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Abstract. In this note, we show that the solution to the Dirichlet problem for the
minimal surface system is unique in the space of distance-decreasing maps. This follows
as a corollary of the following stability theorem: if a minimal submanifold Σ is the graph
of a (strictly) distance-decreasing map, then Σ is (strictly) stable. We also give another
criterion for the stability which covers the codimension one case. All theorems are
proved in a more general setting, which concerns minimal maps between Riemannian
manifolds. The complete statements of the results appear in Theorem 3.1, Theorem 3.2,
and Theorem 4.1.
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1. Introduction

Let Ω be a bounded domain in R
n. Recall a C2 vector-valued function

f = (f1, · · · , fm) : Ω → R
m is said to be a solution to the minimal

surface system (see Osserman [OS] or Lawson-Osserman [LO]) if

n∑

i,j=1

∂

∂xi
(
√

ggij ∂fα

∂xj
) = 0 for each α = 1 · · ·m (1.1)

where gij = δij +
∑

α
∂fα

∂xi
∂fα

∂xj , g = det gij and gij is the (i, j) entry of the
inverse matrix of (gij). The graph of f is called a non-parametric minimal
submanifold. Equation (1.1) is indeed the Euler-Lagrange equation of the
volume functional.

In the codimension one case, i.e. m = 1, a simple calculation shows

gij = δij − fifj

1+|∇f |2 and the equation is equivalent to the familiar one,
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div(
∇f√

1 + |∇f |2
) = 0. (1.2)

It is well-known that the solution to (1.2) subject to the Dirich-
let boundary condition is unique and stable(see for example, Lawson-
Osserman [LO]).

However in the higher codimension case ( m > 1), Lawson and Osser-
man [LO] discover a remarkable counterexample to the uniqueness and
stability of solutions of (1.1) when n = m = 2. They construct two distinct
non-parametric minimal surfaces with the same boundary. Lawson and
Osserman then show an unstable non-parametric minimal surface with
the same boundary exists as a result of the theorems of Morse-Tompkins
[MT] and Shiffman [SH]. In the same paper, Lawson and Osserman also
show the Dirichlet problem for the minimal surface system may not be
solvable in higher codimension.

In this paper, we first derive a stability criterion for the minimal sur-
face system in higher codimension. To describe the results, we define
distance-decreasing maps.

Definition 1 A map f : Ω → R
m is called distance-decreasing if the

differential df satisfies |df(v)| ≤ |v| at each point of Ω. It is called strictly
distance-decreasing if |df(v)| < |v| at each point of Ω.

We prove the following stability theorem.

Theorem A (see Theorem 3.1) Suppose a nonparametric minimal sub-
manifold Σ is the graph of a distance-decreasing map f : Ω ⊂ R

n → R
m.

Then Σ is stable. It is strictly stable if f is strictly distance-decreasing.

This theorem generalizes the stability criterion in [LW]. It turns out
the volume element is a convex function on the space of distance-decreasing
linear transformations. The convexity is further exploited to derive a
uniqueness criterion. Namely, we show the solution to the Dirichlet prob-
lem for the minimal surface system is unique in the space of distance-
decreasing maps.

Theorem B (see Theorem 3.2) Suppose that Σ0 and Σ1 are nonpara-
metric minimal submanifolds which are the graph of f0 : Ω ⊂ R

n → R
m

and f1 : Ω ⊂ R
n → R

m respectively. If both f0 and f1 are distance-
decreasing and f0 = f1 on ∂Ω, then Σ0 = Σ1.

We remark that solutions to the Dirichlet problem of minimal sur-
face systems in higher dimension and codimension are constructed in
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[WA1] and the solutions are graphs of distance-decreasing maps. For ear-
lier uniqueness theorems for minimal surfaces, we refer to Meek’s paper
[ME].

We prove slightly more general stability and uniqueness theorems for
minimal maps between Riemannian manifolds in this paper. It turns out
the only extra assumption is on the sign of the target manifold curvature.
In particular, Theorem 3.1 implies Theorem A while Theorem 3.2 implies
Theorem B.

Another stability criterion for the minimal surface system, which cov-
ers the results in codimension one, is derived in section 4. The criterion
is in terms of the rank of f . To describe the results, we first recall some
notations. Let L : R

n → R
m be a linear transformation. It induces a

linear transformation ∧2L, from the wedge product ∧2
R

n to ∧2
R

m by

(∧2L)(v ∧w) = L(v) ∧ L(w).

With this we define

| ∧2 L| = sup
|v∧w|=1

|(∧2L)(v ∧ w)|.

In particular, | ∧2 L| = 0 if L is of rank one.

Theorem C (see Theorem 4.1) Suppose a nonparametric minimal
submanifold Σ is the graph of a map f : Ω ⊂ R

n → R
m. Then Σ is stable

if | ∧2 df |(x) ≤ 1
n−1 .

A more refined and more general version is proved in Theorem 4.1. A
nonparametric minimal submanifold of codimension one has the rank of
df(x) at most one and | ∧2 df |(x) = 0. We prove the results for minimal
maps between Riemannian manifolds as stated in Theorem 4.1.

2. A non-parametric variational formula for graphs

Suppose that (M, g) and (N,h) are two Riemannian manifolds. We fix a
local coordinate system {xi} on M . Let f be a map from (M, g) to (N,h).
The graph of f is an embedded submanifold of the product manifold
M ×N , the induced metric is given by

n∑

i,j=1

Gijdxidxj =

n∑

i,j=1

(gij + 〈 df(
∂

∂xi
), df(

∂

∂xj
) 〉)dxidxj ,

and the induced volume form is
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dv =
√

detGijdx1 ∧ · · · ∧ dxn.

Assume that there is a family of maps ft, 0 ≤ t ≤ ε from M to N

with f0 = f on M and ft = f outside a compact subset of M . When
the boundary of M is nonempty, we require that ft = f on ∂M . In the
following, we compute the first and second variations of the volumes of
the graphs. We compute

d
√

detGij(t)

dt
=

1

2

∑

i,j

Gij(t)Ġij(t)
√

detGij(t),

where Gij(t) is the (i, j) entry of the inverse matrix of (Gij(t)).

Denote the variation field dft

dt
by V (t). For simplicity, we omit the

dependency of Gij and V on t in the following calculation. Then

Ġij = 〈∇V dft(
∂

∂xi
), dft(

∂

∂xj
) 〉+ 〈 dft(

∂

∂xi
),∇V dft(

∂

∂xj
) 〉

= 〈∇
dft(

∂

∂xi )V, dft(
∂

∂xj
) 〉+ 〈 dft(

∂

∂xi
),∇

dft(
∂

∂xj )V 〉.

Here ∇ is the Riemannian connection on N and V and dft(
∂

∂xi ) are vector
fields tangent to the N direction.

Hence the first variational formula is

dAt

dt
=

∫

M

∑

i,j

Gij〈∇
dft(

∂

∂xi )V, dft(
∂

∂xj
) 〉 dvt. (2.1)

Continuing the computation, we derive

d2At

dt2
=

1

2

∫

M

(
∑

i,j

GijG̈ij −
∑

i,j,k,l

GikĠklG
ljĠij) dvt +

1

4

∫

M

(
∑

i,j

GijĠij)
2 dvt.

(2.2)

Now

G̈ij = 〈∇V∇dft(
∂

∂xi )V, dft(
∂

∂xj
) 〉+ 〈 dft(

∂

∂xi
),∇V ∇dft(

∂

∂xj )V 〉

+ 2〈∇V dft(
∂

∂xi
),∇V dft(

∂

∂xj
) 〉

= 〈R(V, dft(
∂

∂xi
))V, dft(

∂

∂xj
) 〉+ 〈∇

dft(
∂

∂xi )∇V V, dft(
∂

∂xj
) 〉

+ 〈R(V, dft(
∂

∂xj
))V, dft(

∂

∂xi
) 〉+ 〈 dft(

∂

∂xi
),∇dft(

∂

∂xj )∇V V 〉

+ 2〈∇dft(
∂

∂xi )V,∇dft(
∂

∂xj )V 〉.
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Symmetrizing the indexes, the second variational formula becomes

d2At

dt2
=

∫

M

(
∑

i,j

Gij〈∇df( ∂

∂xi )V,∇df( ∂

∂xj )V 〉 − 1

2

∑

i,j,k,l

GikĠklG
ljĠij) dvt

+

∫

M

∑

i,j

Gij〈R(V, df(
∂

∂xj
))V, df(

∂

∂xi
) 〉 dvt +

1

4

∫

M

(
∑

i,j

GijĠij)
2 dvt

+

∫

M

∑

i,j

Gij〈∇df( ∂

∂xi )∇V V, df(
∂

∂xj
) 〉 dvt.

(2.3)

This formula will be used to prove the main theorems in the next
section.

3. The stability and uniqueness of minimal maps

We recall a minimal submanifold is called stable if the second derivative
of the volume functional with respect to any compact supported nor-
mal variation is non-negative. We prove the following lemma for minimal
graphs.

Lemma 3.1 Suppose that the graph of f : M → N is a minimal subman-
ifold in M ×N . Then Σ is stable if and only if it is stable with respect to
any compact supported deformation of maps from M to N .

Proof. Suppose that ai is an orthonormal basis of the principal directions
of df with stretches λi ≥ 0 and that df(ai) = λibi. Assume that the rank
of df(x) is p. The orthonormal set {bi}i=1···p can be completed to form a
local orthonormal basis {bα}α=1···m of the tangent space of N . In the basis
chosen as above, the tangent space of Σ is spanned by ti = 1√

1+λ2

i

(ai +

λibi), 1 ≤ i ≤ n. Observe that λi = 0 for p < i ≤ n. The normal space
of Σ is spanned by ni = 1√

1+λ2

i

(bi − λiai), 1 ≤ i ≤ p and nα = bα

for p < α ≤ m. Assume that V̄ =
∑m

α=1 vαnα is a compact supported
normal vector field along Σ. Then the compact supported vector field

V =
∑

i

√
1 + λ2

i vibi +
∑

α>p vαbα tangent to N satisfies V ⊥ = V̄ , where

(·)⊥ denotes the normal part of a vector, i.e. the projection onto the
normal space of Σ. The second derivative of volume functional in the
direction V ⊥ = V̄ is the same as in the direction V . The Lemma is thus
proved.

The notion of a (strictly) distance-decreasing map in Definition 1 can
be generalized to maps between Riemannian manifolds and we can prove
the following theorem.
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Theorem 3.1 Suppose that M and N are two Riemannian manifolds,
where the sectional curvature of N is non-positive. Assume that f : M →
N is a distance-decreasing map and the graph of f , which is denoted by
Σ, is minimal in M ×N . Then the minimal submanifold Σ is stable. It
is strictly stable in the following cases: (i) N has negative sectional cur-
vature, and f is not a constant map when M is compact without bound-
ary. (ii) f is strictly distance-decreasing, and M is noncompact or with
nonempty boundary.

Proof. For a minimal submanifold, we have dAt

dt
|t=0 = 0 for any variation

field and in particular
∫

M

∑

i,j

Gij〈∇df( ∂

∂xi )∇V V, df(
∂

∂xj
) 〉 dv = 0.

In the basis chosen in the proof of Lemma 3.1, we derive from (2.3)

d2At

dt2
|t=0 ≥

∫

M

(
∑

i

1

1 + λ2
i

(|∇df(ai)V |2 − 〈R(V, df(ai))df(ai), V 〉)

− 1

2

∑

i,j

1

1 + λ2
i

1

1 + λ2
j

(〈∇df(ai)V, df(aj) 〉+ 〈∇df(aj )V, df(ai) 〉)2 ) dv.

Since the sectional curvature of N is non-positive, this becomes

d2At

dt2
|t=0 ≥

∫

M

(
∑

i

1

1 + λ2
i

|∇df(ai)V |2

− 1

2

∑

i,j

1

1 + λ2
i

1

1 + λ2
j

(λj〈∇df(ai)V, bj 〉+ λi〈∇df(aj )V, bi 〉)2 ) dv

≥
∫

M

(
∑

i,j

1

1 + λ2
i

〈∇df(ai)V, bj 〉2

−
∑

i,j

1

1 + λ2
i

1

1 + λ2
j

(λ2
j 〈∇df(ai)V, bj 〉2 + λ2

i 〈∇df(aj )V, bi 〉2) ) dv

=

∫

M

∑

i,j

〈∇df(ai)V, bj 〉2
1 + λ2

i

1− λ2
j

1 + λ2
j

dv.

(3.1)

When f is a distance-decreasing map, we have λj ≤ 1 for 1 ≤ j ≤ n. From

the estimate in (3.1), it follows that d2At

dt2
|t=0 ≥ 0. This implies that Σ is

stable by Lemma 3.1. Suppose that f is strictly distance-decreasing, i.e.

λj < 1 for 1 ≤ j ≤ n. If d2At

dt2
|t=0 = 0, it implies that 〈∇df(ai)V, bj 〉 = 0 for
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1 ≤ i, j ≤ n and |∇df(ai)V |2 =
∑

j〈∇df(ai)V, bj 〉2. Hence ∇df(ai)V = 0 for
1 ≤ i ≤ n. That is, V is a parallel vector field. Because V vanishes outside
a compact set and on the boundary of M , it implies that V is a zero vector
in case (ii). This proves that Σ is strictly stable in case (ii). When the
sectional curvature of N is negative and f is not a constant map, one

always has d2At

dt2
|t=0 > 0 unless V is a zero vector. If f is constant and M

is noncompact or without boundary, it is proved in case (ii). Therefore,
Σ is strictly stable in case (i).

Remark 1 In the case that M is compact without boundary and f is

strictly distance-decreasing, one has the following conclusion: If d2At

dt2
|t=0 =

0, then V is a parallel vector field and 〈R(V, df0(ai))df0(ai), V 〉 = 0 for
1 ≤ i ≤ n.

Using the second variational formula, one also can prove the uniqueness
of minimal maps.

Theorem 3.2 Suppose that M and N are two Riemannian manifolds,
where the sectional curvature of N is non-positive. Let Σ0 and Σ1 be min-
imal submanifolds in M ×N , which are the graphs of distance-decreasing
maps f0 : M → N and f1 : M → N respectively. Assume that f0 and
f1 are homotopic, and are identical on the boundary of M and outside a
compact set of M . Then Σ0 = Σ1 in the following cases: (i) the sectional
curvature of N is negative, and f is not a constant map when M is com-
pact without boundary, (ii) the boundary of M is nonempty, (iii) M is
noncompact.

Proof. Lift the homotopy map between f0 and f1 to the universal covering
of N . Because the sectional curvature of N is non-positive, there exists a
unique geodesic connecting the lifting f̃0(x) and f̃1(x). Denote the pro-
jection of this unique geodesic onto N by γx(t) and define ft(x) = γx(t).

Then V = γ̇x(t) satisfies ∇V V = 0. Hence the same bound on d2At

dt2
as in

(3.1) holds for 0 ≤ t ≤ 1. The vector field dft(
∂

∂xi ) is a Jacobi field along
γx(t), which is denoted by Ji,x(t). A direct calculation gives

d2

dt2
|Ji,x|2 = 2〈 J̈i,x, Ji,x 〉+ 2|J̇i,x|2 = 2〈R(V, Ji,x)V, Ji,x 〉+ 2|J̇i,x|2 ≥ 0.

(3.2)

The last inequality follows from the fact that N has nonpositive sectional
curvature. Because both f0 and f1 are distance-decreasing maps, one has
|Ji,x(0)|2 ≤ | ∂

∂xi |2 and |Ji,x(1)|2 ≤ | ∂
∂xi |2. The inequality (3.2) then implies

|Ji,x(t)|2 ≤ | ∂
∂xi |2. Hence ft is also distance-decreasing and one concludes

that d2At

dt2
≥ 0 from (3.1) for 0 ≤ t ≤ 1. Because dAt

dt
|t=0 = dAt

dt
|t=1 = 0,
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the bound gives dAt

dt
= 0 and d2At

dt2
= 0 for 0 ≤ t ≤ 1. To have d2At

dt2
|t=0 = 0,

the following conditions must hold:

1.
∑

i
1

1+λ2

i

〈∇df0(ai)V, df0(ai) 〉 = 0.

2. |∇df0(ai)V |2 =
∑

j〈∇df0(ai)V, bj 〉2 for 1 ≤ i ≤ n.

3. 〈∇df0(ai)V, df0(aj) 〉 = 〈∇df0(aj)V, df0(ai) 〉 for 1 ≤ i, j ≤ n.

4. If λj < 1, then 〈∇df0(ai)V, bj 〉 = 0 for 1 ≤ i ≤ n, which implies
〈∇df0(ai)V, df0(aj) 〉 = 0.

5. 〈R(V, df0(ai))df0(ai), V 〉 = 0 for 1 ≤ i ≤ n.

When the sectional curvature of N is negative and f is not a constant
map, condition 5 implies that V = 0. Hence f0 = f1 and Σ0 = Σ1.
The other cases in (i) can be covered in case (ii) and (iii) proved in the
following.

Now suppose that the sectional curvature of N is non-positive, we
shall conclude ∇df0(ai)V = 0 for any 1 ≤ i ≤ n. Fix a point x ∈ M and

choose coordinates at x such that ai = ∂
∂xi for 1 ≤ i ≤ n. If λi = 1,

we have |df0(
∂

∂xi )|2 = 1 and |Ji,x(t)|2 achieves its maximum at t = 0.

Therefore, we have d
dt
|Ji,x(t)|2 = 0 and d2

dt2
|Ji,x(t)|2 ≤ 0 at t = 0. The

bound on (3.2) then implies J̇i,x(0) = 0. Hence ∇df0(ai)V = ∇df0( ∂

∂xi )V =

∇V df0(
∂

∂xi ) = 0. If λi < 1, condition 3 and 4 give 〈∇df0(ai)V, df0(aj) 〉 =
〈∇df0(aj )V, df0(ai) 〉 = 0 for 1 ≤ j ≤ n. Hence 〈∇df0(ai)V, bj 〉 = 0 if
λj 6= 0. In case λj = 0, one still has 〈∇df0(ai)V, bj 〉 = 0 from condition
4. Therefore, condition 2 gives ∇df0(ai)V = 0 in the case λi < 1. Thus
∇df0(ai)V = 0 for any 1 ≤ i ≤ n.

When M is noncompact or has boundary, one has V = 0 at some
place. It then implies V = 0 on M . Therefore, f0 = f1 and Σ0 = Σ1 in
case (ii) and case (iii).

Remark 2 When M is compact without boundary, we first note that the
discussion in the proof holds for 0 ≤ t ≤ 1. If N has negative sectional
curvature, then either f0 = f1 or both f0 and f1 are constants. If N has
non-positive sectional curvature, one can conclude that V is a parallel
vector field on ft(M) for 0 ≤ t ≤ 1. Hence the graphs of ft, 0 ≤ t ≤ 1,
are minimal submanifolds of constant distance. Moreover, the Jacobi fields
Ji,x(t) = dft(

∂
∂xi ), i = 1, · · · , n are parallel along γx(t). It implies that the

induced metrics on the graphs of ft are the same. We also have J̇i,x(t) = 0

and J̈i,x(t) = 0. The Jacobi equation thus leads to R(V, dft(
∂

∂xi ))V = 0
for 1 ≤ i ≤ n and 0 ≤ t ≤ 1. Hence 〈R(V, T )V, T 〉 = 0 for any vector
T tangent to ft(M) in N . The results and further exploration are very
similar to the case of harmonic maps as studied by Schoen and Yau in
[SY].
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4. Another criterion for stability

In this section, we will derive another criterion for the stability of minimal
maps. It is in terms of bounds on the rank of df(x) and |∧2df |(x) as defined
in the introduction. The theorem generalizes the results for nonparametric
minimal submanifolds of codimension one.

Theorem 4.1 Let M and N be Riemannian manifolds and Σ be the
graph of a map f : M → N . Suppose the sectional curvature of N is non-
positive and Σ is minimal in M×N . Then Σ is stable if |∧2 df |(x) ≤ 1

p−1

for any x ∈ M where p is any integer greater than max{1, rank(df(x))}.

Proof. We will keep the term 1
4

∫
M

(
∑

i,j GijĠij)
2 dv in the second varia-

tional formula. In the basis chosen in the proof of Lemma 3.1, we derive
from (2.3)

d2At

dt2
|t=0 =

∫

M

(
∑

i

1

1 + λ2
i

(|∇df(ai)V |2 − 〈R(V, df(ai))df(ai), V 〉)

− 1

2

∑

i,j

1

1 + λ2
i

1

1 + λ2
j

(〈∇df(ai)V, df(aj) 〉+ 〈∇df(aj )V, df(ai) 〉)2 ) dv

+

∫

M

(
∑

i

1

1 + λ2
i

〈∇df(ai)V, df(ai) 〉)2 dv.

Since the sectional curvature of N is non-positive, this becomes

d2At

dt2
|t=0 ≥

∫

M

(
∑

i

1

1 + λ2
i

|∇df(ai)V |2 + (
∑

i

λi

1 + λ2
i

〈∇df(ai)V, bi 〉)2

− 1

2

∑

i,j

1

(1 + λ2
i )(1 + λ2

j )
(λj〈∇df(ai)V, bj 〉+ λi〈∇df(aj )V, bi 〉)2 ) dv

≥
∫

M

(
∑

i,j

1

1 + λ2
i

〈∇df(ai)V, bj 〉2

+
∑

i,j

λiλj

(1 + λ2
i )(1 + λ2

j)
〈∇df(ai)V, bi 〉〈∇df(aj )V, bj 〉

− 1

2

∑

i,j

1

(1 + λ2
i )(1 + λ2

j )
(λj〈∇df(ai)V, bj 〉+ λi〈∇df(aj )V, bi 〉)2 ) dv

(4.1)
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We break the terms into i = j and i 6= j, and obtain

∑

i,j

1

1 + λ2
i

〈∇df(ai)V, bj 〉2

=
∑

i

1

1 + λ2
i

〈∇df(ai)V, bi 〉2 +
∑

i6=j

1

1 + λ2
i

〈∇df(ai)V, bj 〉2,

and

∑

i,j

λiλj

(1 + λ2
i )(1 + λ2

j)
〈∇df(ai)V, bi 〉〈∇df(aj )V, bj 〉

=
∑

i

λ2
i

(1 + λ2
i )

2
〈∇df(ai)V, bi 〉2 +

∑

i6=j

λiλj

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bi 〉〈∇df(aj )V, bj 〉,

and

1

2

∑

i,j

1

(1 + λ2
i )(1 + λ2

j)
(λj〈∇df(ai)V, bj 〉+ λi〈∇df(aj )V, bi 〉)2

=
∑

i

2λ2
i

(1 + λ2
i )

2
〈∇df(ai)V, bi 〉2 +

∑

i6=j

λ2
j

(1 + λ2
i )(1 + λ2

j)
〈∇df(ai)V, bj 〉2

+
∑

i6=j

λiλj

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bj 〉〈∇df(aj )V, bi 〉).

Plug these expressions into (4.1), and obtain

d2At

dt2
|t=0 ≥

∫

M

(
∑

i

1

(1 + λ2
i )

2
〈∇df(ai)V, bi 〉2

+
∑

i6=j

λiλj

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bi 〉〈∇df(aj )V, bj 〉 ) dv

+

∫

M

(
∑

i6=j

1

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bj 〉2

−
∑

i6=j

λiλj

(1 + λ2
i )(1 + λ2

j )
〈∇df(ai)V, bj 〉〈∇df(aj )V, bi 〉 ) dv

(4.2)
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The first two terms give

∑

i6=j

〈∇df(ai)V, bi 〉2
(p− 1)(1 + λ2

i )
2

+
λiλj〈∇df(ai)V, bi 〉〈∇df(aj )V, bj 〉

(1 + λ2
i )(1 + λ2

j )

≥
∑

i6=j

〈∇df(ai)V, bi 〉2
(p− 1)(1 + λ2

i )
2
−
|〈∇df(ai)V, bi 〉||〈∇df(aj )V, bj 〉|

(p− 1)(1 + λ2
i )(1 + λ2

j)

=
1

p− 1

∑

i<j

〈∇df(ai)V, bi 〉2
(1 + λ2

i )
2

− 2
|〈∇df(ai)V, bi 〉||〈∇df(aj )V, bj 〉|

(1 + λ2
i )(1 + λ2

j )
+
〈∇df(aj )V, bj 〉2

(1 + λ2
j )

2

=
1

p− 1

∑

i<j

(
|〈∇df(ai)V, bi 〉|

1 + λ2
i

−
|〈∇df(aj )V, bj 〉|

1 + λ2
j

)2.

Symmetrizing the indexes, the last two terms can be written as

∑

i6=j

〈∇df(ai)V, bj 〉2 − 2λiλj〈∇df(ai)V, bj 〉〈∇df(aj )V, bi 〉+ 〈∇df(aj )V, bi 〉2

2(1 + λ2
i )(1 + λ2

j)
.

It is clearly non-negative when λiλj ≤ 1
p−1 ≤ 1 for i 6= j. Hence we have

d2At

dt2
|t=0 ≥ 0 and the minimal submanifold is stable as claimed.
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