together with the excellent analysis of Bott and Taubes on the variation of the integrals,
Altschuler and Freidel got the following beautiful variation formula for the logarithm of

Z(K).
dogzi)] =52 ¥ iy,

I':Primitive
which was exactly equal to a multiple of the anomaly a. ( I(8) is the self-linking integral.
)

Thus, if the anomaly a is equal to zero, then Z(K) is a knot invariant. By combin-
ing this result of zero-anomaly with the consequence of T. Q. T. Le and J. Murakami
[LM], we have the important result that the universal Vassiliev invariants derived from the
configuration space integral and the Kontsevich integral are equal.

In 1999, S. Poirier[P)] tried to extend his study of the framed knot invariants of Altschuler
and Freidel to the tangles. He, in turn put forth his theory of the limit configuration
space integral, and obtained the equality Z* (X )= exp(étgl'—"l), where a;, a; denote
the anomaly on the first and the second string, respectively, and A denotes the duplication
map which maps a graph with the support of a line into the sum of the graphs with the
support of two parallel lines. That is, A(T") is the sum of all of the [I'], where [I"] are
obtained by all possible distribution of the base points of I' on the support of the two

parallel lines.

In light of the result of S. Poirier equality Z‘(y\ ) = exp(Be=1=22) if we can prove
\

the zero-anomaly, we are sure to obtain the result Z!( /
to one chord graph with the support of two parallel lines, and then achieve the equality of
the configuration space integral and the Kontsevich integral. On the other hand, if we can
show the equality Z‘(y\ ) = exp(¥) directly, then we also get the zero-anomaly and etc.

= ezp(¥), in which H refers

In the secondly coming paper, we reduces the computation of anomaly and Z* (x ) to
the computation of homology of based plane graphs in this paper.
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