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Uniqueness in inverse problems for an elasticity
system with residual stress by single measurement*

Jenn-Nan Wang

Abstract

In this paper we consider an elasticity system with residual stress. The
constitutive equation of this elasticity system differs from that of the isctropic
elasticity system by R + (Vu)R, where R is the residual stress tensor. This
system is not isotropic due to the existence of the residual stress R. Thus, it
is not possible to reduce the principal part of the system to uncoupled wave
operators as we have for the isotropic elasticity system. Here we investigate
inverse problems of identifying the force term or the density by a single mea-
surement of lateral boundary. We establish uniqueness results by Carleman
estimates when the residual stress is amall,

We consider a linear elasticity system with non-vanishing residual stress in this
article. The residual stress is modelled by a symmetric second-rank tensor R(z) =

(rix{z)) € C{Q) satisfying
V-E=0 in @,

where V - R is a vector with components given by
(V-R); = Z Ok ik
k

and
Rv = Z'f'jklfk =0 on T,
P’

where v = (v, 13, ¥3) is the unit outer normal vector to 0. Let u(t, z} = *(uy, vz, ua) :
@ — R? be the displacement vector, then the first Piola-Kirchhoff stress is

S(u) = R+ (Vu)R+ A(tre)] + 2jic + Gy (tre) (trR)I + Bo(trR)e

+B5((tre) R + tr(eR)]) + Ba(eR + Re), ©.1)
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where A(z), fi(z) are the Lamé moduli, Hh{z)- - - Ba(z) are material parameters, and
€= %(Vu + *Vu)

is the strain tensor and (Vu);; = (8cu;) (see [14]). In this paper we assume that
Ga=0=0le
S(u) = A(tre)] + 2ue + R+ (Vu)R, (0.2)
where ) 1
A=A+ 56,(trtR), u=p+ §ﬂ2(trR).

We interrupt the exposition here to say & few words on the residual stress maodel.
The constitutive equation {0.2) is close to the one considered by Robertson in [17]
where he used the form

S(u) = Atre)] + 2jie + R + (Vu)R

to investigate the boundary determination of the residual stress by the Dirichlet-to-
Neumann map. Hoger [4] also considered an elasticity system with residual stress
where she used the constitutive equation

S(u)=R+(Vu)R— é(ER + Re) + A(tre)I + 2jze

in her study. Based on Hartig’s law, Man [14] argued that the constitutive equation
of a realistic isotropic medium with residual stress should be given by (0.1) which
describes a prestressed polycrystalline aggregate whose constituting crystallites are
randomly oriented. Here we choose the constitutive equation (0.2) for studying re-
lated inverse problems based on two reasons. On one hand, it is close to the realistic
model as pointed out by Man. On the other hand, some basic properties for the
elasticity system with the constitutive equation (0.2) have been established, espe-
cially Carleman estimates which lead to the uniqueness and stability of the Cauchy
problem [10]. Those Carleman estimates play an important role in the study of some
related inverse problems.
Henceforth, we denote

Lu =V-S(u)
= (A+p)V(V - u) + pAu - (V-u)VA - (Ve +{(Vu))Vu (0.3)
—V - ((Vu)R)).
Now let y be a solution to the following initial boundary value problem
Patzy s Ly =0 in Q1
y(t,z) = ¢(t,z) on T, (0.4)
¥0,z) =a(z) in
where p(z} > 0 is the density of the medium. In this paper, we are concerned with

the inverse problem of determining the density p(z) by measuring the traction of y
on .



Problem 0.1. Assume that coefficients 3, B, B, B and R are given. Can one
uniquely determine p(z) in Q by measuring S(y}v|r? In other words, let y and § be
solutions of (0.4) associated with densities p and 5. Does S(y)v|r = S(H)v|r imply
o(z) = f(x) in 07

Using the standard technique, see Klibanov [12] for example, we can see that
Problem 0.1 is closely related to an inverse source problem. To be precise, let u(Z, z)
be a solution solving

pu— Lu= f(z)g(t,z) in Q,
u(t,z)=0 on T, (0.5)
w(0,z)=0 mn

where f(z) is a scalar function in Q and g(t,z) = Yq{t,7), g:(¢,7),93(¢, )} is a
vector function in . Then we consider the following inverse problem.

Problem 0.2. Let an appropriate T > 0 be given. Does S(u)v|r =0 imply f(z) =0
in ¢

Notice that in (0.4) and (0.5), we do not provide 8;%(0,z) and 8,u(0,z) since they
can be also determined in the related inverse problem (see [8], [12]).

The proofs of uniqueness in Problem 0.1 and 0.2 rely on Carleman estimates. The
basic idea originated from Bukhgein and Klibanov’s paper [2]. After their paper, the
uniqueness to similar inverse problems for hyperbolic equations based on Carleman
estimates have been investigated, for example Bukhgeim [1], Isakov [7], [8], Khaidarov
[11], Klibanov [12], Yamamoto [18] and Kubo [13].

The aforementioned results all dealt with a single hyperbolic equation. There were
only a few attempts on systems of equations. For the isotropic elasticity system,
an attempt has been made by Isakov [9] where he proved the Carleman estimate
and established the uniqueness for the inverse source problem. It should be noted
that in [9] Isakov transformed the principal part of the isotropic elasticity system
to a composition of two scalar wave operators. For Maxwell’s system, we mention
Yamamoto’s result in [19].

Our work is motivated by [6] in which Ikehata, Nakamura and Yamomoto consid-
ered the isotropic elasticity system with variable coefficients. They used a different
way to diagonalize the system. Namely, they introduced an auxiliary function V - u
and transformed the principal part of the elasticity system to a diagonal system with
wave operators as its diagonal components. The elasticity system we consider here is
not isotropic due to the existence of the residual stress. Therefore, the principal part
can not be reduced to uncoupled wave operators as we have for the isotropic elas-
ticity system. Nevertheless, by introducing two auxiliary functions V - v and V x u,
we can transform the principal part to uncoupled wave operators plus second order
operators in z variables acting only on 4 with coeflicients involving first derivatives
of the residual stress. When the residusl stress is assumed to be small, to take care
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of the additional second order derivatives of u, we merely need a Carleman estimate
for the Laplacian (see similar arguments in [10]).

One the other hand, for the determination of the density in Problem 0.1, we only
require one single measurement provided that the initial displacement satisfies an
appropriate condition. We would like to point out that for the inverse problem of
identifying the density in [6], three measurements are needed in the three dimensional
case. We also want to compare our result with a result by Isakov [9] where he
proved the uniqueness in determining the density by using four measurements in
three dimensional case. '

Finally, we would like to make some remarks on other related results in the pa-
rameters identification problem for the elasticity system. The first general result in
this direction was proved by Nakamura and Uhimann [15) in which they showed that
two Lamé coefficients are uniquely determined by the static Dirichlet-to-Neumann
map. In the dynamic setting, Rachele {16] proved that the finite-time Dirichlet-to-
Neumann map uniquely determines the speeds of compressional and shear waves,
Rachele’s result implies that if one of the parameters, namely, density function and
Lamé coefficients, is known, then other two parameters can be uniquely determined
by the boundary map. It should be noted that results in [15] and [16] require infinitely
many boundary measurements. On the practical side, the unique determination of
Lamé coefficients or Lamé coefficients plus density by finitely many boundary mea-
surements has not been solved yet. Starting from this paper, we hope to pursue
other interesting inverse problems of identifying parameters in the elasticity system
by finitely many boundary measurements, even including the identification of residual
stress.
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