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1 Background

Most biochemical processes involve macromolecules in solution. Usually, the macro-
molecule is surrounded by a hydration shell and is immersed in mobile ionic solvent.
The corresponding electrostatic potential (in or around) is of central importance for
understanding their functions [16]. Two typical approaches are the molecular dy-
namics simulation and the continuum modeling. The molecular dynamics simulation
provides more adequate description at microscopic scale, but it requires a large num-
ber of adjustable parameters and computing resources. Indeed, it is impractical for
the spatial and time scale we are interested in. On the other hand, the continuum
approach is simple, adjustable parameter free, relatively inexpensive, and has been
widely used [16].

The continuum model for molecules in solution was pioneered by Debye-Hückel
in 1924 [2, 10]. The macromolecule such as protein or nucleotide represented by
a structured and polarized clusters of charges. It sits inside a region Ωin with low
dielectric constant ε1, and is surrounded by a hydration shell Γ, which is immersed in
a mobile ionic solvent in region Ωout with high dielectric constant ε2. The hydration
shell prevents the ionic solvent move into the inside region. Sometimes, the hydration
shell could occupy a layer region (denoted by Ωlayer) with dielectric constant ε2. In Ωout,
there could be several kinds of ions. For easy presentation of our numerical model, we
assume there are only two kinds of ions with opposite sign and same charge unit, and
with total neutralized solution. The corresponding electrostatic potential φ satisfies
the Poisson-Boltzmann equation [2, 18, 19]:

−∇ · [ε(x)∇φ(x)]−
∑

i

K(x)zi exp(−ziφ(x)/kT ) = Q(x). (1.1)

Here, i is the index for the ith species of ions, ε(x) is the dielectric function taking
value ε1 in Ωin and ε2 in Ωout ∪ Ωlayer, K(x) = 0 for x ∈ Ωin ∪ Ωlayer and K(x) = K for
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x ∈ Ωout, a modified Debye-Hükel parameter, represents the ionic strength for solvent,
the function

Q(x) = 4π
m∑

k=1

qkδ(x− xk) (1.2)

represents the charge distribution of the macromolecule in Ωin.
In the community of computational chemistry, there were decades of efforts of

improvement on modeling by various groups of peoples such as Hornig (DelPhi pack-
age), McCammon, etc. Previous numerical models can be classified into grid-based
methods such as finite difference, finite element and finite volume [7, 20, 13], and
boundary integral methods such as boundary element for integrating the discretized
linear systems such as SOR [7], multigrid [6] have also attracted attentions. The
nonlinear counterpart was solved by direct iteration [20], or Newton’s iteration [6].
However, most of above methods are low order, or not fast enough. Some of them
indeed create severe numerical errors for large macromolecular such as DNA. For
instance, one major error source comes from the treatment of singular point charge
source. This point charge source term in a finite difference method is usually han-
dled by direct discretization, or by distributing them into neighboring grid points.
This creates O(1/h1) error in L∞ near macromolecules. In addition, the treatment
of discontinuous dielectric constant is also naive. The coefficient smoothing method
commonly used in this community has O(1) error in potential. The error may be
larger for the force. These numerical problems leave room for mathematicians to do
improvement.

2 What we have done so far

In these two years, we have done the following subprojects.

• “Accurate Evaluation of Electrostatics for Macromolecules in Solution,” (with
Jian-Guo Liu and Wei-Cheng Wang), Methods and Applications of Analysis,
Vol. 10, No. 2, pp. 309 (2003). The main point is to use multipole method
to handle the singular source and to use a body-fitting grid method to handle
interface discontinuities.

• “New Formulation and Fast Poisson Solvers for Interface Problems in Polar
coordinates,” (with Zhilin Li, Wei-Cheng Wang and Ming-Chih Lai), The main
thing addressed is to use a distance function to remove jump singularity of the
source terms on interfaces. SIAM J. Sci. Comp., Vol. 25, No. 1, pp. 224-245
(2003).(SCI)

• “A spectral method for two-dimensional Poisson-Boltzmann equation,” (with
Chien-Chang Yen, Jann-Guo Liu and Ming-Chen Shiu), in preparation. The
work here is to develop a spectral method when the interface is a circle or a
ring.
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• “A New Immersed Interface Method for Elliptic Equations with Discontinuous
Ciefficients,” (with Yu-Chen Shu), in preparation. In this research, we have
develop a robust and simple second order finite method for elliptic equations
with discontinuous coefficients. The underlying grid is regular, say Cartesian,
and fixed. The interfaces may move and are represented by level sets. Interface
problem is a well-konwn problem since the work of Peskin. The issue is to design
a simple and high-order method under Cartesian grid and to allow interfaces
dynamically move. We have compared our method with previous works of
Peskin (immersed boundary method, see the review article [21]), LeVeque and
Zhilin Li [25] (immersed interface method), Liu, Fedkiw and Kang [22] (ghost
fluid method), our new method is the best. It is simple and second-order for
both potentials and its gredients.

3 What we plan to do in the last year

3.1 The research subprojects

• We plan to write the paper for the new immersed interface method.

• We can do one of the following researches in the third year:

– We plan to extend the new immersed interface method to 3-d.

– We plan to implement the new immersed interface method to Poisson-
Boltzmann equations. The new element will be some nonlinear precondi-
tioner.

– We plan to import some charge distribution data for some prototype pro-
tein from the protein data bank and to test our method for real drug design
problems.

3.2 The difficulties and the approaches

• In 3-d, the difficulty needed to be resolved is the tangential derivative correction
on the interfaces. Our 2-d method can be extended directly to 3-d without
difficulty. However, the algebraic multigrid method for solving the resulting
linear system is needed to tune up.

• For solving Poisson-Boltzmann equation, we plan to find some nonlinear pre-
condotioner to speed up the nonlinear iterations.

• The real problem is an implementation problem.

3.3 Expected results

After this work, we should have a method which is better than any current popular
methods (Hornig, McCommon, Holst, etc. see references in the bibliography).
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