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Abstract

Let K be any field which may not be algebraically closed, V be a four-dimensional vector

space over K ; sAGLðVÞ where the order of s may be finite or infinite, f ðTÞAK½T � be the

characteristic polynomial of s: Let a; ab1; ab2; ab3 be the four roots of f ðTÞ ¼ 0 in some

extension field of K :

Theorem 1. Both KðVÞ/sS
and KðPðVÞÞ/sS

are rational ð¼ purely transcendental) over K if

at least one of the following conditions is satisfied: (i) char K ¼ 2; (ii) f ðTÞ is a reducible or

inseparable polynomial in K½T �; (iii) not all of b1; b2; b3 are roots of unity, (iv) if f ðTÞ is

separable irreducible, then the Galois group of f ðTÞ over K is not isomorphic to the dihedral

group of order 8 or the Klein four group.

Theorem 2. Suppose that all bi are roots of unity and f ðTÞAK ½T � is separable irreducible. (a)

If the Galois group of f ðTÞ is isomorphic to the dihedral group of order 8, then both KðVÞ/sS
and

KðPðVÞÞ/sS
are not stably rational over K : (b) When the Galois group of f ðTÞ is isomorphic to

the Klein four group, then a necessary and sufficient condition for rationality of KðVÞ/sS
and

KðPðVÞÞ/sS
is provided. (See Theorem 1.5. for details.)
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1. Introduction

Let K be any field, Kðx1;y; xnÞ be a rational function field of n variables over
K ; s be a K-automorphism acting on Kðx1;y; xnÞ by

s : x1/x2/?/xn/x1:
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It was asked by Emmy Noether [14] that whether the fixed field Kðx1;y; xnÞ/sS is
rational ð¼ purely transcendental) over K : Around 1960s Masuda showed that

Qðx1;y; xnÞ/sS was rational if n ¼ 2; 3; 4; 5; 6; 7; 11 [12]. The first counter-example
to Noether’s problem was constructed by Swan [18] who showed that

Qðx1;y; xnÞ/sS was not rational if n ¼ 47; 113; 233: For a survey of Noether’s
problem and related topics, see Swan’s paper [19].

Swan’s counter-example for n ¼ 47 uses the arithmetic of Qðz23Þ whose class
number is not one; note that Qðz23Þ is the first cyclotomic field not of class number
one. Later Lenstra gave a complete solution of the rationality problem of

Kðx1;y; xnÞ/sS; in particular, that of Qðx1;y; xnÞ/sS [11]. As Lenstra pointed

out, those integers n such that no47 and Qðx1;y; xnÞ/sS was not rational were
n ¼ 8; 16; 24; 32; 40 [11, (7.3) Corollary]. A new proof of the non-rationality of

Qðx1;y; x8Þ/sS and similar cases was found by Saltman [15, Theorem 5.11].
Saltman’s proof used a result of Shianghaw Wang, which corrected a mistake in
Grunwald’s Theorem.

Using the non-rationality of Qðx1;y; x8Þ/sS; it was shown that both the

fixed fields Qðy1; y2; y3; y4Þ/sS and Qðz1; z2; z3Þ/sS were not rational over Q

[1, Example 2.3] where

s : y1/y2/y3/y4/� y1; z1/z2/z3/� 1=ðz1z2z3Þ:

Being led by the above examples, we would like to find the rationality of

kðx1;y; xnÞ/sS where sAGLnðKÞ and np4: Here are the answers:

1.1. Theorem (Noether [14,13]). If G is any subgroup of GL2ðKÞ; then Kðx1; x2ÞG
is

rational over K :

1.2. Theorem (Ahmad et al. [1, Theorems 4.1 and 4.3]). Let K be any field.

(1) If sAGL3ðKÞ; then both Kðx1; x2; x3Þ/sS
and Kðx1=x3; x2=x3Þ/sS

are rational

over K.
(2) If s is a K-automorphism on Kðx1; x2; x3Þ defined by

sðxjÞ ¼
X

1pip3

aijxi þ bj for 1pjp3;

where aij; bjAK and detðaijÞa0; then Kðx1; x2; x3Þ/sS
is rational over K.

(3) If s is a K-automorphism on Kðx1; x2Þ defined by

sðx1Þ ¼ ða1x1 þ b1Þ=ðc1x1 þ d1Þ; sðx2Þ ¼ ða2x2 þ b2Þ=ðc2x2 þ d2Þ;

where ai; bi; ci; diAK and aidi � bicia0 for 1pip2; then Kðx1; x2Þ/sS
is rational

over K.

What we shall prove in this paper are the following theorems:
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1.3. Theorem. Let K be any field which may not be algebraically closed, V be a

four-dimensional vector space over K; sAGLðVÞ where the order of s may be finite

or infinite, f ðTÞAK ½T � be the characteristic polynomial of s: Let a; ab1; ab2; ab3 be

the four roots of f ðTÞ ¼ 0 in some extension field of K : Then both KðVÞ/sS

and KðPðVÞÞ/sS
are rational over K ; if at least one of the following conditions

is satisfied:

(i) char K ¼ 2;
(ii) f ðTÞ is a reducible or inseparable polynomial in K ½T �;
(iii) not all of b1; b2; b3 are roots of unity,
(iv) if f ðTÞ is a separable irreducible polynomial in K ½T � and G denotes the

Galois group of f ðTÞ over K ; then G is not isomorphic to D4 or Z2 � Z2 where

D4 denotes the dihedral group of order 8 and Zn denotes the cyclic group of

order n:

1.4. Theorem. Let the notations be the same as in Theorem 1.3. Suppose that all the bi

are roots of unity for 1pip3; f ðTÞAK ½T � is separable irreducible and the Galois

group G is isomorphic to D4: Then

(i) char Ka2 and f ðTÞ ¼ ðT2 � a2ÞðT2 � a2b2Þ; i.e. fb1; b2; b3g ¼ fb;�b;�1g; with

4jordðbÞ:
(ii) both KðVÞ/sS

and KðPðVÞÞ/sS
are not stably rational over K :

1.5. Theorem. Let the notations be the same as in Theorem 1.3. Suppose that all the bi

are roots of unity for 1pip3; f ðTÞAK ½T � is separable irreducible and the Galois

group G is isomorphic to Z2 � Z2:
Define integers n1; n2;m1;m2; d; k; i as follows: nj ¼ ordðbjÞ; d ¼ gcdfn1; n2g; nj ¼

dmj for 1pjp2; bm1

1 ¼ bkm2

2 : Let t ¼ ða; ab1Þðab2; ab3ÞAG; i.e. tðaÞ ¼ ab1; tðab1Þ ¼
a; tðab2Þ ¼ ab3; tðab3Þ ¼ ab2: Define an integer i by tðb2Þ ¼ bi

2: Define a; b; c by

i þ 1 ¼ da; i � 1 ¼ m2b; 2k ¼ cd � m1b: In case d ¼ 1; it is understood that k ¼ 0;
otherwise, k is uniquely determined modulo d and i is uniquely determined modulo n2:
Then

(i) a; b; c are integers and gcdfb; dg ¼ 1 or 2;
(ii) char Ka2;
(iii) KðVÞ/sS (resp. KðPðVÞÞ/sSÞ is rational over K if and only if any one of the

following conditions is satisfied:
(1) not both of b and d are even integers,
(2) b � d � 2 ðmod 4Þ and a þ c � 0 ðmod 2Þ;
(3) b � 0 ðmod 4Þ; d � 2 ðmod 4Þ and m1 þ m2 � 0 ðmod 2Þ;
(4) b � 2 ðmod 4Þ; d � 0 ðmod 4Þ and a þ c � 0 ðmod 2Þ:
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If KðVÞ/sS (resp. KðPðVÞÞ/sS) is not rational over K ; it is not stably rational over

K : Explicitly, the non-rational cases are the situations:

ð1Þ0 b � d � 2 ðmod 4Þ and a þ c � 1 ðmod 2Þ;
ð2Þ0 b � 0 ðmod 4Þ; d � 2 ðmod 4Þ; and m1 þ m2 � 1 ðmod 2Þ;
ð3Þ0 b � 2 ðmod 4Þ; d � 0 ðmod 4Þ and a þ c � 1 ðmod 2Þ:

A special case of Theorem 1.5 is the following.

1.6. Theorem. Let the notations be the same as in Theorem 1.3. Suppose that all the bi

are roots of unity for 1pip3; f ðTÞAK ½T � is separable irreducible and the Galois

group G is isomorphic to Z2 � Z2: If the subgroup fb1; b2; b3g is generated by one of

fb1; b2; b3g; then fb1; b2; b3g ¼ fb; b j ; b1�jg for some integer j: Let n ¼ ordðbÞ: Then

(i) 2jð j � 1Þ is divisible by n;
(ii) KðVÞ/sS (resp. KðPðVÞÞ/sS) is rational over K if and only if 2jð j � 1Þ=n

is an even integer. If KðVÞ/sS (resp. KðPðVÞÞ/sS) is not rational over K ; it is not

stably rational over K :

In particular, if fb1; b2; b3g ¼ fb;�b;�1g; then KðVÞ/sS (resp. KðPðVÞÞ/sS) is

not stably rational over K if and only if ordðbÞ is divisible by 4. If KðVÞ/sS (resp.

KðPðVÞÞ/sS) is stably rational over K ; it is rational over K :

As applications we get the following Theorems 1.7 and 1.8.

1.7. Theorem. Let K be any field, s be a K-automorphism on Kðx1; x2; x3; x4Þ
defined by

s : x1/x2/x3/x4/ð�a2=bÞx1 þ ax3;

where a; bAK\f0g: Then both Kðx1; x2; x3; x4Þ/sS
and Kðx1=x4; x2=x4; x3=x4Þ/sS

are

rational over K if at least one of the following conditions is satisfied:

(i) char K ¼ 2;
(ii) no root of the equation T4 � ðb � 2ÞT2 þ 1 ¼ 0 is a root of unity;
(iii) at least one of b2 � 4b; a þ ð2a=

ffiffiffi
b

p
Þ; a � ð2a=

ffiffiffi
b

p
Þ is in K2;

(iv) b � 4AK2:

If char Ka2; b2 � 4b; a þ ð2a=
ffiffiffi
b

p
Þ; a � ð2a=

ffiffiffi
b

p
ÞeK2 and b is a root of

T4 � ðb � 2ÞT2 þ 1 ¼ 0 with ordðbÞ ¼ noN; then Kðx1; x2; x3; x4Þ/sS (resp.
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Kðx1=x4; x2=x4; x3=x4Þ/sS) is not stably rational over K if and only if either (1) bAK2

and 4jn; or (2) b and b � 4eK2:

1.8. Theorem. Let K be any field, s be a K-automorphism on Kðx1; x2; x3; x4Þ
defined by

s : x1/x2/x3/x4/� ax1;

where aAK\f0g: Then Kðx1; x2; x3; x4Þ/sS) (resp. Kðx1=x4; x2=x4; x3=x4Þ/sS) is

rational over K if and only if at least one of the following conditions is satisfied,

(i) char K ¼ 2; (ii) �aAK2; (iii) 4aAK4; (iv) �1AK2: If Kðx1; x2; x3; x4Þ/sS

(resp. Kðx1=x4; x2=x4; x3=x4Þ/sS) is not rational over K ; it is not stably rational

over K :

1.9. Theorem. Let K be any field, s be a K-automorphism on Kðx1; x2; x3; x4Þ
defined by

sðxjÞ ¼
X

1pip4

aijxi þ bj for 1pjp4;

where aij; bjAK and det ðaijÞa0: Let f ðTÞ be the characteristic polynomial of

ðaijÞAGL4ðKÞ: Then Kðx1; x2; x3; x4Þ/sS
is rational over K except for the case f ð1Þa0

and f ðTÞ is the minimal polynomial of ðaijÞ: If f ð1Þa0 and f ðTÞ is the

minimal polynomial of ðaijÞ; then there exist y1; y2; y3; y4AK þ
P

1pip4 K � xi such

that K þ
P

1pip4 K � xi ¼ K þ
P

1pip4 K � yi and

sðyjÞ ¼
X

1pip4

aijyi for 1pjp4:

Note that, if a ¼ 1 in Theorem 1.8, we find that Kðx1; x2; x3; x4Þ/sS is rational

over K if and only if char K ¼ 2; or
ffiffiffiffiffiffiffi
�1

p
AK ; or

ffiffiffi
2

p
AK ; or

ffiffiffiffiffiffiffi
�2

p
AK ; and therefore

the non-rational examples mentioned at the beginning of this section is just a special
case of this conclusion. Finally we remark that, besides Theorem 1.3, there is yet
another direction of generalization for Theorem 1.2, which will appear in a
forthcoming paper [7]:

1.10. Theorem. Let K be any field, G any solvable subgroup of GL3ðKÞ: Then both

Kðx1; x2; x3ÞG
and Kðx1=x3; x2=x3ÞG

are rational over K :

It may be interesting to point out that Castelnuovo–Zariski’s Theorem for rational
algebraic surfaces requires that the base field K is algebraically closed [23] while the

rationality of Kðx1=x3; x2=x3ÞG in Theorem 1.10 is valid for any K ; in particular
those non-closed fields.
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In case f ðTÞ is separable and irreducible, the strategy of proving Theorem 1.2 is to
use Galois descent and to reduce the problem to two-dimensional algebraic tori [1].
We use similar techniques to prove the main results of this paper. However, in this
situation, not all three-dimensional algebraic tori are rational. Thanks are due to
Kunyavskii who provided a birational classification of all three-dimensional
algebraic tori [10]. In this sense we may regard the birational class of the three-

dimensional algebraic torus associated to KðPðVÞÞ/sS is the obstruction to the

rationality of KðVÞ/sS and KðPðVÞÞ/sS: If f ðTÞ is inseparable or reducible, we will
resort to other methods to solve the rationality problem; see Theorems 2.7 and 2.8
for details. In the formulation of Theorems 1.3–1.6, it is important to determine the
Galois group of the quartic polynomial f ðTÞ: We would mention that the paper [9]
provides some handy criteria to determine the Galois group of a quartic polynomial.
Finally, we would remark that Saltman has developed a method to determine
whether an algebraic torus is retract rational [16, Theorem 3.14; 17, Section 2]; this
method is particularly effective if we try to prove an algebraic torus is not stably
rational.

We shall organize this paper as follows. In Section 2 the rationality of KðVÞ/sS

and KðPðVÞÞ/sS will be established if f ðTÞ is reducible or inseparable. The proof of
Theorem 1.3 will be finished in Section 3. We shall prove Theorem 1.4 in Section 4.
The proof of Theorem 1.5 will be presented in Section 5. Section 6 will contain the
proof of Theorems 1.6–1.8. In the last section, Section 7, we shall prove Theorem 1.9
together with another application.

Standing notations. In this paper, K will always stand for a field; it is unnecessary to
assume char K ¼ 0 or K is algebraically closed. If V is a vector space over K ; KðVÞ
and KðPðVÞÞ will denote the function fields of V and PðVÞ respectively; taking a
basis x1;y; xn for V � (the dual space of V ), KðVÞ (resp. KðPðVÞÞÞ is nothing but the
field Kðx1;y; xnÞ (resp. Kðx1=xn; x2=xn;y; xn�1=xnÞÞ: We shall denote by
Kðx1;y; xnÞ the rational function field of n variables over K; i.e. x1; x2;y; xn are
algebraically independent over K: ðKðx; yÞ is defined similarly.)

If sAGLðVÞ; then s acts on KðVÞ and KðPðVÞÞ in a natural way; thus we may

consider the fixed subfields KðVÞ/sS and KðPðVÞÞ/sS of KðVÞ and KðPðVÞÞ;
respectively. In particular, If s ¼ ðaijÞ1pi;jpnAGLnðKÞ; then s acts on Kðx1;y; xnÞ
by sðxjÞ ¼

P
i aijxi for 1pjpn:

A field extension L of K is called rational over K if it is purely transcendental over
K ; L is called stably rational over K if Lðy1;y; ymÞ is rational over K for some
y1;y; ym which are algebraically independent over L:

If e is an element of a group G; ordðeÞ will denote the order of e; for
g1; g2;y; gmAG;/g1; g2;y; gmS denotes the subgroup generated by g1; g2;y; gm:
If G is the Galois group of a quartic equation f ðTÞ ¼ 0 over a field K and
a1; a2; a3; a4 are the four roots of f ðTÞ ¼ 0; then we may regard G as a subgroup of
S4; the symmetric group on fa1; a2; a3; a4g; for an element tAG; the expression
t ¼ ða1; a2Þða3; a4Þ means that tða1Þ ¼ a2; tða2Þ ¼ a1; tða3Þ ¼ a4; tða4Þ ¼ a3:
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2. The reducible and inseparable cases

We recall several results which will be used repeatedly throughout this paper.

2.1. Theorem (Hajja and Kang [6, Theorem 1]). Let G be a finite group acting on

Lðx1;y; xnÞ; the rational function field of n variables over a field L. Suppose that

(i) for any sAG; sðLÞCL;
(ii) the restriction of the actions of G to L is faithful;
(iii) for any sAG;

sðx1Þ
^

sðxnÞ

0B@
1CA ¼ AðsÞ

x1

^

xn

0B@
1CAþ BðsÞ;

where AðsÞAGLnðLÞ and BðsÞ is an n � 1 matrix over L.
Then there exist z1;y; znALðx1;y; xnÞ such that Lðx1;y; xnÞ ¼ Lðz1;y; znÞ with

sðziÞ ¼ zi for any sAG; any 1pipn:

2.2. Theorem (Ahmad et al. [1, Theorem 3.1]). Let G be a group acting on LðxÞ; the

rational function field of one variable over a field L. Suppose that, for any

sAG; sðLÞCL and sðxÞ ¼ as � x þ bs for some as; bsAL with asa0: Then LðxÞG ¼
LG or LGð f ðxÞÞ where f ðxÞAL½x� is of positive degree.

2.3. Theorem (Ahmad et al. [1, Proposition 3.2]). Let K be any field, V a finite-

dimensional vector space over K and G any subgroup of GLðVÞ: If KðPðVÞÞG
is

rational over K, then KðVÞG
is rational over K also.

2.4. Theorem. Let K be any field, s be a K-automorphism of Kðx; yÞ defined by sðxÞ ¼
a=x; sðyÞ ¼ b=y where aAK\f0g; b ¼ cðx þ ða=xÞÞ þ d such that c; dAK and at least

one of c and d is non-zero. If u and v are defined by

u ¼ x � ða=xÞ
xy � ðab=xyÞ; v ¼ y � ðb=yÞ

xy � ðab=xyÞ; ð2:1Þ

then Kðx; yÞ/sS ¼ Kðu; vÞ and

x þ ða=xÞ ¼ ð�bu2 þ av2 þ 1Þ=v; y þ ðb=yÞ ¼ ðbu2 � av2 þ 1Þ=u;

xy þ ðab=xyÞ ¼ ð�bu2 � av2 þ 1Þ=uv: ð2:2Þ
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Proof. Define u and v by (2.1). Then it is straightforward to verify that (2.2) is valid
no matter what a and b may be.

We shall prove that Kðx; yÞ/sS ¼ Kðu; vÞ if a and b are required as in the statement
of the theorem.

From (2.2), we get

ðx þ ða=xÞÞv ¼ f�cðx þ ða=xÞÞ � dgu2 þ av2 þ 1;

ðx2 þ aÞv ¼ �cðx2 þ aÞu2 þ xðdu2 þ av2 þ 1Þ:

Thus ½Kðx; u; vÞ: Kðu; vÞ�p2:
Again using (2.2) we find that

y þ ðb=yÞ ¼ A; ð2:3Þ

xy þ ðab=xyÞ ¼ B; ð2:4Þ

where A ¼ ðbu2 � av2 þ 1Þ=u and B ¼ ð�bu2 � av2 þ 1Þ=uv: Regard (2.3) and (2.4) as
linear equations with coefficients in Kðx; u; vÞ and in unknowns y and 1=y: Thus
solve (2.3) and (2.4) within the field Kðx; u; vÞ: It follows yAKðx; u; vÞ: Hence
Kðx; yÞ ¼ Kðx; u; vÞ:

Since Kðu; vÞCKðx; yÞ/sSCKðx; yÞ ¼ Kðx; u; vÞ and ½Kðx; u; vÞ : Kðu; vÞ�p2 ¼
½Kðx; yÞ : Kðx; yÞ/sS�; it follows that Kðu; vÞ ¼ Kðx; yÞ/sS: &

Remark. The case when a; bAK\f0g in Theorem 2.4 was proved by Giles and

McQuillan [2] without exhibiting the generators of Kðx; yÞ/sS; the generators u and v

in (2.1) and the formula of x þ ða=xÞ;y in (2.2), valid only for the case a; bAK\f0g;
were proved in [5, (2.7) Lemma].

We shall use results of the birational classification of algebraic tori due to
Voskresenskii [21] and Kunyavskii [10]. We refer to the monograph of Voskresenskii
[22] for general notions of algebraic tori. Here we just give an algebraic formulation
of the function field of an algebraic torus defined over a field K : Let L be a finite
Galois extension of K with Galois group G; Lðx1;y; xnÞ be the rational function
field of n variable over L; and r : G-GLnðZÞ be a group homomorphism. Then the
action of G on L can be extended to Lðx1;y; xnÞ by

tðxjÞ ¼
Yn

i¼1

x
nij

i ;

where rðtÞ ¼ ðnijÞAGLnðZÞ for any tAG: The fixed field Lðx1;y; xnÞG is the

function field of some n-dimensional algebraic torus defined over K and split by L:

2.5. Theorem (Voskresenskii [21]). All two-dimensional algebraic tori are rational.
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Remark. The birational classification of three-dimensional algebraic tori is proved
by Kunyavskii [10]. See [10, Theorem 1] for the details.

From now on till the end of this section, V is assumed to be a four-dimensional
vector space over K ; sAGLðVÞ and f ðTÞAK ½T � the characteristic polynomial of s:
In order to establish the rationality of KðVÞ/sS and KðPðVÞÞ/sS; it suffices to

establish the rationality of KðPðVÞÞ/sS because of Theorem 2.3.

2.6. Lemma. If K is a field with char K ¼ 2 and f ðTÞ ¼ T4 þ aAK ½T �; then both

KðVÞ/sS
and KðPðVÞÞ/sS

are rational over K :

Proof. Case 1: f ðTÞ is the minimal polynomial of s: By the rational canonical form of
s; we can find a basis v1; v2; v3; v4 of V � such that

s : v1/v2/v3/v4/av1:

Define

x1 ¼ v3=v1; x2 ¼ v4=v2; x3 ¼ v2=v1; u ¼ x2=x1:

Then KðPðVÞÞ ¼ Kðx1; x2; x3Þ and

s : x1/x2/a=x1; x3/x1=x3; u/a=ðx 2
2 uÞ;

s2 : x1/a=x1; x2/a=x2; x3/ux3; u/1=u:

By Theorem 2.4, Kðx1; x2; x3Þ/s2S ¼ Kðx1; x2; ð1þ uÞx3Þ/s2S ¼ Kðx1; x2Þ/s2Sðð1þ
uÞx3Þ ¼ Kðy1; y2; ð1þ uÞx3Þ where

y1 ¼
x1 � ða=x1Þ

x1x2 � ða2=x1x2Þ
; y2 ¼

x2 � ða=x2Þ
x1x2 � ða2=x1x2Þ

:

Define

z1 ¼ aðy1 þ y2Þ; z2 ¼ y1=ðy1 þ y2Þ; z3 ¼ z2ð1þ uÞx3:

Then Kðy1; y2; ð1þ uÞx3Þ ¼ Kðz1; z2; z3Þ and

s : z1/a=z1; z2/z2 þ 1; z3/ðz1 þ ða=z1ÞÞ=z3:

Now Kðz1; z2; z3Þ ¼ Kðz1; z3; zÞ for some z with sðzÞ ¼ z by Theorem 2.1. Thus

Kðz1; z2; z3Þ/sS ¼ Kðz1; z3Þ/sSðzÞ is rational over K by Theorem 2.4.
Case 2: f ðTÞ is not the minimal polynomial of s: Thus f ðTÞ is reducible. Either f ðTÞ

has a linear factor in K ½T � or f ðTÞ ¼ ðT2 þ bÞ2 for some bAK with b2 ¼ a:

In the first situation, KðPðVÞÞ/sS is rational by Case 1 of the proof of the
following Theorem 2.7 (under a more general situation). Thus, it remains to consider
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the latter situation. In this situation, we may assume that T2 þ b is irreducible and is
the minimal polynomial of s:

Thus we may find a basis v1; v2;w1;w2 of V � such that

s : v1/v2/bv1; w1/w2/bw1:

Define

x ¼ v2=v1; y ¼ w1=v1; z ¼ w2=v2:

Then KðPðVÞÞ ¼ Kðx; y; zÞ and
s : x/b=x; y/z/y:

Since KðxÞ/sS is rational by Lüroth’s Theorem, it follows that Kðx; y; zÞ/sS is
rational by Theorem 2.1. &

2.7. Theorem. If K is any field and f ðTÞ is a reducible polynomial in K ½T �; then

KðPðVÞÞ/sS
is rational over K :

Proof. Case 1: f ðTÞ ¼ ðT � aÞgðTÞ for some aAK : Then V � has an eigenvector with
eigenvalue a: Thus we may find a basis v1; v2; v3; v4 of V � such that sðv1Þ ¼ av1:
Define

x1 ¼ v2=v1; x2 ¼ v3=v1; x3 ¼ v4=v1:

Then

sðxjÞ ¼
X

1pip3

aijxi þ bi for 1pjp3;

where ðaijÞ1pi;jp3AGL3ðKÞ and bjAK : Hence Kðx1; x2; x3Þ/sS is rational over K by

Theorem 1.2 (2).
Case 2: f ðTÞ ¼ g1ðTÞg2ðTÞ where g1ðTÞ and g2ðTÞ are distinct monic irreducible

polynomial of degree 2. By linear algebra, V � decomposes into a direct sum of two
invariant two-dimensional subspaces, i.e. there exists a basis v1; v2; v3; v4 of V� such
that sðviÞAK � v1 þ K � v2 for 1pip2; and sðvjÞAK � v3 þ K � v4 for 3pjp4: Define

x1 ¼ v2=v1; x2 ¼ v4=v3; x3 ¼ v3=v1:

Then KðPðVÞÞ ¼ Kðx1; x2; x3Þ and sðx3Þ ¼ lx3 for some lAKðx1; x2Þ: By Theorem

2.2 the rationality of Kðx1;x2; x3Þ/sS follows from that of Kðx1; x2Þ/sS: However,

Kðx1; x2Þ/sS is rational over K by Theorem 1.2(3).

Case 3: f ðTÞ ¼ gðTÞ2; where gðTÞ is a monic irreducible polynomial. If gðTÞ is

inseparable, then char K ¼ 2 and gðTÞ ¼ T2 þ b for some bAK\f0g: Thus f ðTÞ ¼
T4 þ b2: This situation has been treated in Lemma 2.6.

Thus we may assume that gðTÞ is separable irreducible.
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If the minimal polynomial of s is gðTÞ; then V � decomposes into a direct sum of
two invariant two-dimensional subspaces. This situation can be treated as the above
Case 2.

Thus, we may assume that f ðTÞ ¼ gðTÞ2 is the minimal polynomial of s and gðTÞ
is separable irreducible.

Let gðTÞ ¼ ðT � aÞðT � bÞ and L ¼ KðaÞ: Let G ¼ /tS be the Galois group of L

over K : Then tðaÞ ¼ b:
Choose a vector vAV � such that v; sðvÞ; s2ðvÞ; s3ðvÞ is a basis of V �:
The action of s on V � is extended to V�#K L by sðaÞ ¼ a; and the action of t on

L is extended to V �#K L by tðvÞ ¼ v for any vAV�:
In V�#K L; define

v2 ¼ ðs� bÞ2v; v4 ¼ ðs� aÞ2v;

v1 ¼ ðs� aÞv2; v3 ¼ ðs� bÞv4:

Then

s : v1/av1; v2/av2 þ v1; v3/bv3; v4/bv4 þ v3:

Define

x1 ¼ v2=v1; x2 ¼ v4=v3; x3 ¼ v3=v1:

Then

KðPðVÞÞ ¼ LðPðV#K LÞÞ/tS ¼ Lðx1; x2; x3Þ/tS

and

s : x1/x1 þ ð1=aÞ; x2/x2 þ ð1=bÞ; x3/lx3;

where l ¼ b=a:
Note that tðv2Þ¼tðs� bÞ2ðvÞ¼ðs� aÞ2tðvÞ¼ðs� aÞ2v¼v4; tðv1Þ¼tðs� aÞv2¼

ðs� bÞtðv2Þ ¼ ðs� bÞv4 ¼ v3: We find that

t : a2b; v12v3; v22v4; x12x2; x3/1=x3:

If char K ¼ 0; define y ¼ ðax1 � bx2Þ=ða� bÞ: Then sðyÞ ¼ tðyÞ ¼ y:

Hence Lðx1; x2; x3Þ/sS ¼ Lðx2; x3Þ/sSðyÞ: Using Theorem 2.2 we get Lðx2; x3Þ/sS ¼
Lðx3Þ/sS ¼ Lðxn

3Þ or L depending on whether ordðlÞ ¼ n or ordðlÞ ¼ N in

L\f0g: Now, if Lðx3Þ/sS ¼ L; then KðPðVÞÞ/sS ¼ Lðx1; x2; x3Þ/t;sS ¼
fLðx1; x2; x3Þ/sSg/tS ¼ L/tS ¼ K : If Lðx3Þ/sS ¼ Lðxn

3Þ; then KðPðVÞÞ/sS ¼
fLðx1; x2; x3Þ/sSg/tS ¼ Lðxn

3Þ
/tS ¼ LðzÞ/tS ¼ KðzÞ where z ¼ ða� bÞfð1� xn

3Þ=
ð1þ xn

3Þg: In both cases, KðPðVÞÞ/sS is rational.

Now consider the case char K ¼ p40:
Suppose that ordðlÞ ¼ N in L\f0g:
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Using Theorem 2.2 again, we have Lðx1; x2; x3Þ/sS ¼ Lðx1; x2Þðx3Þ/sS ¼
Lðx1; x2Þ/sS:

It is easy to verify that Lðx1; x2Þ/sS ¼ Lðy1; y2Þ where

y1 ¼ x
p
1 � ð1=a p�1Þx1; y2 ¼ ax1 � bx2: ð2:5Þ

Note that

tðy2Þ ¼ �y2 and tðy1Þ ¼ ða=bÞp
y1 � ð1=b pÞðy p

2 � y2Þ: ð2:6Þ

By Theorem 2.1, find zALðy1; y2Þ such that Lðy1; y2Þ ¼ Lðy2; zÞ with tðzÞ ¼ z:

Hence Lðy1; y2Þ/tS ¼ Lðy2; zÞ/tS ¼ L/tSðy; zÞ ¼ Kðy; zÞ where y ¼ ða� bÞy2; is
rational over K :

It remains to solve the case ordðlÞ ¼ n; i.e. l is a primitive nth root of unity.
Note that p[n; and p j ordðsÞ because x1/x1 þ ð1=aÞ is of order p:

Then Lðx1; x2; x3Þ/spS ¼ Lðx1; x2; xn
3Þ: Thus Lðx1; x2; x3Þ/sS ¼ Lðx1; x2; xn

3Þ
/sS ¼

Lðx1; x2Þ/sSðxn
3Þ ¼ Lðy1; y2; xn

3Þ where y1 and y2 are defined by the same formula as

in (2.5). The action of t on y1 and y2 are the same as (2.6).

y3 ¼ 1=ð1þ xn
3Þ:

Then tðy3Þ ¼ �y3 þ 1: By Theorem 2.1, find y0ALðy1; y2; y3Þ such that
Lðy1; y2; y3Þ ¼ Lðy1; y2; y0Þ with tðy0Þ ¼ y0:

Now KðPðVÞÞ/sS ¼ LðPðV#K LÞÞ/t;sS ¼ fLðx1; x2; x3Þ/sSg/tS ¼ Lðy1; y2;

xn
3Þ

/tS ¼ Lðy1; y2Þ/tSðy0Þ: The rationality of Lðy1; y2Þ/tS follows by the same way

as above. Hence the result. &

2.8. Theorem. Let K be a field with char K ¼ 2 and f ðTÞ ¼ T4 þ bT2 þ aAK ½T �:
Then both KðVÞ/sS

and KðPðVÞÞ/sS
are rational over K:

Proof. The situation when b ¼ 0 or f ðTÞ is reducible is treated in Lemma 2.6 and
Theorem 2.7. Thus we may assume that ba0 and f ðTÞ is irreducible.

Let T2 þ bT þ a ¼ ðT � aÞðT � bÞ and L ¼ KðaÞ: Let G ¼ /tS be the Galois
group of L over K : Then tðaÞ ¼ b:

Choose a vector vAV � such that v; sðvÞ; s2ðvÞ; s3ðvÞ is a basis of V �:
The action of s ðresp: tÞ on V � (resp. L) can be extended to V �#K L by sðaÞ ¼ a

(resp. tðvÞ ¼ v for any vAV �).
In V�#K L; define

w1 ¼ av þ s2ðvÞ; w2 ¼ a � sðvÞ þ s3ðvÞ;

w3 ¼ bv þ s2ðvÞ; w4 ¼ b � sðvÞ þ s3ðvÞ:
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Then we find that

s : w1/w2/bw1; w3/w4/aw3;

t : w12w3; w22w4:

Define

x1 ¼ w2=w1; x2 ¼ w4=w3; x3 ¼ w3=w1:

Then

s : x1/b=x1; x2/a=x2; x3/x2x3=x1;

s2 : x1/x1; x2/x2; x3/lx3;

t : x1/x2; x3/1=x3;

where l ¼ a=b:
We shall compute KðPðVÞÞ/sS ¼ fLðx1; x2;x3Þ/sSg/tS:

Case 1: ordðlÞ ¼ N: Lðx1; x2; x3Þ/sS ¼ fLðx1; x2; x3Þ/s2Sg/sS ¼ Lðx1; x2Þ/sS ¼
Lðy1; y2Þ where y1; y2 are defined by

y1 ¼
x1 � ðb=x1Þ

x1x2 � ðab=x1x2Þ
; y2 ¼

x2 � ða=x2Þ
x1x2 � ðab=x1x2Þ

: ð2:7Þ

Note that tðy1Þ ¼ y2 and tðy2Þ ¼ y1: It is clear that

Lðy1; y2Þ/tS ¼Lðy1 þ y2; fy1=ðy1 þ y2Þg þ ða=bÞÞ/tS

¼Kðy1 þ y2; fy1=ðy1 þ y2Þg þ ða=bÞÞ

is rational over K :
Case 2: ordðlÞ ¼ n: Note that 2 [ n because char K ¼ 2:

Lðx1; x2; x3Þ/sS ¼ fLðx1; x2; x3Þ/s2Sg/sS ¼ Lðx1; x2; xn
3Þ

/sS ¼ Lðx1;x2Þ/sSðy3Þ
where y3 ¼ ð1þ unÞxn

3 with u ¼ x2=x1: Note that tðy3Þ ¼ ðun þ u�nÞ=y3:

Define w ¼ u þ ðl=uÞALðx1;x2Þ/sS: From the binomial expansion of wn ¼ ðu þ
ðl=uÞÞn; wn�2 ¼ ðu þ ðl=uÞÞn�2;y; it is easy to find that

un þ u�n ¼ wn þ c1lwn�2 þ c2l
2wn�4 þ?þ cml

mw;

where n ¼ 2m þ 1 and c1; c2;y; cm are either 0 or 1. Since l is in the finite field F2ðlÞ;
it follows that l ¼ e2 for some eAF2ðlÞ\f0g; and therefore un þ u�n ¼ wy2 for some

ARTICLE IN PRESS
M.-C. Kang / Advances in Mathematics 181 (2004) 321–352 333



yALðx1; x2Þ/sS: Since tðun þ u�nÞ ¼ un þ u�n and tðwÞ ¼ l�1w; it follows that
tðyÞ ¼ ey:

Define z1; z2; z3 by

z1 ¼
u � ðl=uÞ

ux1 � ðlb=ux1Þ
; z2 ¼

x1 � ðb=x1Þ
ux1 � ðlb=ux1Þ

; z3 ¼ y3=y: ð2:8Þ

Then Lðx1; x2; x3Þ/sS ¼ Lðz1; z2; z3Þ by Theorem 2.4. Moreover,

t : z1/l�1z1=z2; z2/1=z2; z3/e�1w=z3:

Define t1; t2; t3 by

t1 ¼ ð1=ð1þ z2ÞÞ þ ða=bÞ; t2 ¼ e�1z1=ð1þ z2Þ;

t3 ¼ ðt21 þ t1 þ ða=b2ÞÞz3:

By substituting the formula u þ ðl=uÞ in (2.2) of Theorem 2.4, then Lðz1; z2; z3Þ ¼
Lðt1; t2; t3Þ and tðt1Þ ¼ t1; tðt2Þ ¼ t2; tðt3Þ ¼ A=t3 where

A ¼ ft21 þ t1 þ ða=b2Þgfðeb þ eaÞt22 þ ðeþ e�1Þt21 þ ðeþ eb�1aÞg:

Note that eb þ ea; eþ e�1; eþ eb�1a are fixed by t and therefore belong to K :

We claim that Lðt1; t2; t3Þ/tS ¼ Kðt1; t2; t4; t5Þ with the relation

t24 þ ðb=aÞt4t5 þ ð1=aÞt25 ¼ b2A=a: ð2:9Þ

In fact, letting t4 ¼ t3 þ ðA=t3Þ and t5 ¼ at3 þ ðaA=at3Þ: The verification of the above
claim will become straightforward.

We shall simplify relation (2.9):

ðat4=bÞ2 þ ðat4=bÞt5 þ ða=bÞ2t25 ¼ aA: ð2:10Þ

Multiply by t21 þ t1 þ ða=b2Þ both sides of (2.10). We get

fðat4=bÞ2 þ ðat4=bÞt5 þ ða=b2Þt25gft21 þ t1 þ ða=b2Þg

¼ ft21 þ t1 þ ða=b2Þg2fðeab þ eaaÞt22 þ aðeþ e�1Þt21 þ ðea þ eab�1aÞg:

The left-hand side of the above identity is

ðða=bÞt1t4 þ ða=b2Þt5Þ2 þ ðða=bÞt1t4 þ ða=b2Þt5Þðða=bÞt4 þ t1t5 þ t5Þ

þ ða=bÞ2ðða=bÞt4 þ t1t5 þ t5Þ2:

Since eAF2ðlÞ; which is a finite field, it follows that e ¼ r2 for some rAF2ðlÞ\f0g:
Thus eþ e�1 ¼ r�2ðeþ 1Þ2: Note that r�1ðeþ 1ÞAK :
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Define p; q; r by

p ¼ ðða=bÞt1t4 þ ða=b2Þt5Þ=ðt21 þ t1 þ ða=b2ÞÞ;

q ¼ ðða=bÞt4 þ t1t5 þ t5Þ=ðt21 þ t1 þ ða=b2ÞÞ;

r ¼ r�1ðeþ 1Þt1:

Thus Lðt1; t2; t3Þ/tS ¼ Kðt2; p; q; rÞ with the relation

p2 þ pq þ ða=b2Þq2 ¼ ðeab þ eaaÞt22 þ ar2 þ ðea þ eab�1aÞ: ð2:11Þ

The above relation (2.11) can be written as

p2 þ pq þ aððq=bÞ þ rÞ2 ¼ ðeab þ eaaÞt22 þ ðea þ eab�1aÞ: ð2:12Þ

It follows that qAKðt2; p; ðq=bÞ þ rÞ by (2.12). Hence KðPðVÞÞ/sS ¼
Lðt1; t2; t3Þ/tS ¼ Kðt2; p; ðq=bÞ þ rÞ is rational over K: &

2.9. Theorem. Let K be any field. If f ðTÞ is inseparable, then KðPðVÞÞ/sS
is rational

over K.

Proof. If f ðTÞ is inseparable, then char K ¼ 2 or 3. The case char K ¼ 2 has been

solved by Theorem 2.8. If char K ¼ 3; then f ðTÞ ¼ ðT � bÞðT3 � aÞ for some
a; bAK : Thus f ðTÞ is reducible and we may apply Theorem 2.7. &

3. The proof of Theorem 1.3

In this section except in 3.4, we assume the characteristic polynomial f ðTÞ is
separable irreducible in K ½T �:

Let a1; a2; a3; a4 be the roots of f ðTÞ ¼ 0; L ¼ Kða1; a2; a3; a4Þ and G be the Galois
group. Since elements of G permute a1; a2; a3; a4; we may regard G as a subgroup of
S4 by: for any tAG;

tðiÞ ¼ j if and only if tðaiÞ ¼ aj:

Note that, as a subgroup of S4; G is one of S4; A4; or is conjugate of D4; Z4; Z2 � Z2

(Zn stands for the cyclic group of order n).
We shall write the four roots a1; a2; a3; a4 of f ðTÞ ¼ 0 by a; ab1; ab2; ab3 by

assigning a to be any root aj ð1pjp4Þ: Define N ¼ Kðb1; b2; b3Þ:
We shall indicate the main idea of our proof of Theorems 1.3–1.5 in the case when

f ðTÞ is separable irreducible.
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The group action of s on V � is extended to V �#K L by sðaÞ ¼ a for any aAL: The
group action of G on L is extended V �#K L by tðvÞ ¼ v for any tAG; any vAV�:

Choose a vector vAV� such that v; sðvÞ; s2ðvÞ; s3ðvÞ is a basis of V�: Define v1; v2;
v3; v4AV �#K L by

vi :¼ ðs� a1Þ?ð ds� ais� aiÞ?ðs� a4ÞðvÞ:

Then sðviÞ ¼ aivi and, for any tAG; tðviÞ ¼ tðs� a1Þ?ð ds� ais� aiÞ?ðs� a4ÞðvÞ ¼
ðs� atð1ÞÞ?ð ds� atðiÞs� atðiÞÞ?ðs� atð4ÞÞðtðvÞÞ ¼ vtðiÞ:

Define

xi ¼ vi=v1; bi ¼ ai=a1 for 1pip3:

Then

KðPðVÞÞ/sS ¼ fLðPðV "
K

LÞÞGg/sS ¼ fLðx1; x2; x3Þ/sSgG;

and sðxiÞ ¼ bixi:
Let /x1; x2;x3S :¼ fxn1

1 xn2
2 xn3

3 ALðx1; x2;x3Þ\f0g: n1; n2; n3AZg and define the G-

equivariant map F by

F :/x1; x2; x3S - L�

xn
1x

n2
2 xn3

3 / sðxn1
1 xn2

2 xn3
3 Þ=ðx

n1
1 xn2

2 xn3
3 Þ:

Since /x1; x2; x3S is isomorphic to a free abelian group of rank three, it follows
that Ker F is a free abelian group of rankp3 with G actions, i.e. Ker F ¼
/M1;y;MkS for some monomials M1;y;Mk with k ¼ rankðKer FÞ: Now

Lðx1; x2; x3Þ/sS ¼ LðM1;y;MkÞ and LðM1;y;MkÞG is the function field of some
algebraic turns over K split by L: Thus, we can apply results of the birational
classification of algebraic tori due to Voskresenskii and Kunyavskii (Theorem 2.5
and [10]).

3.1. Lemma. If /b1; b2; b3S is an infinite subgroup of L\f0g; then KðPðVÞÞ/sS
is

rational over K :

Proof. From the above discussion, KerðFÞ is a free abelian group of rankp2: Since
every two-dimensional algebraic torus is rational by Theorem 2.5 (and it is not
difficult to show that the same conclusion is valid for every one-dimensional

algebraic torus), it follows that KðPðVÞÞ/sS ¼ LðM1;y;MkÞG is rational
over K : &

3.2. Lemma. If K ¼ N; then GCZ4 and KðPðVÞÞ/sS
is rational over K :

Proof. Since L ¼ Kða; b1; b2; b3Þ ¼ NðaÞ ¼ KðaÞ; it follows that ½L : K� ¼ 4 and
GCZ4 or Z2 � Z2:
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If GCZ4; then KðPðVÞÞ/sS is rational over K by Kunyavskii [10, Theorem 1]. We
shall show that GCZ2 � Z2 will lead to a contradiction.

Suppose GCZ2 � Z2: Choose t1AG such that t1 ¼ ða; ab1Þðab2; ab3Þ: Since
biAN ¼ K ; bi is fixed by G: It follows that ab3 ¼ t1ðab2Þ ¼ t1ðaÞtðb2Þ ¼ ab1 � b2:
Hence b3 ¼ b1b2:

Now choose t2AG with t2 ¼ ða; ab1b2Þðab1; ab2Þ: We get ab1b2 ¼ tðaÞ ¼ tðab1 �
b�1
1 Þ ¼ tðab1Þtðb�1

1 Þ ¼ ab2 � b�1
1 : Hence b21 ¼ 1: By similar arguments, we get b21 ¼ 1

also.
Hence b1 ¼ 71; b2 ¼ 71: Thus f ðTÞ cannot be a separable polynomial. A

contradiction. &

3.3. Lemma. If KaN; then either KðPðVÞÞ/sS
is rational or GCD4 or Z2 � Z2:

Proof. For any tAG; tðbiÞ ¼ tðabi=aÞ ¼ tðabiÞ=tðaÞ ¼ ðabjÞ=ðablÞ ¼ bj=bl for some

j; l: Thus N ¼ Kðb1; b2; b3Þ is normal over K : Because of Lemma 3.1 it suffices to
consider the case ordðbiÞoN for 1pip3: It follows that N is an abelian extension
of K :

If aAN; then G is abelian. Hence GCZ4 or Z2 � Z2: If GCZ4; then KðPðVÞÞ/sS is
rational by Kunyavskii [10, Theorem 1].

If aeN; then L ¼ NðaÞ: Thus ½NðaÞ : N� ¼ 2 or 4. It follows that G has a non-
trivial normal subgroup H such that jHj ¼ 2 or 4, and G=H is a non-trivial abelian
group. Thus G ¼ S4 is impossible. If G ¼ A4; the H should be the Klein four group

in A4 and N ¼ LH : Choose t1AH such that t1 ¼ ða; ab1Þðab2; ab3Þ: We get b1 ¼
t1ðb1Þ ¼ t1ðab1=aÞ ¼ t1ðab1Þ=t1ðaÞ ¼ a=ðab1Þ ¼ b�1

1 : Hence b21 ¼ 1 and b1 ¼ �1:
Similarly, take t2 ¼ ða; ab2Þðab1; ab3ÞAH; we will get b2 ¼ �1: Thus f ðTÞ would not
be separable. A contradiction.

If follows that GCD4; Z4 or Z2 � Z2: The case GCZ4 will ensure that

KðPðVÞÞ/sS is rational as before. &

3.4. Proof of Theorem 1.3. Theorems 2.7 and 2.9 take care of situation (ii). Situation
(iii) is covered by Lemma 3.1. By Lemmas 3.2 and 3.3 situation (iv) is ok. Because of
(ii)–(iv), it follows that the remaining unsettled situation is the case: f ðTÞ is separable
irreducible, /b1; b2;b3S is a finite group and the Galois group GCD4; or Z2 � Z2:
We shall show that it is necessary that char Ka2 in this situation (see Lemmas 4.1(i)

and 5.1). Thus, if char K ¼ 2; KðPðVÞÞ/sS is rational over K; which is just
situation (i). &

4. Proof of Theorem 1.4

In this section we shall adopt the same notations as in Section 3. Throughout this
section we shall assume that f ðTÞ is a separable irreducible polynomial in K ½T �;

ARTICLE IN PRESS
M.-C. Kang / Advances in Mathematics 181 (2004) 321–352 337



/b1; b2; b3S is a finite subgroup of L\f0g and the Galois group G is equal to D4

where D4 ¼ fid; ð1234Þ; ð13Þð24Þ; ð1432Þ; ð13Þ; ð24Þ; ð12Þð34Þ; ð14Þð23Þg:

4.1. Lemma. (i) KaN and NaL; char Ka2; fb1; b2; b3g ¼ f�1; b;�bg: (ii)
ð1234Þ ¼ ða; ab;�a;�abÞ or ða;�ab;�a; abÞ; moreover, ð13Þð24Þ leaves every element

in N fixed.

Proof. By Lemma 3.2, KaN: Since N is an abelian extension of K ; while G is not
abelian, hence NaL:

Let H be the Galois group of L over N: Then Hafidg; H vG and G=H is a non-
trivial abelian group. Thus the only candidates for H are: /ð1234ÞS;/ð13Þð24Þ;
ð12Þð34ÞS;/ð13Þð24Þ; ð13ÞS;/ð13Þð24ÞS: In any case, t1 ¼ ð13Þð24Þ belongs to H:
(It can be shown that the situation H ¼ /ð13Þð24Þ; ð12Þð34ÞS or /ð13Þð24Þ; ð13ÞS is
impossible. But we do not need this fact.)

Write t1 ¼ ða; ab1Þðab2; ab3Þ by indexing a1 ¼ a; a2 ¼ ab2; a3 ¼ ab1; a4 ¼ ab3:
Then ab3 ¼ t1ðab2Þ ¼ t1ðaÞt2ðb2Þ ¼ ab1 � b2: Thus b3 ¼ b1b2: On the other hand,

b1 ¼ t1ðb1Þ ¼ t1ðab1=a1Þ ¼ t1ðab1Þ=t1ðaÞ ¼ a=ðab1Þ ¼ b�1
1 ; hence b1 ¼ �1 and

char Ka2 because f ðTÞ is separable and b1 ¼ 1 will be impossible. In conclusion,
fb1; b2; b3g ¼ f�1; b;�bg and ð13Þð24Þ ¼ ða;�aÞðab;�abÞ:

Let t ¼ ð1234Þ: Then t2 ¼ ð13Þð24Þ ¼ ða;�aÞðab;�abÞ: Thus t ¼ ða; ab;�a;�abÞ
or ða;�ab;�a; abÞ: &

4.2. Lemma. (i) 4 j ordðbÞ:
(ii) If b2a� 1; then f ðTÞ ¼ T4 � aT2 þ ða2=bÞAK½T � where a; ba0 and a ¼

a2ð1þ b2Þ; b ¼ ðbþ b�1Þ2: If b2 ¼ �1; then f ðTÞ ¼ T4 þ aAK ½T � where a ¼ �a4:

Proof. By Lemma 4.1, write f ðTÞ ¼ ðT � aÞðT þ aÞðT � abÞðT þ abÞ: We will
obtain (ii).

By Lemma 4.1, take t ¼ ða; ab;�a;�abÞ: (The case t ¼ ða;�ab;�a; abÞ will lead
to the same result.) Then �a ¼ tðabÞ ¼ tðaÞtðbÞ ¼ ab � tðbÞ: Hence tðbÞ ¼ �b�1:

Thus �b�1 is a conjugate of b in L:

Since b is a root of unity, all of its conjugates are of the form b j for some suitable

j: It follows that �b�1 ¼ b j : Thus �1A/bS: Denote n ¼ ordðbÞ: Then n is even.
Write n ¼ 2m: We shall show that m is even.

Note that tðbÞ ¼ �b�1 and t2ðbÞ ¼ tð�b�1Þ ¼ �ð�b�1Þ�1 ¼ b: Since ordðbÞ ¼ n;

then �b�1 ¼ bm�1: It follows that b ¼ t2ðbÞ ¼ tðtðbÞÞ ¼ tðbm�1Þ ¼ tðbÞm�1 ¼
bðm�1Þ2 : Hence ðm � 1Þ2 ¼ 1 ðmod 2mÞ and 2 j m: &

4.3. Proof of Theorem 1.4. Because of Lemmas 4.1 and 4.2, it remains to show that

KðPðVÞÞ/sS is not stably rational over K :
Recall that a1 ¼ a; a2 ¼ ab; a3 ¼ �a; a4 ¼ �ab (in the proof of Lemma 4.1).

Choose a vector vAV� such that v; sðvÞ; s2ðvÞ; s3ðvÞ is a basis of V �: Define
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v1; v2; v3; v4AV �#K L by

vi ¼ ðs� a1Þ?ð ds� ais� aiÞ?ðs� a4ÞðvÞ:

Then

sðviÞ ¼ aivi; lðviÞ ¼ vlðiÞ for any lAG:

Define

xi :¼ viþ1=vi for 1pip3:

Then

s : x1/bx1; x2/� b�1x2; x3/bx3;

t : b/� b�1; v1/v2/v3/v4/v1;

r : b/� b; v2/v4/v2; v1/v1; v3/v3:

(Remember t ¼ ð1234Þ; r ¼ ð24Þ: We take the possibility t ¼ ða; ab;�a;�abÞ and
r ¼ ðab;�abÞ: The discussion of other possibilities is similar.)

By Lemma 4.2, write n ¼ ordðbÞ ¼ 4k:
Then

Lðx1; x2; x3Þ/s2S ¼ Lðx2k
1 ; x1x2; x3=x1Þ;

Lðx1; x2; x3Þ/sS ¼ Lðy1; y2; y3Þ;

where

y1 ¼ xn
1; y2 ¼ x2=x2k�1

1 ; y3 ¼ x3=x1:

Moreover,

t : y1/y2k�1
1 yn

2; y2/y3=ðyk�1
1 y2k�1

2 Þ; y3/1=ðy1y2
2y3Þ;

r : y1/y2kþ1
1 yn

2yn
3; y2/1=ðyk

1y2k�1
2 y2k

3 Þ; y3/1=ðy1y
2
2y3Þ:

Define z1; z2; z3 by

z1 ¼ y1y
2k
3 ; z2 ¼ y k

3 =y2; z3 ¼ y1y2y kþ1
3 :

Then Lðy1; y2; y3Þ ¼ Lðz1; z2; z3Þ: With respect to z1; z2; z3; the (multiplicative)
actions of t and tr are given by

�1 0 �1

0 0 1

0 �1 0

0B@
1CA and

�1 0 0

0 0 �1

0 �1 0

0B@
1CA;
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which is the group action ðW13Þ in [20, p. 187]; this group action in turn is the
group action ðU4Þ in Kunyavskii’s list [10, p. 10]. By Kunyavskii’s Theorem

[10, Theorem 1], the fixed field Lðz1; z2; z3ÞG is not stably rational over K : &

5. The proof of Theorem 1.5

In this section we shall adopt the same notations as in Section 3. Throughout this
section we shall assume that f ðTÞ is a separable irreducible polynomial in K ½T �;
/b1; b2; b3S is a finite subgroup of L\f0g and the Galois group G ¼ fid; ð12Þð34Þ;
ð13Þð24Þ; ð14Þð23Þg: By Lemma 3.2, it is necessary that KaN:

5.1. Lemma. (i) If NaL; then char Ka2 and fb1; b2; b3g ¼ fb;�b;�1g:
(ii) If N ¼ L; then char K ¼ 0:

Proof. (i) Suppose that NaL: Since ½L : N� ¼ 2; let fid; t1g be the Galois group of L

over N: By reindexing b1; b2; b3; we may assume that t1 ¼ ða; ab1Þðab2; ab3Þ: Then
ab3 ¼ t1ðab2Þ ¼ t1ðaÞt1ðb2Þ ¼ ab1 � b2: Thus b3 ¼ b1b2; on the other hand, ab2 ¼
t1ðab3Þ ¼ t1ðaÞt1ðb3Þ ¼ ab1 � b1b2: Thus b1 ¼ �1 and char Ka2 because f ðTÞ is
separable. Taking b2 ¼ b; we get fb1; b2; b3g ¼ fb;�b;�1g:

(ii) Write /b1; b2; b3S ¼ /zS: Note that ordðzÞoN: If N ¼ L; then L ¼ KðzÞ:
Assume that char Ka0: Then z lies in some finite field and KðzÞ is necessarily a

cyclic extension of K : A contradiction. &

5.2. Convention and definitions. We shall denote a1 ¼ a; a2 ¼ ab1; a3 ¼ ab2; a4 ¼
ab3; and t1 ¼ ða; ab1Þðab2; ab3Þ; t2 ¼ ða; ab2Þðab1; ab3Þ; t3 ¼ ða; ab3Þðab1; ab2Þ:

Define integers n1; n2; d;m1;m2 by

ordðbjÞ ¼ nj for 1pjp2;

d ¼ gcdfn1; n2g and nj ¼ dmj for 1pjp2:

Since b2 is a root of unity, it follows that t1ðb2Þ ¼ bi
2 for some integer i:Note that i

is uniquely determined modulo n2 and gcdfi; n2g ¼ 1:

5.3. Lemma. (i) b3 ¼ b1b
i
2 and /b1S-/b2S ¼ /bm1

1 S ¼ /bm2

2 S:

(ii) d j i þ 1 and m2 j i � 1:

Proof. Since t1ðb1Þ ¼ b�1
1 ; thus ab3 ¼ t1ðab2Þ ¼ t1ðaÞt1ðb2Þ ¼ ab1 � bi

2: Hence b3 ¼
b1b

i
2:

Now ab2 ¼ t3ðab1Þ ¼ t3ðaÞt3ðb1Þ ¼ ab1 � bi
2 � t3ðb1Þ: It follows that b1�i

2 ¼ b1 �
t3ðb1ÞA/b1S: Thus bð1�iÞn1

2 ¼ 1: Hence n2 j ð1� iÞn1: Thus m2 j ð1� iÞm1: Since

gcdfm1;m2g ¼ 1; hence m2 j 1� i:
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Note that both bm1

1 and bm2

2 are primitive dth roots of unity. Hence /bm1

1 S ¼
/bm2

2 S and it is contained in /b1S-/b2S: The index of /bm1

1 S in

/b1S-/b2S; ½/b1S-/b2S :/bm1

1 S�; divides both m1 ¼ ½/b1S :/bm1

1 S� and m2 ¼
½/b2S :/bm2

2 S�: Thus ½/b1S-/b2S :/bm
1 S� ¼ 1; i.e. /b1S-/b2S ¼ /bm1

1 S:

We may write bm1

1 ¼ bkm2

2 for some integer k: Call z ¼ bm1

1 : Recall that t1ðb1Þ ¼
b�1
1 and t1ðb2Þ ¼ bi

2: It follows that z�1 ¼ b�m1

1 ¼ t1ðbm1

1 Þ ¼ t1ðbkm2

2 Þ ¼ bikm2

2 ¼ zi:

Thus d j i þ 1: &

5.4. Definition. By Lemma 5.3, we define integers a and b by the relations: i þ 1 ¼ da

and i � 1 ¼ m2b: In particular,

da � m2b ¼ 2: ð5:1Þ

On the other hand, note that bm1

1 and bm2

2 are primitive dth roots of unity. If dX2;

there is an integer k such that bm1

1 ¼ bkm2

2 : The integer k is uniquely determined

modulo d and gcdfk; dg ¼ 1: If d ¼ 1; we simply define k ¼ 0:

5.5. Now we begin to prove Theorem 1.5.

Choose a vector vAV� such that v; sðvÞ; s2ðvÞ; s3ðvÞ is a basis of V�: Define
v1; v2; v3; v4AV �#K L by

vi ¼ ðs� a1Þ?ð ds� ais� aiÞ?ðs� a4ÞðvÞ:

Then sðviÞ ¼ aivi for 1pip4:
Define xi ¼ viþ1=v1 for 1pip3: Then

s : x1/b1x1; x2/b2x2; x3/b3x3:

Since /b1; b2S is a cyclic group of order dm1;m2; choose integers r and s such that
b :¼ br

1b
s
2 is a generator of /b1; b2S: We find that sðxr

1xs
2Þ ¼ bxr

1x
s
2: Thus s is a

faithful group action on Lðx1; x2; x3Þ with order dm1m2:
Define y1; y2; y3 by

y1 :¼ xm1

1 =xkm2

2 ; y2 :¼ xn2
2 ; y3 :¼ x3=ðx1x

i
2Þ:

Since the determinant of the ‘‘coefficient’’ matrix of y1; y2; y3 with respect to
x1; x2; x3 is

det

m1 0 �1

�km2 n2 �i

0 0 1

0B@
1CA ¼ m1n2 ¼ ordðsÞ;

it follows that ½Lðx1;x2; x3Þ : Lðy1; y2; y3Þ� ¼ ordðsÞ and Lðx1; x2; x3Þ/sS ¼
Lðy1; y2; y3Þ: Moreover, the multiplicative subgroup /y1; y2; y3S of /x1; x2; x3S
ðCLðx1; x2; x3Þ\f0gÞ is invariant under the action of G because it is the kernel of the
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following G-equivariant map

F : /x1; x2; x3S-L\f0g;

xn1
1 xn2

2 xn3
3 -bn1

1 b
n2
2 b

n3
3 :

The action of G on y1; y2; y3 is given by

t1 : y1/y�1
1 y�ka

2 y�km2

3 ; y2/yi
2y

n2
3 ; y3/y�ab

2 y�i
3 ;

t2 : y1/y1y
c
2ym1

3 ; y2/y�1
2 ; y3/y�1

3 ;

where c :¼ ðm1b þ 2kÞ=d:

Since /y1; y2; y3S is G-invariant, it follows that cAZ: In particular, the integers
m1; k; b; c; d satisfy the relation

2k ¼ cd � m1b: ð5:2Þ

5.6. Lemma. (i) gcdfb; dg ¼ 2 if b � d � 2 ðmod 2Þ; gcdfb; dg ¼ 1 otherwise.
(ii) The situation b � 1 ðmod 2Þ and d � 0 ðmod 2Þ will never happen.
(iii) If b � 0 ðmod 2Þ and d � 1 ðmod 2Þ; then c � 0 ðmod 2Þ; if b � d � 1 ðmod 2Þ;

then c � m1 ðmod 2Þ:

Proof. (i) Note that gcdfk; dg ¼ 1: If p is a prime factor of gcdfb; dg; then p ¼ 2 by
(5.2). Thus b � d � 0 ðmod 2Þ: It follows that k ¼ cðd=2Þ � m1ðb=2Þ: Repeat the
above argument. We find gcdfd=2; b=2g ¼ 1: Thus gcdfd; bg ¼ 2:

(ii) Assume that b � 1 ðmod 2Þ and d � 0 ðmod 2Þ: By Definition 5.4 i þ 1 � 0 �
m2 ðmod 2Þ: On the other hand, m1 � 0 ðmod 2Þ by (5.2). Thus 2 j gcdfm1;m2g: A
contradiction.

(iii) Both properties follow from (5.2). &

5.7. Theorem (We continue the discussion in 5.5). Suppose that not both b and d are

even integers. Then KðPðVÞÞ/sS
is rational over K :

Proof. Define u and v by

ðu; vÞ ¼
ðc=2;m1=2Þ; if m1 is even;

ððc þ bÞ=2; ðm1 þ dÞ=2Þ; if m1 is odd:

(
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If m1 is even, then c is even by Lemma 5.6(iii). Note that d is always odd by
Lemma 5.6(ii). If m1 is odd, then m1 þ d and c þ d are even. In conclusion, u and v

are integers.
Node that ud � vb ¼ k:
Define z1 ¼ y1y

u
2yv

3: Then Lðy1; y2; y3Þ ¼ Lðz1; y2; y3Þ and

t1 : y2/yi
2y

n2
3 ; y3/y�ab

2 y�i
3 ; z1/z�1

1 ;

t2 : y2/y�1
2 ; y3/y�1

3 ; z1/
z1 if m1 is even;

z1y
�b
2 y�d

3 if m1 is odd:

(

Case 1: m1 � 0 ðmod 2Þ: Define z0 :¼ ð1� z1Þ=1þ z1: Then t1ðz0Þ ¼ �z0; t2ðz0Þ ¼
z0: Thus Lðz0Þ ¼ LðzÞ for some z with t1ðzÞ ¼ t2ðzÞ ¼ z by Theorem 2.1.

We may regard Lðy1; y2; y3ÞG ¼ LðzÞðy2; y3ÞG as the function field of a two-

dimensional algebraic torus over LðzÞG: By Theorem 2.5, it is rational over

LðzÞGð¼ KðzÞÞ: And therefore it is rational over K :
Case 2: m1 � 1 ðmod 2Þ and m2 � 0 ðmod 2Þ: Since d is always odd by Lemma

5.6(ii), hence a is even by (5.1). It follows that dða=2Þ � bðm2=2Þ ¼ 1:
Define

z2 ¼ z1y
�b
2 y�d

3 ; z3 ¼ y
a=2
2 y

m2=2
3 :

Then

t1 : z1/z�1
1 ; z2/z�1

2 ; z3/z3;

t2 : z1/z2; z2/z1; z3/z�1
3 :

Define z0 :¼ ð1� z3Þ=ð1þ z3Þ: Then t1ðz0Þ ¼ z0; t2ðz0Þ ¼ �z0: Thus Lðz0Þ ¼ LðzÞ
for some z with t1ðzÞ ¼ t2ðzÞ ¼ z by Theorem 2.1.

We may regard Lðy1; y2; y3ÞG ¼ LðzÞðz1; z2ÞG as the function field of a two-

dimensional algebraic torus over LðzÞG: By Theorem 2.5, it is rational over LðzÞG

ð¼ KðzÞÞ: And therefore it is rational over K :
Case 3: m1 � 1 ðmod 2Þ and m2 � 1 ðmod 2Þ: Since d is always odd by Lemma

5.6(ii), it follows that n1 and n2 are odd. Recall that t1ðb2Þ ¼ bi
2: Without loss of

generality, we may assume that i is odd because, for the case i is even, just consider

t1ðb2Þ ¼ biþn2
2 : Thus, from Definition 5.4, we find that both a and b are even and

dða=2Þ � m2ðb=2Þ ¼ 1:
Define

z2 ¼ ya
2y

m2

3 ; z3 ¼ y
ðb�aÞ=2
2 y

ðd�m2Þ=2
3 :
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Since the determinant of the ‘‘coefficient’’ matrix of z2 and z3 with respect to y2

and y3 is

det
a ðb � aÞ=2

m2 ðd � m2=2

 !
¼ 1;

it follows that Lðy2; y3Þ ¼ Lðz2; z3Þ: Thus Lðy1; y2; y3Þ ¼ Lðz1; z2; z3Þ and

t1 : z1/z�1
1 ; z2/z2; z3/z�1

2 z�1
3 ;

t2 : z1/z1z
�1
2 z�2

3 ; z2/z�1
2 ; z3/z�1

3 :

Define u1 ¼ z1; u2 ¼ z3; u3 ¼ z�1
2 z�1

3 : Then the (multiplicative) actions of t1 and

t1t2 with respect to u1; u2; u3 are given by

�1 0 0

0 0 1

0 1 0

0B@
1CA and

�1 0 0

1 0 �1

�1 �1 0

0B@
1CA

which is the group action ðW12Þ in [20, p. 174]; this group action in turn is of type (d)

in [10, pp. 8–9]. Thus Lðu1; u2; u3ÞG is rational over K : &

5.8. We will finish the proof of Theorem 1.5. We now assume that both b and d are
even integers.

Since gcdfk; dg ¼ 1; it follows that k is odd. From (5.1) and (5.2), it is easy to see:
(i) if b � d � 2 ðmod 4Þ; then a þ c � m1 þ m2 ðmod 2Þ; (ii) if b � 0 ðmod 4Þ; then
d � 2 ðmod 4Þ and a � c � 1 ðmod 2Þ; (iii) if d � 0 ðmod 4Þ; then b � 2 ðmod 4Þ and
m1 � m2 � 1 ðmod 2Þ:

We shall define integers u and v as follows:
If any one of the following conditions is valid: (i) if b � d � 2 ðmod 4Þ and a þ c �

0 ðmod 2Þ; (ii) b � 0 ðmod 4Þ; d � 2 ðmod 4Þ and m1 þ m2 � 0 ðmod 2Þ or (iii) b �
2 ðmod 4Þ; d � 0 ðmod 4Þ and a þ c � 0 ðmod 2Þ; then define

ðAÞ u ¼ ða þ cÞ=2; v ¼ ðm1 þ m2Þ=2:

If any one of the following conditions is valid: (i) if b � d � 2 ðmod 4Þ and a þ c �
1 ðmod 2Þ; (ii) b � 0 ðmod 4Þ; d � 2 ðmod 4Þ and m1 þ m2 � 1 ðmod 2Þ or (iii) b �
2 ðmod 4Þ; d � 0 ðmod 4Þ and a þ c � 1 ðmod 2Þ; then define

ðBÞ u ¼ ð2a þ 2c þ bÞ=4; v ¼ ð2m1 þ 2m2 þ dÞ=4:

In both situations (A) and (B), we always have the relation: ud � vb ¼ k þ 1:
Define

z1 ¼ y1y
u
2yv

3; z2 ¼ ya
2y

m2

3 ; z3 ¼ y
b=2
2 y

d=2
3 :
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Then Lðy1; y2; y3Þ ¼ Lðz1; z2; z3Þ and

t1 : z2/z2; z3/z�1
3 ; z1/z2=z1;

t2 : z2/z�1
2 ; z3/z�1

3 ; z1/
z1z

�1
2 if ðAÞ holds;

z1z�1
2 z�1

3 if ðBÞ holds:

(

Case 1: Situation (A) holds. Define z0 ¼ ð1� z3Þ=ð1þ z3Þ: Then t1ðz0Þ ¼ t2ðz0Þ ¼
�z0: Thus Lðz0Þ ¼ LðzÞ for some z with t1ðzÞ ¼ t2ðzÞ ¼ z by Theorem 2.1.

We may regard Lðy1; y2; y3ÞG ¼ LðzÞðz1; z2ÞG as the function field of a two-

dimensional algebraic torus over LðzÞG: By Theorem 2.5, it is rational over

LðzÞGð¼ KðzÞÞ: And therefore it is rational over K :
Case 2: Situation (B) holds. Define

u1 ¼ z3; u2 ¼ z�1
1 z2; u3 ¼ z1:

Then the actions of t1 and t2 with respect to u1; u2; u3 are given by

�1 0 0

0 0 1

0 1 0

0B@
1CA and

�1 1 �1

0 0 �1

0 �1 0

0B@
1CA

which is the group action ðW14Þ in [20, p. 174]. This action in turn is the group action
ðU1Þ in Kunyavskii’s list [10, p. 9]. By Kunyavskii’s Theorem [10, Theorem 1],

Lðu1; u2; u3ÞG is not stably rational over K: This finishes the proof of
Theorem 1.5. &

6. Special cases

6.1. Lemma. Let the notations be the same as in Section 3. Assume that f ðTÞAK ½T � is

separable irreducible, /b1; b2; b3S is a finite group and the Galois group G ¼
fid; ð12Þð34Þ; ð13Þð24Þ; ð14Þð23Þg:

(i) If �1Afb1; b2; b3g; then fb1; b2; b3g ¼ fb;�b;�1g:
(ii) If fb1; b2; b3g ¼ fbl ; b

a
l ; b

b
l g for some l, then fb1; b2; b3g ¼ fb; b j; b1�jg for some

integer j and 2jð j � 1Þ is divisible by n where n ¼ ordðbÞ:

Proof. (i) Let b1 ¼ �1: Take t ¼ ða; ab2Þðab1; ab3ÞAG: Then tðaÞ ¼ ab2 and ab3 ¼
tðab1Þ ¼ tð�aÞ ¼ �tðaÞ ¼ �ab2: Hence b3 ¼ �b2:

(ii) We may assume l ¼ 1: Take t1 ¼ ða; ab1Þðaba
1; ab

b
1ÞAG: Then t1ðb1Þ ¼ b�1

1 :

Hence abb
1 ¼ t1ðaba

1Þ ¼ t1ðaÞt1ðb1Þa ¼ ab1 � b�a
1 : It follows that b ¼ 1� a ðmod nÞ

where n ¼ ordðbÞ and b ¼ b1: Thus we may take j ¼ a:
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Take t2 ¼ ða; ab jÞðab; ab1�jÞAG: Then t2ðbÞ ¼ t2ðab=aÞ ¼ t2ðabÞ=t2ðaÞ ¼
ðab1�jÞ=ðab jÞ ¼ b1�2j: It follows that ab ¼ t2ðab1�jÞ ¼ t2ðaÞt2ðbÞ1�j ¼ ab j �
bð1�2jÞð1�jÞ: Hence 1 ¼ j þ ð1� 2jÞð1� jÞ ðmod nÞ; i.e. 2jð j � 1Þ ¼ 0 ðmod nÞ: &

6.2. Proof of Theorem 1.6. Step 1: Suppose that fb1; b2; b3g ¼ fb; b j ; b1�jg and n ¼
ordðbÞ:

Note that (i) is just Lemma 6.1(ii). It remains to prove (ii). Let d ¼ ordðb jÞ: Then
d j n: Write n ¼ de: It follows that j ¼ ej0 for some integer j0 with gcd f j0; dg ¼ 1:

In the notations of Theorem 1.5 we find that

n1 ¼ n; n2 ¼ d; m1 ¼ e; m2 ¼ 1:

Take t1 ¼ ða; abÞðab j; ab1�jÞ: Since t1ðbÞ ¼ b�1; it follows that t1ðb jÞ ¼ b�j ¼
ðb jÞ�1: Thus the integer i in 5.2 can be taken to be �1: By Definition 5.4, a ¼ 0 and
b ¼ �2:

Since gcd f j0; dg ¼ 1; find integers k and s such that

kj0 þ sd ¼ 1: ð6:1Þ

Then bm1 ¼ be ¼ bkj0eþsde ¼ ðb jÞk: Thus this integer k plays the same role of k in
Definition 5.4. Moreover, (5.2) becomes

cd ¼ 2ðk � eÞ: ð6:2Þ

By (i) of Theorem 1.6, define an integer x as follows: 2jð j � 1Þ ¼ nx; or equivalently,

2j0ð j � 1Þ ¼ dx: ð6:3Þ

We shall prove that KðPðVÞÞ/sS is rational if and only if x is an even integer.

Case 1: d is odd. Apply Theorem 1.5(1). KðPðVÞÞ/sS is rational. By (6.3), x is
even.

Case 2: d is even. Let 2t jj d where tX1:
By (6.1), both k and j0 are odd.
By (6.1) we get kj0e þ sde ¼ e: Thus kj ¼ e ðmod 2tÞ:
Now

x is even: 32t j j � 1 ðby ð6:3ÞÞ
3k ¼ kj ðmod 2tÞ ðk is oddÞ
3k ¼ e ðmod 2tÞ
3c is even ðby ð6:2ÞÞ:

Applying Theorem 1.5(2), (4), ð1Þ0 and ð3Þ0; we find that KðPðVÞÞ/sS is rational if
and only if x is even. Hence the result.
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Step 2: Suppose that fb1; b2; b3g ¼ fb;�b;�1g and n ¼ ordðbÞ: If n is odd, then
ordð�bÞ ¼ 2n; if n is even, then ordð�bÞ ¼ n or n=2 (if n=2 is even). In any case, we
write ord ð�bÞ ¼ 2m and note that 4 j n if and only if 4 j 2m:

Write fb1; b2; b3g ¼ fb;�b;�1g ¼ f�b; ð�bÞmþ1; ð�bÞ�mg and apply the result of
Step 1. The integer x is defined by 2ðm þ 1Þð�mÞ ¼ 2mx; i.e. x ¼ �ðm þ 1Þ: Thus
KðPðVÞÞ/sS is not stably rational 3x is odd 3m is even 34 j 2m34 j n: This
finishes the proof of Theorem 1.6. &

Theorem 1.7 (resp. Theorem 1.8) is the application of Theorems 1.3, 1.4 and 1.6 to

the case f ðTÞ ¼ T4 � aT2 þ ða2=bÞ (resp. f ðTÞ ¼ T4 þ aÞ: Before proving them, we
recall a result which is part of the folklore in Galois theory:

6.3. Theorem (Kappe and Warren [9, Theorems 2 and 3]). Let K be a field of

char Ka2; gðTÞ ¼ T4 � cT2 þ dAK ½T �; and G be the Galois group of gðTÞ over K :

(i) gðTÞ is irreducible over K : 3c2 � 4d; c þ 2
ffiffiffi
d

p
; c � 2

ffiffiffi
d

p
eK2:

(ii) Assume that gðTÞ is irreducible. Then

GCZ2 � Z23dAK2;

GCZ43dðc2 � 4dÞAK2;

GCD43d; dðc2 � 4dÞeK2:

6.4. Proof of Theorem 1.7. The characteristic polynomial of s is f ðTÞ ¼ T42aT2 þ
ða2=bÞ: The roots of f ðTÞ ¼ 0 are a; �a; ab; �ab where a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ab þ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4b

pp
=
ffiffiffiffiffi
2b

p
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b � 4� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4b

pp
=2: Note that b is root of

T4 � ðb � 2ÞT2 þ 1 ¼ 0:
Conditions (i) and (ii) are consequences of Theorem 1.3(i) and (iii).
By Theorem 6.3, (iii) is equivalent to that f ðTÞ is reducible if char Ka2: Hence we

may apply Theorem 1.3(i) and (ii).
By Theorem 6.3, (iv) is equivalent to GCZ4 if char Ka2 and f ðTÞ is irreducible.

Hence we may apply Theorem 1.3 (i), (ii) and (iv).

For the remaining part, bAK2 is equivalent to GDZ2 � Z2 and b; b � 4eK2 is
equivalent to GCD4 by Theorem 6.3. &

6.5. The proof of Theorem 1.8 is similar to that of Theorem 1.7 and thus is omitted.

7. Applications

The method of the preceding sections can be applied to other situations. As
illustrations, we shall give a proof of Theorems 1.9 and 7.3. We remark that similar
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ideas (besides a detailed analysis of eigenvalues) can be used to discuss the rationality

of Kðx1;x2; x3Þ/sS where char Ka2; sðxiÞ ¼ ðaixi þ biÞ=ðcixi þ diÞ with aidi �
bicia0 [8]; this problem is a generalization of a question solved by Saltman [17].

7.1. Lemma (Hajja [4]). Let K be any field, sAGLnðKÞ; f ðTÞ be the characteristic

polynomial of s such that f ðTÞ is the minimal polynomial of s: Define an affine

K-automorphism F on Kðx1;y; xnÞ by

Fðx1Þ
^

FðxnÞ

0B@
1CA ¼ s

x1

^

xn

0B@
1CAþ

b1

^

bn

0B@
1CA

for some biAK : If f ð1Þa0; then F can be linearized. Explicitly, if v is a vector inPn
i¼1 K � xi such that v, sðvÞ;y; sn�1ðvÞ generate

Pn
i¼1 K � xi and define vi ¼ Fi�1ðvÞ

for 1pipn then FðvnÞ ¼ ð
Pn

i¼1 ai�1viÞ þ c where f ðTÞ ¼ Tn �
Pn�1

i¼0 aiT
iAK ½T � and

cAK ; now define y1 ¼ v � ðc=f ð1ÞÞ and yi ¼ Fi�1ðy1Þ for 2pipn: It follows that

FðynÞ ¼
Pn

i¼1 ai�1yi:

Proof. The existence of v follows from the assumption that f ðTÞ is the minimal
polynomial of s: All the rest are easy. &

7.2. Proof of Theorem 1.9. Case 1: f ð1Þa0 and f ðTÞ is the minimal polynomial of s:
Apply Lemma 7.1. Since s is similar to its rational normal form, we can transform
the basis y1;y; yn in Lemma 7.1 to another one z1;y; zn such that FðzjÞ ¼

P
aijzi

and ðaijÞ is the linear part of the given affine automorphism.

Case 2: f ð1Þ ¼ 0 and f ðTÞ is the minimal polynomial of s: By linear algebra, s is
conjugate to one of the following matrices:

In any case, there exist y1; y2; y3; y4A
P4

i¼1 K � xi such that either Fðy4Þ ¼ y4 þ y3 þ c

or Fðy4Þ ¼ y4 þ c; where cAK ; moreover, F leaves K þ
P3

i¼1 K � yi invariant.

Hence Kðx1; x2; x3; x4Þ ¼ Kðy1; y2; y3; y4Þ and FðKðy1; y2; y3ÞÞCKðy1; y2; y3Þ and
Fðy4Þ ¼ y4 þ u for some uAKðy1; y2; y3Þ: By Theorem 2.2 it suffices to prove that

Kðy1; y2; y3Þ/FS is rational over K : But this follows from Theorem 1.2.
Case 3: f ðTÞ is not the minimal polynomial of s: Thus f ðTÞ is not irreducible

in K ½T �:
Case 3.1: f ð1Þa0: By Lemma 7.1, F can be linearized and the characteristic

polynomial of the linearized automorphism F is the same f ðTÞ: Since f ðTÞ is
reducible, we may apply Theorem 1.3.
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Case 3.2: f ð1Þ ¼ 0: By linear algebra, s is conjugate to one of the matrices

Apply similar arguments as in Case 2 to prove that Kðx1; x2; x3; x4Þ/sS is
rational. &

7.3. Theorem. Let K be any field and sAGL5ðKÞ be the form

If s acts on Kðx; y; zÞ by

sðxÞ ¼ a1x þ a2

b1x þ b2
; sðyÞ ¼ c1y þ c2z þ c3

e1y þ e2z þ e3
; sðzÞ ¼ d1y þ d2z þ d3

e1y þ e2z þ e3
;

then Kðx; y; zÞ/sS
is rational over K.

Proof. Let f ðTÞ and gðTÞ be the characteristic polynomials of

a1 a2

b1 b2

 !
and

c1 c2 c3

d1 d2 d3

e1 e2 e3

0B@
1CA;

respectively.
Case 1: f ðTÞ is reducible. We can find uAKðxÞ such that KðxÞ ¼ KðuÞ and sðuÞ ¼

lu þ e for some l; eAK : By Theorem 2.2, the rationality problem of Kðx; y; zÞ/sS is

reduced to that of Kðy; zÞ/sS; which is rational over K by Theorem 1.2.
Case 2: gðTÞ is reducible. Thus we may assume the action of s on y and z

becomes

sðyÞ ¼ c11y þ c12z þ d1; sðzÞ ¼ c21y þ c22z þ d2;

where ðcijÞAGL2ðKÞ and d1; d2AK: Let hðTÞ be the characteristic polynomial of

ðcijÞ1pi; jp2:
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Case 2.1: hð1Þa0: If hðTÞ is not the minimal polynomial of ðcijÞ1pi; jp2; then

ðcijÞ1pi; jp2 is a scalar matrix and sðyÞ ¼ cy þ d1; sðzÞ ¼ cz þ d2: Thus Kðx; y; zÞ/sS

is rational over K by Theorem 2.2 and Lüroth’s Theorem.
If hðTÞ is the minimal polynomial of ðcijÞ1pi; jp2; then we may linearize the action

by Lemma 7.1. Therefore we may assume that d1 ¼ d2 ¼ 0: It follows that the action
of s on y=z and z is given by

sðy=zÞ ¼ ðc11ðy=zÞ þ c12Þ=ðc21ðy=zÞ þ c22Þ; sðzÞ ¼ uz;

where u ¼ c21ðy=zÞ þ c22AKðy=zÞ: Thus, the rationality of Kðx; y; zÞ/sS is reduced to

that of Kðx; y=zÞ/sS by Theorem 2.2. The rationality of Kðx; y=zÞ/sS follows from
Theorem 1.2.

Case 2.2. hð1Þ ¼ 0: Then the matrix ðcijÞ1pi; jp2 is either diagonalizable or is

conjugate to

1 1

0 1

 !
:

Thus, without loss of generality, we may assume that

sðyÞ ¼ c1y þ d1; sðzÞ ¼ c2z þ d2

or

sðzÞ ¼ z þ y þ d1; sðyÞ ¼ y þ d2:

In either case, Kðx; y; zÞ/sS is rational over K because of Theorem 2.2.
Case 3: Both f ðTÞ and gðTÞ are irreducible and f ðTÞ is inseparable. In this case,

char K ¼ 2; gðTÞ is separable and f ðTÞ ¼ T2 � a:
Let L ¼ Kða1; a2; a3Þ where gðTÞ ¼ ðT � a1ÞðT � a2ÞðT � a3Þ and consider

Kðx; y; zÞ/sS ¼ fLðx; y; zÞ/sSgG where G is the Galois group of L over K :
Applying standard arguments in the preceding sections, we can find

u; v;wALðx; y; zÞ such that Lðx; y; zÞ ¼ Lðu; v;wÞ and

sðuÞ ¼ a=u; sðvÞ ¼ l1v; sðwÞ ¼ l2w;

where ordðliÞ is either infinite or an odd integer because char K ¼ 2:

Thus Lðx; y; zÞ/s2S ¼ Lðu;M1;M2Þ; Lðu;MÞ or LðuÞ where M1; M2; M are

monomials in v and w: Moreover, M1; M2; M are fixed by s: Hence Lðx; y; zÞ/sS ¼
Lðu þ ða=uÞ;M1;M2Þ; Lðu þ ða=uÞ;MÞ or Lðu þ ða=uÞÞ:

It follows that fLðx; y; zÞ/sSgG is the function field of an algebraic torus of
dimension p2: Thus it is rational by Theorem 2.5.

Case 4: Both f ðTÞ and gðTÞ are irreducible and gðTÞ is inseparable. The case is

similar to Case 3. Note that Kðy1; y2Þ/sS is rational over K if sðy1Þ ¼ y2; sðy2Þ ¼
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a=ðy1y2Þ where aAK\f0g by Hajja [3]. The rest of the proof is almost the same as in
Case 3 and is omitted.

Case 5: Both f ðTÞ and gðTÞ are separable irreducible. Let L be the splitting field of
f ðTÞgðTÞ and G be the Galois group of L over K : Then GCZ2 � Z3;S3 or Z2 � S3

where S3 is the symmetric group of degree 3.
Applying standard arguments in the preceding section, we get a function

field of an algebraic torus of dimension p3: If the dimension is p2; we are
finished because of Theorem 2.5. If it is a three-dimensional algebraic torus,
apply [10, Theorem 1] because a three-dimensional algebraic torus is
rational if the Galois group of its splitting field is isomorphic to Z2 � Z3;S3 or
Z2 � S3: &
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