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Abstract

Let K be any field which may not be algebraically closed, 7 be a four-dimensional vector
space over K, o€ GL(V') where the order of ¢ may be finite or infinite, (7)€ K[T] be the
characteristic polynomial of . Let o, aff;, af,, off; be the four roots of f(7) =0 in some
extension field of K.

Theorem 1. Both K(V)°” and K(P(V))‘°? are rational (= purely transcendental) over K if
at least one of the following conditions is satisfied: (i) char K =2, (ii) f(T) is a reducible or
inseparable polynomial in K[T), (iii) not all of Py, [,,B5 are roots of unity, (iv) if f(T) is
separable irreducible, then the Galois group of f(T) over K is not isomorphic to the dihedral
group of order 8 or the Klein four group.

Theorem 2. Suppose that all B; are roots of unity and f(T) e K[T)| is separable irreducible. (a)
If the Galois group of f(T) is isomorphic to the dihedral group of order 8, then both K(V)<°” and
K(P(V))$°? are not stably rational over K. (b) When the Galois group of f (T) is isomorphic to
the Klein four group, then a necessary and sufficient condition for rationality of K (V)<0> and
K([FD(V))<‘T> is provided. (See Theorem 1.5. for details.)
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1. Introduction

Let K be any field, K(xi,...,x,) be a rational function field of n variables over
K, o be a K-automorphism acting on K(xy, ..., x,) by

TIX|F X o o X, > X
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It was asked by Emmy Noether [14] that whether the fixed field K (x1, ..., x;,) <o s
rational (= purely transcendental) over K. Around 1960s Masuda showed that
Q(xy, ...,x,,)<‘7> was rational if n =2,3,4,5,6,7,11 [12]. The first counter-example
to Noether’s problem was constructed by Swan [18] who showed that
Q(x1, ..., x,) " was not rational if n=47,113,233. For a survey of Noether’s
problem and related topics, see Swan’s paper [19].

Swan’s counter-example for n =47 uses the arithmetic of Q((,3) whose class
number is not one; note that Q({y3) is the first cyclotomic field not of class number
one. Later Lenstra gave a complete solution of the rationality problem of

K(x, ...,xn)<”>, in particular, that of Q(x, ...,x,,)<"> [11]. As Lenstra pointed

out, those integers n such that n<47 and Q(xy, ...,xn)<"> was not rational were
n=28,16,24,32 40 [11, (7.3) Corollary]. A new proof of the non-rationality of
Q(xy, ...,xg)<”> and similar cases was found by Saltman [15, Theorem 5.11].

Saltman’s proof used a result of Shianghaw Wang, which corrected a mistake in
Grunwald’s Theorem.

Using the non-rationality of @(xl,...,x8)<‘7>, it was shown that both the

fixed fields Q@(yi,y2,y3,04)¢” and Q(z1,2,2) "
[1, Example 2.3] where

were not rational over Q

Gy Vi s — Y, 1 23 — 1/(212223).

Being led by the above examples, we would like to find the rationality of
k(x1,...,x,)<°” where ce GL,(K) and n<4. Here are the answers:

1.1. Theorem (Noether [14.,13]). If G is any subgroup of GL,(K), then K(xl,xz)G is
rational over K.

1.2. Theorem (Ahmad et al. [1, Theorems 4.1 and 4.3]). Let K be any field.

(1) If 6e GL3(K), then both K(x1,x2,x3)""” and K(x/x3,x2/x3)" are rational
over K.
(2) If o is a K-automorphism on K(xi, x2,x3) defined by

a(x;) = Z agxi +b;  for 1<j<3,

1<i<3

where a;, b;e K and det(a;) #0, then K(xi, x>, x3)$%? is rational over K.
(3) If o is a K-automorphism on K(x1,x) defined by

o(x1) = (a1x1 +b1)/(crx1 + di), o(x2) = (a2x2 + b2)/(c2x2 + db),

where a;, b, c;,d;e K and aid; — bic;#0 for 1<i<2, then K(xl,xz)<”> is rational
over K.

What we shall prove in this paper are the following theorems:
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1.3. Theorem. Let K be any field which may not be algebraically closed, V be a
Sfour-dimensional vector space over K,ce GL(V') where the order of ¢ may be finite
or infinite, f(T)eK[T) be the characteristic polynomial of a. Let a,0f,0f,,af; be
the four roots of f(T)=0 in some extension field of K. Then both K(V)<”>

and K(P(V))‘?’ are rational over K, if at least one of the following conditions
is satisfied.

(1) char K =2,
(i) f(T) is a reducible or inseparable polynomial in K[T],
(iil) not all of Py, B,, b5 are roots of unity,
(v) if f(T) is a separable irreducible polynomial in K[T| and G denotes the
Galois group of f(T) over K, then G is not isomorphic to Dy or 75 x Z where
Dy denotes the dihedral group of order 8 and 7, denotes the cyclic group of
order n.

1.4. Theorem. Let the notations be the same as in Theorem 1.3. Suppose that all the b,
are roots of unity for 1<i<3, f(T)eK|T] is separable irreducible and the Galois
group G is isomorphic to Dy. Then

() char K#2 and f(T) = (T* — o®)(T? — %), i.e. {By, 2, B3} = {B, =B, —1}, with
4lord(f).
(i) poth K(V)<°” and K(P(V))‘’ are not stably rational over K.

1.5. Theorem. Let the notations be the same as in Theorem 1.3. Suppose that all the p;
are roots of unity for 1<i<3, f(T)eK|T] is separable irreducible and the Galois
group G is isomorphic to 7, X Z,.

Define integers ny,ny,mi,my, d,k,i as follows: nj = ord(B;), d = ged{ni,na}, nj =
dm; for 1<j<2, pi" = 12"”2. Let = (a,af))(afs, af3) € G, ie. t(a) = afy, t(af)) =
, t1(af,y) = afs, t(afs) = af,. Define an integer i by t(B,) = f. Define a,b,c by
i+1=da, i—1=mnmpb, 2k =cd—mb. In case d =1, it is understood that k = 0;
otherwise, k is uniquely determined modulo d and i is uniquely determined modulo n,.
Then

(1) a,b,c are integers and ged{b,d} =1 or 2,

(i1) char K #2;

(i) K(V)<? (resp. K(P(V))$°?) is rational over K if and only if any one of the
following conditions is satisfied:
(1) not both of b and d are even integers,
(2) b=d =2 (mod4) and a+ ¢ =0 (mod 2),
(3) b=0(mod4), d =2 (mod4) and m; + mp; =0 (mod 2),
(4 b=2(mod4), d =0(mod4) and a+ ¢ =0 (mod 2).
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If K(V)$ (resp. K(P(V))??) is not rational over K, it is not stably rational over
K. Explicitly, the non-rational cases are the situations:

(1)) b=d=2(mod4) and a+ c =1 (mod 2),
(2)) b=0(mod4), d =2(mod4), and m; +my =1 (mod 2),
(3) b=2(mod4), d=0(mod4) and a+c =1 (mod 2).

A special case of Theorem 1.5 is the following.

1.6. Theorem. Let the notations be the same as in Theorem 1.3. Suppose that all the f;
are roots of unity for 1<i<3, f(T)eK|T] is separable irreducible and the Galois
group G is isomorphic to Z, x Z,. If the subgroup {f,, ., B3} is generated by one of

{B1, P2, B3}, then {B,, P, P53} = {ﬁ,[)’j,ﬁ“j}for some integer j. Let n = ord(f). Then

(i) 2j(j— 1) is divisible by n;,
(i) K1) (resp. K(P(V))$°?) is rational over K if and only if 2j(j —1)/n

is an even integer. If K(V)°" (resp. K(P(V))°?) is not rational over K, it is not
stably rational over K.

In particular, if {f\,p,, 3} ={p,—B,—1}, then K(V)<U> (resp. K(I]J’(V))<”>) is
not stably rational over K if and only if ord(f) is divisible by 4. IfK(V)<‘7> (resp.
K(P(V))<”>) is stably rational over K, it is rational over K.

As applications we get the following Theorems 1.7 and 1.8.

1.7. Theorem. Let K be any field, ¢ be a K-automorphism on K(xi,x3,X3,X4)
defined by

0 X] X2 X3 »—>x4|—>(—a2/b)x1 + axs,

where a,be K\{0}. Then both K(x1,x2,x3,x4) % and K(x/x4,x2/X4,x3/x4)""" are
rational over K if at least one of the following conditions is satisfied:

(1) char K = 2;

(i) no root of the equation T* — (b —2)T? 4+ 1 = 0 is a root of unity;
(i) at least one of b*> —4b, a+ (Za/\/g), a— (2a/\/l;) is in K
(iv) b —4eK>.

If char K#2, b*> —4b, a+ (2a/Vbh), a— (2a/Vb)¢ K> and B is a root of
—(b=2)T2+1=0 with ord(f)=n<oo, then K(xi,x,x3,%x4) " (resp.
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K(x1/X4,X2/x4,x3/x4) %) is not stably rational over K if and only if either (1) be K2
and 4|n, or (2) b and b — 4¢ K>.

1.8. Theorem. Let K be any field, ¢ be a K-automorphism on K(xi,x3,X3,X4)
defined by

g X1 Xo> X3 Xy — — dXy,

where ae K\{0}. Then K(X17XQ,X3,X4)<0>) (resp. K(xl/x4,x2/x4,x3/X4)<G>) is
rational over K if and only if at least one of the following conditions is satisfied,
() charK =2; (i) —aeK? (i) 4aeKk* (v) —1eK2 If K(xi,x2,x3,x3) %
(resp. K(xl/x4,x2/X4,x3/x4)<“>) is not rational over K, it is not stably rational
over K.

1.9. Theorem. Let K be any field, ¢ be a K-automorphism on K(xi,Xxs,X3,X4)
defined by

o(xj) = Z agx; +b; for 1<j<4,

1<i<4

where aj,b;e K and det (a;)#0. Let f(T) be the characteristic polynomial of
(aj) € GL4(K). Then K(x1, x2, X3, x4)$%” is rational over K except for the case f(1)#0
and f(T) is the minimal polynomial of (ayz). If f(1)#0 and f(T) is the
minimal polynomial of (ay), then there exist yi,y2,y3,y4€K + 3 ;4 K- X; such
that K+Zl<i<4Koxi =K+ 21<i<4K'J’i and

O'()/j): Z aiyi for 1<]<4

1<i<4

Note that, if @ = 1 in Theorem 1.8, we find that K(xl,xz,x_g,X4)<“> is rational
over K if and only if char K =2, or vV—1€K, or vV2€K, or vV—2€K; and therefore
the non-rational examples mentioned at the beginning of this section is just a special
case of this conclusion. Finally we remark that, besides Theorem 1.3, there is yet
another direction of generalization for Theorem 1.2, which will appear in a
forthcoming paper [7]:

1.10. Theorem. Let K be any field, G any solvable subgroup of GL3(K). Then both
K(xl,xz,X3)G and K(xl/X3,xz/X3)G are rational over K.

It may be interesting to point out that Castelnuovo—Zariski’s Theorem for rational
algebraic surfaces requires that the base field K is algebraically closed [23] while the
rationality of K(x;/x3,x2/x3)¢ in Theorem 1.10 is valid for any K, in particular
those non-closed fields.
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In case f(T) is separable and irreducible, the strategy of proving Theorem 1.2 is to
use Galois descent and to reduce the problem to two-dimensional algebraic tori [1].
We use similar techniques to prove the main results of this paper. However, in this
situation, not all three-dimensional algebraic tori are rational. Thanks are due to
Kunyavskii who provided a birational classification of all three-dimensional
algebraic tori [10]. In this sense we may regard the birational class of the three-

dimensional algebraic torus associated to K(P(¥))¢°” is the obstruction to the

rationality of K(¥)<°” and K(P(V))<°’ . If f(T) is inseparable or reducible, we will
resort to other methods to solve the rationality problem; see Theorems 2.7 and 2.8
for details. In the formulation of Theorems 1.3-1.6, it is important to determine the
Galois group of the quartic polynomial /(7). We would mention that the paper [9]
provides some handy criteria to determine the Galois group of a quartic polynomial.
Finally, we would remark that Saltman has developed a method to determine
whether an algebraic torus is retract rational [16, Theorem 3.14; 17, Section 2]; this
method is particularly effective if we try to prove an algebraic torus is not stably
rational.

We shall organize this paper as follows. In Section 2 the rationality of K (V)<”>
and K(P(¥))¢°” will be established if f(T) is reducible or inseparable. The proof of
Theorem 1.3 will be finished in Section 3. We shall prove Theorem 1.4 in Section 4.
The proof of Theorem 1.5 will be presented in Section 5. Section 6 will contain the
proof of Theorems 1.6—1.8. In the last section, Section 7, we shall prove Theorem 1.9
together with another application.

Standing notations. In this paper, K will always stand for a field; it is unnecessary to
assume char K = 0 or K is algebraically closed. If V' is a vector space over K, K(V)
and K(P(V)) will denote the function fields of ¥ and P(V) respectively; taking a
basis x1, ..., x, for V* (the dual space of V), K(V) (resp. K(P(V))) is nothing but the
field K(xi,...,x,) (resp. K(x1/Xn,X2/Xn, ..., Xn—1/Xn)). We shall denote by
K(xy, ..., x,) the rational function field of n variables over K, i.e. x,x, ..., X, are
algebraically independent over K. (K(x,y) is defined similarly.)

If e GL(V), then o acts on K(V) and K(P(V)) in a natural way; thus we may
P(

consider the fixed subfields K(V)¢°’ and K(P(V))‘"’ of K(V) and K(P(V)),
respectively. In particular, If ¢ = (ay),<; <, € GL,(K), then ¢ acts on K(xi, ..., Xy)
by a(x;) = >, a;x; for 1<j<n.

A field extension L of K is called rational over K if it is purely transcendental over
K; L is called stably rational over K if L(yi, ...,») is rational over K for some
V1, ..., ¥m Which are algebraically independent over L.

If ¢ is an element of a group G,ord(¢) will denote the order of & for
g1,92, - g€ G, {g1,92, ..., gm » denotes the subgroup generated by gi,g2, ..., gm-
If G is the Galois group of a quartic equation f(7) =0 over a field K and
o, 0,03, 04 are the four roots of f(7T) = 0, then we may regard G as a subgroup of
Sy4, the symmetric group on {aj,0,a3,04}; for an element e G, the expression
T = (o, 0) (03, 04) means that (o) = an, t(0n) = oy, 7(03) = 0g, T(04) = 3.
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2. The reducible and inseparable cases
We recall several results which will be used repeatedly throughout this paper.

2.1. Theorem (Hajja and Kang [6, Theorem 1]). Let G be a finite group acting on
L(xy, ...,x,), the rational function field of n variables over a field L. Suppose that

(i) for any 6eG,o(L)=L;
(i1) the restriction of the actions of G to L is faithful,
(iii) for any 6 €@,

a(x1) X1

a(xy) X

where A(o)€ GL,(L) and B(c) is an n x 1 matrix over L.
Then there exist zy, ...,z,€ L(xy, ..., x,) such that L(xy, ...,x,) = L(z1, ..., z,) with
a(z;) = z; for any € G, any 1 <i<n.

2.2. Theorem (Ahmad et al. [1, Theorem 3.1]). Let G be a group acting on L(x), the
rational function field of one variable over a field L. Suppose that, for any

oeG,o(L)cL and o(x) = a, - x + by for some as, by €L with a;#0. Then L(x)® =
LS or LO(f(x)) where f(x)eL[x] is of positive degree.

2.3. Theorem (Ahmad et al. [1, Proposition 3.2]). Let K be any field, V a finite-
dimensional vector space over K and G any subgroup of GL(V). If K(P(V))¢ is
rational over K, then K(V)© is rational over K also.

2.4. Theorem. Let K be any field, o be a K-automorphism of K (x,y) defined by o(x) =
a/x, a(y) =b/y where ac K\{0}, b = c(x+ (a/x)) + d such that ¢,d e K and at least
one of ¢ and d is non-zero. If u and v are defined by

x— (/%) y— (b)) o

YT —(ab/xy) U xy = (ab/xy)

then K(x, )" = K(u,v) and

x+ (a/x) = (=bi® + av* + 1)/v, y+ (b/y) = (b —av* 4 1)/u,

xy + (ab/xy) = (—bu* — av® + 1) /uv. (2.2)
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Proof. Define u and v by (2.1). Then it is straightforward to verify that (2.2) is valid
no matter what ¢ and b may be.

We shall prove that K (x, )"’ = K(u,v) if a and b are required as in the statement
of the theorem.
From (2.2), we get

(x+ (a/x))v = {—c(x + (a/x)) — d}’ + a® + 1,

(x* 4+ a)v = —c(x* 4+ a)u® + x(d® + av® + 1).

Thus [K(x,u,v): K(u,v)]<2.
Again using (2.2) we find that

y+(b/y) =4, (2.3)

xy + (ab/xy) = B, (2.4)

where 4 = (bu> — av® + 1) /uand B = (—bu? — av*> + 1) /uv. Regard (2.3) and (2.4) as
linear equations with coefficients in K(x,u,v) and in unknowns y and 1/y. Thus
solve (2.3) and (2.4) within the field K(x,u,v). It follows yeK(x,u,v). Hence
K(x,y) = K(x,u,v).

Since K(u,v)=K(x,y)""” =K(x,y) = K(x,u,0) and [K(x,u,v): K(u,0)]<2 =
[K(x,y): K(x,y)<?"], it follows that K (u,v) = K(x,»)¢°”. O

Remark. The case when a,be K\{0} in Theorem 2.4 was proved by Giles and

McQuillan [2] without exhibiting the generators of K(x, y) <°F>; the generators u and v
in (2.1) and the formula of x + (a/x), ... in (2.2), valid only for the case a,be K\{0},
were proved in [5, (2.7) Lemma].

We shall use results of the birational classification of algebraic tori due to
Voskresenskii [21] and Kunyavskii [10]. We refer to the monograph of Voskresenskii
[22] for general notions of algebraic tori. Here we just give an algebraic formulation
of the function field of an algebraic torus defined over a field K: Let L be a finite
Galois extension of K with Galois group G, L(xi,...,x,) be the rational function
field of n variable over L, and p : G— GL,(Z) be a group homomorphism. Then the
action of G on L can be extended to L(xy, ...,x,) by

n
() =[] .
i=1

where p(t) = (n;)€ GL,(Z) for any teG. The fixed field L(xi, ...,x,,)G is the
function field of some n-dimensional algebraic torus defined over K and split by L.

2.5. Theorem (Voskresenskii [21]). All two-dimensional algebraic tori are rational.
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Remark. The birational classification of three-dimensional algebraic tori is proved
by Kunyavskii [10]. See [10, Theorem 1] for the details.

From now on till the end of this section, V' is assumed to be a four-dimensional
vector space over K, e GL(V') and f(T)e K[T] the characteristic polynomial of ¢.

In order to establish the rationality of K(V)<"” and K(P(V))‘°’, it suffices to
establish the rationality of K(P(¥))‘"” because of Theorem 2.3.

2.6. Lemma. If K is a field with char K =2 and f(T) = T* + aeK[T), then both
K(V)<U> and K(P(V))<U> are rational over K.

Proof. Case 1: f(T) is the minimal polynomial of . By the rational canonical form of
o, we can find a basis vy, vy, v3,v4 of V* such that

0 10| >0y 03 g > avy .
Define
X1 =v3/v1, X2 =us/v2, X3=u2/v1, u=Xx3/x].
Then K(P(V)) = K(x1,x2,x3) and
x| X alxy, X3 xi/x3, u»—»a/(xzzu),

02:x1|—>a/x1, Xa>a/xy, xiuxi, u—1/u

By Theorem 2.4, K(xl,x27x3)<”2> = K(x1,x2, (1 +u)x3)<oz> _ K(xl,x2)<"z>((1+
u)x3) = K(y1,y2, (1 4+u)x3) where

. x1 — (a/x1) _ @ —(a/x)
YT X — (@®/x1x2)’ x1xy — (@2/x1x2)

Define
zi=ay1 +y2), z22=y1/1+y2), z3=2(1+u)xs.
Then K(y1,y2, (1 + u)x3) = K(z1,22,23) and
g:zi—alzi, e+l zye(z 4 (a/z1)) ) zs.

Now K(zi,z2,z3) = K(z1,z3,z) for some z with o(z) = z by Theorem 2.1. Thus
K(z1,22,23)"% = K(z1,23)¢°’ (2) is rational over K by Theorem 2.4.

Case 2: f(T) is not the minimal polynomial of . Thus f(T) is reducible. Either f(T)
has a linear factor in K[T] or f(T) = (T2 + b)* for some he K with b = a.

In the first situation, K(P(V))¢°” is rational by Case 1 of the proof of the
following Theorem 2.7 (under a more general situation). Thus, it remains to consider
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the latter situation. In this situation, we may assume that 72 + b is irreducible and is
the minimal polynomial of &.
Thus we may find a basis vy, vy, w;, w, of V* such that

g0 boy, Wi wa b bwy.

Define
x=uw/vi, y=wi/v,, z=w/v.

Then K(P(V)) = K(x,y,z) and

g:xb/x,yrzioy.

Since K(x)¢°” is rational by Liiroth’s Theorem, it follows that K(x,y,z)<"” is
rational by Theorem 2.1. [

2.7. Theorem. If K is any field and f(T) is a reducible polynomial in K[T), then
K(P(V)$ is rational over K.

Proof. Case 1: f(T) = (T — a)g(T) for some a.€ K. Then V* has an eigenvector with
eigenvalue o. Thus we may find a basis vy, v, 03,04 of V* such that o(v;) = av;.
Define

Xi=0/v1, X2 =wv3/v1, X3 =v4/v1.
Then

o(x;) = Z agx; +b; for 1<j<3,

1<i<3

where (a,-j)]gu@e GL3(K) and b;e K. Hence K(Xl,X2,X3)<U> is rational over K by
Theorem 1.2 (2).

Case 2: f(T) = g1(T)g2(T) where g\(T) and g>(T) are distinct monic irreducible
polynomial of degree 2. By linear algebra, V* decomposes into a direct sum of two
invariant two-dimensional subspaces, i.e. there exists a basis vy, v, v3, 04 of V* such
that o(v;)eK - v; + K - v for 1<i<2, and a(v;) eK - v3 + K - v4 for 3<;j<4. Define

X| =0/v1, X2 =uv4/v3, X3=03/0;.

Then K(P(V)) = K(x1,x2,x3) and a(x3) = Ax3 for some 1€ K(x1,x,). By Theorem
2.2 the rationality of K(x,x2,x3)¢"” follows from that of K(x|,x,)‘"”. However,
K(xl,xz)<”> is rational over K by Theorem 1.2(3).

Case 3: f(T) = g(T)?, where g(T) is a monic irreducible polynomial. 1f g(T) is
inseparable, then char K =2 and g(T) = T? + b for some be K\{0}. Thus f(T) =

T* + b. This situation has been treated in Lemma 2.6.
Thus we may assume that g(7) is separable irreducible.
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If the minimal polynomial of ¢ is g(T), then V* decomposes into a direct sum of
two invariant two-dimensional subspaces. This situation can be treated as the above
Case 2.

Thus, we may assume that f(T) = g(T)? is the minimal polynomial of ¢ and g(T)
is separable irreducible.

Let g(T) = (T — o«)(T — p) and L = K(a). Let G = {1 ) be the Galois group of L
over K. Then t(a) = p.

Choose a vector ve V* such that v, 6(v), o> (v), a3 (v) is a basis of V*.

The action of ¢ on V* is extended to V*® g L by (o) = «, and the action of 7 on
L is extended to V*® g L by t(v) = v for any ve V*.

In V*® g L, define

v =(0—-pB)%, v4=(0c—a)y,

vy = (6 —a)vy, v3=(0— s

Then

civi oy, vabovy v, U3 oz, vgo fug + vs.
Define

X1 =v/v1, X2 =uv4/v3, X3=03/0.
Then
K(P(V) = LP(V ®kL)” = L(x1,x2,x3) "

and

o:xix 4+ (1/a), xaxa+ (1/6), x3Axs,
where A = f§/a.

Note that (1) =1(c — f)*(t) = (0 — 0)’t(v) = (0 — 2) v=14, (1) =7(0 — )2 =
(0 — P)t(v2) = (6 — B)vg = v3. We find that

Tioefl, vev, nevs, XieXx, x3—1/x;.

If charK =0, define y=(ax;—px2)/(e—p). Then a(y)=1(y)=y.
Hence L(x1,x2,x3)¢%” = L(x2,x3)¢?” (»). Using Theorem 2.2 we get L(x2,x3)¢"" =
L(x3)¢” = L(x4) or L depending on whether ord(2) =n or ord(}) = oo in
L\{0}. Now, if L(x3)¢” =L, then K(P(V))‘" = L(x1,x,x3)" =
{L(x1,%2,%3) 7} = LD = K. If L(x3)¢ = L(x%), then K(P(V))< =
{L(v1,x2030) 0} = L) = L) =K() where 2= (2= f){(1 - x1)/
(1+x%)}. In both cases, K(P(V))<°” is rational.

Now consider the case char K = p>0.
Suppose that ord(1) = co in L\{0}.
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Using Theorem 2.2 again, we have L(xy,x2,x3)%" = L(x,x)(x3)¢" =
L(x1,x2)<0>.

It is easy to verify that L(xy,x2)¢"” = L(y1, ) where
yi=x = (1/a? Nxy,  y2=ax; — . (2.5)
Note that
t(n2) =—y2 and t(y1) = («/B)'y1i — (1/B) (3 — »2). (2.6)

By Theorem 2.1, find ze L(y;,y2) such that L(yi,y2) = L(y2,z) with 1(z) = z.
Hence L(y1,12)" = L(y2,2)¢" = L$9 (y,z) = K(y,z) where y = (o — f)y,, is
rational over K.

It remains to solve the case ord(1) = n, i.e. A is a primitive nth root of unity.

Note that ptn; and p | ord(o) because x;+— x; + (1/a) is of order p.

Then L(xl,xz,X3)<”p> = L(x1,x2,x%). Thus L(xl,xz,x3)<“> = L(xl,xz,xg’)<”> =
L(xy,x2)¢% (%) = L(y1,2,x4) where y; and y, are defined by the same formula as
in (2.5). The action of t on y; and y, are the same as (2.6).

y3=1/(1+x).

Then t(y;) =—y3+1. By Theorem 2.1, find poeL(y;,ys,»3) such that
L(y1,»2,53) = L(y1,¥2,y0) with t(y9) = yo.

Now K(P(V)" = LP(V @ kL)) ™ = {L(x1,%2,x3) "} = L(y1, 2,
x’37)<f> = L(y1,72)¢ (). The rationality of L(y;,1,)¢™ follows by the same way
as above. Hence the result. [

2.8. Theorem. Let K be a field with char K =2 and f(T) = T* + bT* + acK|[T).
Then both K(V)*°” and K(P(V))*°’ are rational over K.

Proof. The situation when » = 0 or f(7T) is reducible is treated in Lemma 2.6 and
Theorem 2.7. Thus we may assume that b0 and f(7) is irreducible.

Let 7> +bT +a= (T —a)(T — B) and L = K(a). Let G= {t) be the Galois
group of L over K. Then t(a) = f.

Choose a vector ve V* such that v, ¢(v), a*(v), a3 (v) is a basis of V*.

The action of ¢ (resp. 7) on V* (resp. L) can be extended to V*® xL by o(a) = a
(resp. t(v) = v for any ve V™).

In V*® gL, define

wi = av+a°(v), wr=0-0(v)+ (),

ws = pv+a>(v), ws=p- o)+ (v).
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Then we find that

giwiwrb fwr, Wi wy b aws,

TIWL W3,  Wy<>Wy.

Define
X1 =wy/wi, X2 =ws/wz,  x3=w3/w.
Then
o x> f/x1, xaoa/x, X3 xx3/Xp,
62X X, X2l X2, X3 Ax3,
TixX1 X2, X3t 1/xs,
where 1 = a/f3.

We shall compute K(P(V))<7” = {L(x1,x2,x3) "},

Case 1: ord(J) = 0. L(x1,x2,x3)¢7 = {L(xl,xz,X3)<“2>}<”> = L(x1,x)¢ =
L(y1,y2) where yy, y, are defined by

x1 = (B/x1) _ = (a/x)

- x1x2 — (af/x1x2)’ Cx1x — (aB/x1x0)

(2.7)

Note that t(y1) = y2 and t(y2) = y1. It is clear that

Ly1,y2)¢ =L(y1 +y2, {31/ +y2)} + (2/b)¢
=K1 +y2,{»1/ 1 +»2)} + (2/b))

is rational over K.
Case 2: ord(4) = n. Note that 2 } n because char K = 2.

a (72 g g [
L(x1,x2,x3) 77 = {L(x1,%2,%3) <77} = Loy, 2,69 7 = L(x1,%2) < (33)
where y3 = (1 4+ u")x% with u = x»/x;. Note that 7(y3) = (u" +u")/y3.
Define w = u + (A/u) e L(x;,x,)<°”. From the binomial expansion of w" = (1 +
(AJu))", w2 = (u+ (A/u))" 2, ..., it is easy to find that

WA u =W e AT W T e,

where n = 2m + 1 and ¢y, ¢y, ..., ¢y are either 0 or 1. Since 4 is in the finite field F»(4),
it follows that A = &2 for some g€ F,(1)\{0}; and therefore " + u~" = w”> for some
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OeL(x),x2)¢”. Since t(u" +u™")=u"+u" and t(w)=2A""w, it follows that
7(6) = 0.
Define zy, z, z3 by

u— (4/u) x1 — (B/x1)
_ ek St el VA = 13/0. 2.8
Then L(x1,x3, x;,)<”> = L(zy,22,23) by Theorem 2.4. Moreover,
T:lei_lzl/zz, Za1/25, 23»—>8_]W/23.

Define t1, 15, t3 by

n=>0/1+2)+@/b), n=c'z/1+2),

ty = (£ +t1 + (a/b?))z3.

By substituting the formula u + (4/u) in (2.2) of Theorem 2.4, then L(z;,22,23) =
L(ll,lz,t3) and ‘L'(ll) =1, T(lz) =1, T(l3) = A/Z3 where

A={04+t+ (a/b)Y(eb+e)5 + (e +& )] + (e +eb ')}

Note that eb + ex,e + ¢!, & + eb~'o are fixed by t and therefore belong to K.
We claim that L(#y, 2, 13)<T> = K(t1, tp, t4, ts) with the relation

6+ (b/a)tsts + (1/a)iz = b* 4 /a. (2.9)

In fact, letting t4 = 13 + (4/13) and ts = at3 + (aA/ot3). The verification of the above
claim will become straightforward.
We shall simplify relation (2.9):

(ats/b)* + (ats/b)ts + (a/b)*12 = aA. (2.10)
Multiply by £ + ¢, + (a/b*) both sides of (2.10). We get
{(ata/b)* + (ata/b)ts + (a/b*) 31 + 11 + (a/b7)}
= {2 + 1t + (a/b*)}*{(eab + ean) i + a(e + &) + (ea + cab™ ')}
The left-hand side of the above identity is
((a/b)tity + (a/b)ts)* + ((a/b)t1ts + (a/bP)ts)((a/b)ts + 1115 + 1)
+ (a/b)*((a/b)ts + 1115 + 15)*.

Since e (1), which is a finite field, it follows that ¢ = p* for some peF(4)\{0}.
Thus ¢+ ¢! = p~2(e + 1) Note that p~' (¢ + 1)eK.
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Define p, ¢,r by

p = ((a/b)tits + (a/b*)ts) /(] + 11 + (a/b?)),
q=((a/b)ts+ tits + 15) /(5 + 11 + (a/b7)),

r=p e+ 1.
Thus L(¢, 15, t3)<1> = K(t2,p, q,r) with the relation
p*+pg+ (a/bP)q* = (eab + eao)s + ar* + (ea + eab™'a). (2.11)
The above relation (2.11) can be written as
P +pq+a((q/b) +r)* = (eab + ean) 2 + (sa + cab™'a). (2.12)

It follows that qeK(r2,p,(q/b)+r) by (2.12). Hence K(P(V))‘"’ =
L(t1,1,,13)"" = K(t2,p, (q/b) + r) is rational over K. [

2.9. Theorem. Let K be any field. If f(T) is inseparable, then K(P(V))<°’ is rational
over K.

Proof. If f(T) is inseparable, then char K =2 or 3. The case char K = 2 has been
solved by Theorem 2.8. If char K =3, then f(T)= (T — b)(T> —a) for some
a,beK. Thus f(T) is reducible and we may apply Theorem 2.7. [

3. The proof of Theorem 1.3

In this section except in 3.4, we assume the characteristic polynomial f(7) is
separable irreducible in K[T].

Let oy, o, a3, 04 be the roots of f(T) = 0, L = K(o, 02, 013, 04) and G be the Galois
group. Since elements of G permute oy, oy, a3, g, we may regard G as a subgroup of
S, by: for any 1€ G,

(i) =j if and only if () = «;.

Note that, as a subgroup of Sy, G is one of Sy, A4, or is conjugate of Dy, Z4, 7, X Z,
(Z, stands for the cyclic group of order n).

We shall write the four roots oy, o, a3, au of f(7T) =0 by a, aff;, aff,, af; by
assigning o to be any root «; (1<j<4). Define N = K(f, p, f3)-

We shall indicate the main idea of our proof of Theorems 1.3—1.5 in the case when
f(T) is separable irreducible.
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The group action of ¢ on V* is extended to V*® g L by o(a) = a for any e L. The
group action of G on L is extended V*® g L by t(v) = v for any 1€ G, any ve V'*.

Choose a vector ve V* such that v, a(v), 6*(v), o (v) is a basis of V'*. Define vy, v,
U3, V4 € V*®KL by

vi= (0 —oq) - (6=0y) (6 — ag)(v).

Then o(v;) = ayv; and, for any 1€ G, t(v;) = (6 — 1)+ (6 =)+ (6 — og)(v) =
(0 = o(1)) -+ (0 = tz(p)) -+ (0 — atza) ) (2(0)) = vy

Define
xi=vi/vy, PBi=o;/ou; for 1<i<3.
Then
KPWV)$ = {L(P(V ? L)Y = [L(x1,x2,x3)¢71C,
and o(x;) = fx;.

Let {x1,x2,x3) = {x{'x3*x5 € L(x1,X2,x3)\{0}: ny,n2,n3€Z} and define the G-
equivariant map @ by

D:{x1,x2,x3) — L~
XA o o) ().

Since {x1,x2,x3 ) is isomorphic to a free abelian group of rank three, it follows
that Ker @ is a free abelian group of rank<3 with G actions, ie. Ker® =
{My,...,M;> for some monomials M, ..., M; with k = rank(Ker ®). Now
L(xl,xz,x3)<”> =L(M, ..., M) and L(M,, ...,Mk)G is the function field of some
algebraic turns over K split by L. Thus, we can apply results of the birational
classification of algebraic tori due to Voskresenskii and Kunyavskii (Theorem 2.5
and [10]).

3.1. Lemma. If {B,, By, B3> is an infinite subgroup of L\{0}, then K(P(V))<?’ is
rational over K.

Proof. From the above discussion, Ker(®) is a free abelian group of rank <2. Since
every two-dimensional algebraic torus is rational by Theorem 2.5 (and it is not
difficult to show that the same conclusion is valid for every one-dimensional
algebraic torus), it follows that K(P(V))<"” = L(M,..., M) is rational
over K. [

3.2. Lemma. If K = N, then G~Z4 and K(P(V))°’ is rational over K.

Proof. Since L = K(a,f,f,,5;) = N(«) = K(«), it follows that [L: K] =4 and
G:Z4 or Zz X Zz.
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If G~7Z4, then I((I13°(I/))<”> is rational over K by Kunyavskii [10, Theorem 1]. We
shall show that G~7, x Z, will lead to a contradiction.

Suppose G~7Z, x Z,. Choose 1;e€G such that t; = (a,0f,)(af,,of;). Since
p;eN =K, p; is fixed by G. It follows that af; = 1;(af,) = t11(c)t(f,) = af; - fs.
Hence f; = ,5,-

Now choose 1€ G with 15 = (o, 06, 5,)(af,ap,). We get aff; >, = (o) = t(af; -
By = t(ap)e(B;') = @B, - f;'. Hence fi = 1. By similar arguments, we get 7 = 1
also.

Hence f/;, = +1, = +1. Thus f(7) cannot be a separable polynomial. A
contradiction. [

3.3. Lemma. If K#N, then either K(P(V))°” is rational or G~ Dy or 7, x Z,.

Proof. For any 1€ G, ©(B;) = t(af; /o) = t(af;)/t(e) = (2B;)/(e;) = B;/ B, for some
Jj,1. Thus N = K(B,, p,, P3) is normal over K. Because of Lemma 3.1 it suffices to
consider the case ord(f;) < oo for 1<i<3. It follows that N is an abelian extension
of K.

If xe N, then G is abelian. Hence G~74 or Z, x Z. If G~Z4, then K(P(V))<"” is
rational by Kunyavskii [10, Theorem 1].

If ¢ N, then L = N(a). Thus [N(x): N] =2 or 4. It follows that G has a non-
trivial normal subgroup H such that |H| =2 or 4, and G/H is a non-trivial abelian
group. Thus G = S, is impossible. If G = A4, the H should be the Klein four group
in A4 and N = L. Choose t;€ H such that 1| = (a,of;)(af,,%f;). We get B, =
t(By) = (@i /a) = 11(@p)) /11 (@) = «/(afy) = f;'. Hence fi=1 and f = 1.
Similarly, take o = (o, af5,)(af, af3) € H; we will get f, = —1. Thus f(T) would not
be separable. A contradiction.

If follows that G~D4, Z4 or Z, x Z,. The case G~7Z4 will ensure that

K(P(V))¢° is rational as before. [J

3.4. Proof of Theorem 1.3. Theorems 2.7 and 2.9 take care of situation (ii). Situation
(iii) is covered by Lemma 3.1. By Lemmas 3.2 and 3.3 situation (iv) is ok. Because of
(i))—(iv), it follows that the remaining unsettled situation is the case: f(T') is separable
irreducible, {f, f,, ;> is a finite group and the Galois group G~ Dy, or Z; x Z;.
We shall show that it is necessary that char K # 2 in this situation (see Lemmas 4.1(1)
and 5.1). Thus, if char K =2, K(P(V))¢°’ is rational over K, which is just
situation (i). [

4. Proof of Theorem 1.4

In this section we shall adopt the same notations as in Section 3. Throughout this
section we shall assume that f(7) is a separable irreducible polynomial in K[T],
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{Pi, Pa, B3> is a finite subgroup of L\{0} and the Galois group G is equal to Dy
where Dy = {id, (1234), (13)(24), (1432),(13), (24), (12)(34), (14)(23)}.

4.1. Lemma. () K#N and N#L, char K#2, {,,B, B} = {—1,B —B}. (i)
(1234) = (o, af, —ar, —af) or (o, —aufs, —o, af); moreover, (13)(24) leaves every element
in N fixed.

Proof. By Lemma 3.2, K#N. Since N is an abelian extension of K, while G is not
abelian, hence N # L.

Let H be the Galois group of L over N. Then H #{id}, H <\ G and G/H is a non-
trivial abelian group. Thus the only candidates for H are: {(1234)), {(13)(24),
(12)(34) >, <(13)(24), (13) >, <(13)(24) >. In any case, 1; = (13)(24) belongs to H.
(It can be shown that the situation H = <{(13)(24), (12)(34) > or <(13)(24),(13)) is
impossible. But we do not need this fact.)

Write 11 = (o, 0,)(af,, af3) by indexing o) = o, op = afly, a3 = aff;, qa = ofis.
Then afi; = t1(af,) = t1(a)t2(f5) = af; - fp. Thus 3 = f;,. On the other hand,
Bi =11(f1) = ti(ef /o) = ti(afy)/t1(e) = o/ (2f) = 51_1§ hence f; =—1 and
char K+#2 because f(T) is separable and f; = 1 will be impossible. In conclusion,
{ﬁlaﬁ27ﬁ3} = {_laﬁa _ﬂ} and (13)(24) = (OC, —O()(OC[)), —O([))).

Let t = (1234). Then 7> = (13)(24) = (o, —a) (B, —af). Thus © = (o, af, —ot, —tf3)
or (a,—af, —o,af). O

4.2. Lemma. (i) 4|ord(p).
(i) If p*# —1, then f(T)=T*—aT? + (a*/b)eK[T) where a,b#0 and a =
(1 +ﬁ2), b= (/3—1—[371)2. If =1, then f(T) = T* + ac K[T) where a = —o*.

Proof. By Lemma 4.1, write f(T)= (T —o)(T +a)(T — off)(T + off). We will
obtain (ii).

By Lemma 4.1, take © = (o, aff, —a, —of8). (The case t = (o, —aff, —or, ofp) will lead
to the same result.) Then —o = t(af) = t(a)7(f) = af - 7(f). Hence 1(f) = —f .
Thus —f~" is a conjugate of f in L.

Since f8 is a root of unity, all of its conjugates are of the form f/ for some suitable
j. It follows that —f~' = /. Thus —1e {(f). Denote n = ord(f). Then n is even.
Write n = 2m. We shall show that m is even.

Note that () = —f ! and 12(f) = t(—p~") = —(—=p~")"" = B. Since ord(p) = n,
then —p~'=p"" It follows that f=12(p)=r1(z(f))=1(f"") =<(p)" " =
/3(”’_1)2. Hence (m — 1)> = 1 (mod 2m) and 2 |m. O

4.3. Proof of Theorem 1.4. Because of Lemmas 4.1 and 4.2, it remains to show that
K(P(V))¢°” is not stably rational over K.

Recall that o)y = o, oy =aff, a3 = —a, a4 = —aff (in the proof of Lemma 4.1).
Choose a vector ve V* such that v,a(v),d%(v),a3(v) is a basis of V*. Define
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v1, 02,03, U4€ V" @k L by

vi=(0—a))(6=a) (6 —ag)(v).

Then
o(vi) = ov;, A(v;)) = v, for any 1e€G.
Define
Xi=vip1/v; for 1<i<3.
Then

0 x1 Px1, xa — B s, x5 fix,
T:f—> — ﬁfl,levzr—»v3|—>v4|—>vl,
p: = — B, va> 040,01 01, U303,
(Remember © = (1234), p = (24). We take the possibility © = (o, o8, —a, —af) and

p = (aff, —af). The discussion of other possibilities is similar.)
By Lemma 4.2, write n = ord(f§) = 4k.

Then
L(xl,xz,X3)<”2> = L(x3*, x1x2, x3/x1),
L(x1,x2,%3)"” = L(y1,¥2,3),
where
y=xi, »m= Xz/xfk_l> y3 = x3/x1.
Moreover,
Ty ey /O, pae 1 (naas),
Py T e 10, e 1 ().

Define zy, z5, z3 by
z2i=yw3 2=y, m=ywsth

Then L(yi,ys,y3) = L(z1,22,23). With respect to zj,zs,z3, the (multiplicative)
actions of 7 and tp are given by
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which is the group action (W;3) in [20, p. 187]; this group action in turn is the
group action (Us) in Kunyavskii’s list [10, p. 10]. By Kunyavskii’s Theorem
[10, Theorem 1], the fixed field L(zy,z5,23)¢ is not stably rational over K. [

5. The proof of Theorem 1.5

In this section we shall adopt the same notations as in Section 3. Throughout this
section we shall assume that f(7) is a separable irreducible polynomial in K[T7],
Py, B, B3 is a finite subgroup of L\{0} and the Galois group G = {id, (12)(34),
(13)(24),(14)(23)}. By Lemma 3.2, it is necessary that K+ N.

5.1. Lemma. (i) If N#L, then char K#2 and {f,, ., b3} = {p, =B, —1}.
(i1) If N = L, then char K = 0.

Proof. (i) Suppose that N+# L. Since [L : N| = 2, let {id, 7|} be the Galois group of L
over N. By reindexing f;, fi,, i3, we may assume that 7, = (o, af8;) (25, 2f3). Then

afis = ti(afy) = t1(a)t1(B,) = af; - f5. Thus f3 = f,,; on the other hand, af, =
11 (afs) =11 (o)t1(B3) = afy - f1 B> Thus By = —1 and char K#2 because f(T) is

separable. Taking f, = f, we get {B, f, B3} = {B, =B, —1}.
(i) Write <}, P, 3> = <{{). Note that ord({)<oo. If N =L, then L = K({).
Assume that char K+#0. Then ( lies in some finite field and K({) is necessarily a
cyclic extension of K. A contradiction. [J

5.2. Convention and definitions. We shall denote o) = o, op = aff;, a3 =aff,, og =

(xﬁ?av and 7 = (avaﬂl)(aﬁ2vaﬂ3)7 T2 = (“»“ﬂz)(“ﬁn“ﬁﬁa 3= (aaaﬁB)(aﬁlaaﬂZ)'

Define integers ny,ns,d, my, my by

ord(f;) =n; for 1<j<2,

d =ged{n;,n} and n=dm; for 1<j<2.

Since f3, is a root of unity, it follows that t;(f,) = Bé for some integer i. Note that i
is uniquely determined modulo n; and ged{i,n,} = 1.

5.3. Lemma. (i) f3 = B3 and {By) 0 B> = (B ) = B3
) d|i+1andmy|i—1.

Proof. Since 71(f;) = f;", thus af; = 11(2f,) = 71 (2)71(B,) = af, - f5. Hence By =
b1

Now af, = t3(af)) = t3(0)t3(B)) = oy - 5 - 13(B;). It follows that By~ =B, -
() e By y. Thus """ = 1. Hence ny| (1 —i)n;. Thus my| (1 — i)m,. Since
ged{m,my} =1, hence m, | 1 —i.
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Note that both f{" and f3” are primitive dth roots of unity. Hence {f") =
(B3*> and it is contained in (f;)n{B,>. The index of (p}") in
B> A B> [<Bry a<Bad : CBIMY], divides both my = [<By > : <BJ">] and my =
[{Bay: (B D) Thus [{B1)> APy : (BT Y] = Lie. {Brdnd{By) = (B

We may write f]" = [3’2‘"’2 for some integer k. Call { = f7". Recall that 7,(f;) =
B! and 7,(B,) = B. Tt follows that (™' = g™ = 1, (B™) = v; (fm) = pikm = (1,
Thusd|i+1. O

5.4. Definition. By Lemma 5.3, we define integers @ and b by the relations: i + 1 = da
and i — 1 = myb. In particular,

da —myb = 2. (5.1)

On the other hand, note that " and 5 are primitive dth roots of unity. If d>2,

there is an integer k such that " = ﬁg’”z. The integer k is uniquely determined
modulo d and ged{k,d} = 1. If d = 1, we simply define k = 0.

5.5. Now we begin to prove Theorem 1.5.
Choose a vector ve V* such that v,c(v),s?(v),s(v) is a basis of V*. Define
v1,02,03,04€ V" @k L by

vi=(c—0o)(c=0) (6 —a4)(v).

Then o(v;) = ov; for 1<i<4.
Define x; = v;41 /v for 1<i<3. Then

o:xi—=Bix1,  xafhxa, X3 fixs.

Since {f;,, is a cyclic group of order dm,,m,, choose integers r and s such that
p = p1p5 is a generator of {f,,p,>. We find that g(x]x3) = fx{x}. Thus ¢ is a
faithful group action on L(x1,x3,x3) with order dm;m;.

Define yi,y2,y3 by

ni

=X =Xy = (),

Since the determinant of the ‘“‘coefficient” matrix of y;,y,,y; with respect to
X1,X72,X3 1S

1443 0 -1
det| —kmy n, —i | =mny, =ord(o),
0 0 1

it follows that [L(xi,x2,x3):L(y1,y2,93)] =ord(c) and L(xj,x2,x3)¢"" =

L(y1,y2,y3). Moreover, the multiplicative subgroup <{yi,y2,v3> of {x1,x3,x3)
(= L(x1, x2,x3)\{0}) is invariant under the action of G because it is the kernel of the
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following G-equivariant map

@ (x1,x2,x3 ) > L\{0},

ny ny N3 | RN2 N3
X X' X357 =Py P Pse

The action of G on yy, s, y3 is given by
T P e PR BT E A ST e o
iy ey, ey eyt
where ¢ := (mb + 2k)/d.

Since <{yi,y2,y3» is G-invariant, it follows that ce Z. In particular, the integers
my, k, b, ¢, d satisfy the relation

2k = c¢d — mb. (5.2)

5.6. Lemma. (i) gcd{b,d} =2 if b=d =2 (mod?2); ged{b,d} =1 otherwise.

(ii) The situation b = 1 (mod 2) and d = 0 (mod 2) will never happen.

(i) If b =0(mod 2) and d = 1 (mod 2), then ¢ =0 (mod2); if b =d =1 (mod 2),
then ¢ = m; (mod 2).

Proof. (i) Note that gcd{k,d} = 1. If p is a prime factor of gcd{b, d}, then p = 2 by
(5.2). Thus b=d =0 (mod2). It follows that k = ¢(d/2) —m;(b/2). Repeat the
above argument. We find gcd{d/2,b/2} = 1. Thus ged{d, b} = 2.

(ii) Assume that » = 1 (mod 2) and d = 0 (mod 2). By Definition 54 i+ 1=0=
my (mod 2). On the other hand, m; = 0 (mod 2) by (5.2). Thus 2| ged{m;,my}. A
contradiction.

(iii) Both properties follow from (5.2). O

5.7. Theorem (We continue the discussion in 5.5). Suppose that not both b and d are
even integers. Then K(P(V))<°” is rational over K.

Proof. Define u and v by

) (e/2,m1)2), if m; is even,
W0 =\ (e 4 b)/2, (m + d))2), if my is odd.
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If m; is even, then ¢ is even by Lemma 5.6(ii1). Note that d is always odd by
Lemma 5.6(ii). If m, is odd, then m; + d and ¢ 4+ d are even. In conclusion, u and v
are integers.

Node that ud — vb = k.

Define z; = y1)4)4. Then L(y1,»2,¥3) = L(z1,¥2,y3) and

. i —ab ., —i -1
Ty 222003, Va2 V3, Z1 ),

] if my is even,

—1 —1
T2y, Y3y L,z ; i
Y Yo sy V3 {Z1y2by3d if m is odd.

Case 1: m; = 0 (mod 2). Define zy .= (1 — z1)/1 4+ z;. Then t,(z0) = —z0, 72(20) =
zo. Thus L(zg) = L(z) for some z with 7,(z) = 12(z) = z by Theorem 2.1.

We may regard L(yi,y2,13)" = L(z)(y2,73)¢ as the function field of a two-
dimensional algebraic torus over L(z)°. By Theorem 2.5, it is rational over
L(z)%(= K(z)). And therefore it is rational over K.

Case 2: m; =1 (mod 2) and my = 0 (mod 2). Since d is always odd by Lemma
5.6(ii), hence « is even by (5.1). It follows that d(a/2) — b(my/2) = 1.

Define

_ —b.—d _ a2 m/2
=01V Vs, Z3=Yy V3o

Then
T1: 21 Hzfl,zzr—m;l,z; = z3,

Ty 1 Z1H>22,20> 21,23 l—»zgl.

Define zp = (1 — z3) /(1 + z3). Then 11(z0) = zp, t2(20) = —zp. Thus L(zy) = L(z)
for some z with 7,(z) = 12(z) = z by Theorem 2.1.

We may regard L(yi,12,y3)% = L(2)(z1,2,)¢ as the function field of a two-
dimensional algebraic torus over L(Z)G. By Theorem 2.5, it is rational over L(z)G
(= K(z)). And therefore it is rational over K.

Case 3: m; =1 (mod 2) and my = 1 (mod 2). Since d is always odd by Lemma
5.6(ii), it follows that n; and n, are odd. Recall that 7,(f,) = ﬁé. Without loss of
generality, we may assume that 7 is odd because, for the case i is even, just consider
71(f,) = ﬁ?”z. Thus, from Definition 5.4, we find that both a and b are even and
d(a/2) —my(b/2) = 1.

Define

a b—a)/2 (d— 2
2= YRR,z = TR
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Since the determinant of the “coefficient” matrix of z, and z3 with respect to y»

and y; is
b—a)/2
det a (b-a)/ =1,
my (d*l/}’lz/z

it follows that L(y2,y3) = L(z2,23). Thus L(y1,y2,»3) = L(z1, 22, z3) and

T]: 21 »—>zfl,zzb—>zz,23 |—>zz’123’1,

Ty 1 Z] »—>2122’lz3’2,zz D—>Z£1,Z3 »—>Z§1.

Define u; = zy, up = z3, u3 = z, 'z . Then the (multiplicative) actions of t; and
717, with respect to uy, up, uz are given by

-1 0 0 -1 0 0
0 0 1 and 1 0 -1
0 1 0 -1 -1 0

which is the group action (W7;) in [20, p. 174]; this group action in turn is of type (d)
in [10, pp. 8-9]. Thus L(uj, u2,1/l3)G is rational over K. [

5.8. We will finish the proof of Theorem 1.5. We now assume that both b and d are
even integers.

Since ged{k,d} = 1, it follows that k is odd. From (5.1) and (5.2), it is easy to see:
(i) if b=d =2(mod4), then a+ ¢ = m; + my (mod 2); (ii) if b =0 (mod4), then
d =2(mod4) and a = ¢ = | (mod 2); (iii) if d = 0 (mod 4), then b = 2 (mod 4) and
m; =my = 1 (mod 2).

We shall define integers u and v as follows:

If any one of the following conditions is valid: (i) if b =d =2 (mod 4) and a + ¢ =
0 (mod2), (ii)) b =0 (mod4), d =2 (mod4) and m; +my =0 (mod2) or (iii)) b =
2 (mod4), d =0 (mod4) and a + ¢ = 0 (mod 2), then define

(A) u=(a+¢c)/2, v=(m +m)/2.
If any one of the following conditions is valid: (i) if b =d =2 (mod 4) and a + ¢

1 (mod 2), (ii)) b =0 (mod4), d =2 (mod4) and m; +my =1 (mod2) or (iii)) b=
2 (mod4), d =0 (mod4) and a + ¢ = 1 (mod 2), then define

(B) u=Q2a+2c+b)/4, v=2m +2m+d)/4

In both situations (A) and (B), we always have the relation: ud — vb =k + 1.
Define

u.v a.nn bh/2 d/2
=y, =iz =R
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Then L(y1,y2,y3) = L(Zl,22,23) and
—1
Ty 1y, 3bzy o,z )z,

zizz!if (A) holds,

-1 -1
Ty 12—z Z3—>zZ Z1 > .
27 3 { 'z if (B) holds.

Z1Z5

Case 1: Situation (A) holds. Define zy = (1 — z3) /(1 4 z3). Then 7 (z0) = 12(20) =
—z. Thus L(zp) = L(z) for some z with 1,(z) = 72(z) = z by Theorem 2.1.

We may regard L(yl,yz,y3)G :L(z)(zl,zz)G as the function field of a two-
dimensional algebraic torus over L(Z)G. By Theorem 2.5, it is rational over

L(z)°(= K(z)). And therefore it is rational over K.
Case 2: Situation (B) holds. Define

-1
uy = z3, Uy =2y Zzy, uy = 2y.

Then the actions of 7, and 7, with respect to u;,u;, u; are given by

-1 0 0 -1 1 -1
0 0 1 and 0 0 -1
0 1 0 O -1 o0

which is the group action (W)4) in [20, p. 174]. This action in turn is the group action
(U)) in Kunyavskii’s list [10, p. 9]. By Kunyavskii’s Theorem [10, Theorem 1],

L(ul,uz,u3)G is not stably rational over K. This finishes the proof of
Theorem 1.5. [

6. Special cases

6.1. Lemma. Let the notations be the same as in Section 3. Assume that f(T)e K[T)| is
separable irreducible, {f,,p,, B> is a finite group and the Galois group G =

{id, (12)(34), (13)(24), (14)(23)}.

(1) If_le{[))l’ﬁ%ﬁ3}a then {ﬁl?ﬁZaﬁ3} = {[))7 _ﬁv_l}'

(11) If{ﬂlvﬁ%ﬁ.’)} = {ﬁlv ?,ﬂ?}f()l’ some l! [/181’1 {ﬂl?ﬁZ?ﬁ}} = {ﬂaﬁj7ﬁl_j}for some
integer j and 2j(j — 1) is divisible by n where n = ord ().

Proof. (i) Let f, = —1. Take © = (o, af5;)(2f,%f3) € G. Then t(a) = aff, and aff; =
t(ap)) = 1(—a) = —1(2) = —0fy. Hence B3 = —f,.

(i) We may assume /= 1. Take 7 = (o, o)) («f%, af3)eG. Then 7, () = ;"
Hence off! = t;(af¢) = 71 (x)r1 ()" = af - ;% It follows that b= 1—a(mod n)
where n = ord(f) and = §;. Thus we may take j = a.
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Take 1= (o, af’)(af,0f'7)eG. Then () =12(af/a) = ta(af)/72(2t) =
(ap')/(ap’)y = =%, 1t follows that of =12(af' ™) = 2(a)r2(f)' 7 = app’ -
U201 Hence 1 =j+ (1 —2j)(1 —/) (mod n), i.e. 2j(j — 1) = 0 (mod n). O

6.2. Proof of Theorem 1.6. Step 1: Suppose that {f, B, f3} = {p,p/, B 7} and n =

ord(f).
Note that (i) is just Lemma 6.1(ii). It remains to prove (ii). Let d = ord (/3-/ ). Then
d | n. Write n = de. Tt follows that j = ¢/’ for some integer j/ with ged {;,d} = 1.
In the notations of Theorem 1.5 we find that

n=n, m=d, m=e m=1.

Take 1 = (o, aB)(2B’,0f' 7). Since ©;(B) = p', it follows that 7,(f’) =7 =
(ﬁj)fl‘ Thus the integer 7 in 5.2 can be taken to be —1. By Definition 5.4, a = 0 and
b=-2.

Since ged {j/,d} = 1, find integers k£ and s such that

ki +sd = 1. (6.1)

Then g™ = ¢ = pe+s% — (B/\k. Thus this integer k plays the same role of k in
Definition 5.4. Moreover, (5.2) becomes

cd =2(k —e). (6.2)
By (i) of Theorem 1.6, define an integer x as follows: 2j(j — 1) = nx, or equivalently,

2/ (j—1) = dx. (6.3)

We shall prove that K(P(V))<°” is rational if and only if x is an even integer.

Case 1: d is odd. Apply Theorem 1.5(1). K(P(V))<"’ is rational. By (6.3), x is
even.

Case 2: d is even. Let 2" || d where t>1.

By (6.1), both k and j’ are odd.

By (6.1) we get kj'e + sde = e. Thus kj = e (mod 27).

Now

xis even. <2'|j—1 (by (6.3))
<k =k (mod2") (kis odd)
<k = e (mod 2/)
<> is even (by (6.2)).

Applying Theorem 1.5(2), (4), (1) and (3)', we find that K(P(V))<°” is rational if
and only if x is even. Hence the result.
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Step 2: Suppose that {,, B, 3} ={p,—B,—1} and n = ord(p). If n is odd, then
ord(—p) = 2n; if n is even, then ord(—f) = n or n/2 (if n/2 is even). In any case, we
write ord (—f) = 2m and note that 4 | n if and only if 4 | 2m.

Write {:Blvﬁ% ﬁ'i} = {ﬁ’ _,Ba _1} = {_ﬁ’ (_ﬁ)mﬂv (_ﬁ)im} and apply the result of
Step 1. The integer x is defined by 2(m + 1)(—m) = 2mx, i.e. x = —(m + 1). Thus
K(P(V))<°” is not stably rational <>x is odd <>m is even <>4 |2m<>4|n. This
finishes the proof of Theorem 1.6. [

Theorem 1.7 (resp. Theorem 1.8) is the application of Theorems 1.3, 1.4 and 1.6 to
the case f(T) = T* — aT? + (a*/b) (resp. f(T) = T* + a). Before proving them, we
recall a result which is part of the folklore in Galois theory:

6.3. Theorem (Kappe and Warren [9, Theorems 2 and 3]). Let K be a field of
char K#2, g(T) = T* — ¢T?* + deK|[T), and G be the Galois group of g(T) over K.
(i) g(T) is irreducible over K. <>c* —4d, ¢ +2Vd, ¢ —2Vd¢ K>

(i) Assume that g(T) is irreducible. Then

G~7, x Zr<dek?,
G~74<=d( —4d)ekK?,
G:D4©d,d(62 - 4d)¢K2.

6.4. Proof of Theorem 1.7. The characteristic polynomial of ¢ is f(T) = T*—aT? +
(@®/b). The roots of f(T)=0 are o —a, af, —of where o=
Veab+ avVb: —4b/\2b, B=+/2b—4 —2vb2 —4b/2. Note that f is root of
T — (b—-2)T?>+1=0.

Conditions (i) and (ii) are consequences of Theorem 1.3(i) and (iii).

By Theorem 6.3, (iii) is equivalent to that f(T') is reducible if char K #2. Hence we
may apply Theorem 1.3(i) and (ii).

By Theorem 6.3, (iv) is equivalent to G~24 if char K+#2 and f(T) is irreducible.
Hence we may apply Theorem 1.3 (i), (i) and (iv).

For the remaining part, be K> is equivalent to G=~7Z, x Z, and b,b — 4¢K? is
equivalent to G~ D4 by Theorem 6.3. [

6.5. The proof of Theorem 1.8 is similar to that of Theorem 1.7 and thus is omitted.

7. Applications

The method of the preceding sections can be applied to other situations. As
illustrations, we shall give a proof of Theorems 1.9 and 7.3. We remark that similar
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ideas (besides a detailed analysis of eigenvalues) can be used to discuss the rationality
of K(xl,xz,x3)<“> where char K+#2, o(x;) = (a;x; + b;)/(cixi + d;) with a;d; —
bic; #0 [8]; this problem is a generalization of a question solved by Saltman [17].

7.1. Lemma (Hajja [4]). Let K be any field, 6 GL,(K), f(T) be the characteristic
polynomial of o such that f(T) is the minimal polynomial of o. Define an affine
K-automorphism @ on K(xi, ...,x,) by

(P(xl) X1 b]

d(x,) Xn by,
for some b;jeK. If f(1)#0, then @ can be linearized. Explicitly, if v is a vector in
S K- x; such that v, 6(v), ...,a" ' (v) generate Y1, K - x; and define v; = @'~ (v)
Sor 1<i<n then ®(v,) = (3.1, ai—1v;) + ¢ where f(T) = T" — Z’;:_Ol a;T'eK[T) and

ceK; now define y; =v— (c/f(1)) and y; = &~ '(y)) for 2<i<n. It follows that
D(yn) = Z?:l ai-1)i-

Proof. The existence of v follows from the assumption that f(7') is the minimal
polynomial of ¢. All the rest are easy. [

7.2. Proof of Theorem 1.9. Case 1: f(1)#0 and f(T) is the minimal polynomial of o.
Apply Lemma 7.1. Since o is similar to its rational normal form, we can transform
the basis i, ..., », in Lemma 7.1 to another one zj, ..., z, such that &(z;) = 3" a;z;
and (aj;) is the linear part of the given affine automorphism.

Case 2: f(1) =0 and f(T) is the minimal polynomial of ¢. By linear algebra, ¢ is
conjugate to one of the following matrices:

*

OO O
OO ==
O = = O
[ )
OO O *
OO = O
O~ ~, O
- oO O
=IO OO

000

b ) k)

In any case, there exist y, y2, y3, V4 € Z?:] K - x; such that either @(y4) = ya + y3 +¢
or ®(y4) = ya + ¢, where ce K; moreover, @ leaves K + Z?:l K - y; invariant.

Hence K(xl,XQ,X3,X4) = K(y1,y2,y37y4) and @(K(yl,yz,y3))CK(yl,yz,y3) and
®(y4) = ya + u for some ue K(yy,y2,y3). By Theorem 2.2 it suffices to prove that
K(yl,yz,y3)<‘p> is rational over K. But this follows from Theorem 1.2.

Case 3: f(T) is not the minimal polynomial of o. Thus f(T) is not irreducible
in K[T].

Case 3.1: f(1)#0. By Lemma 7.1, @ can be linearized and the characteristic
polynomial of the linearized automorphism @ is the same f(7). Since f(T) is
reducible, we may apply Theorem 1.3.
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Case 3.2: f(1) = 0. By linear algebra, ¢ is conjugate to one of the matrices

x . ’00 *o’oo 11'00

* * 00 01100 01700

x 00‘10 00‘11 00111

00011 00101 00101 00101
Apply similar arguments as in Case 2 to prove that K(xj,xs,x3,x4)"" is

rational. [

7.3. Theorem. Let K be any field and 6 € GLs(K) be the form

a; Qg
bl b2 0
g = Ci C C3
0 di dy ds
€1 €y €3

If o acts on K(x,y,z) by

a)x + ap

O'(X) _ay+toaoz+ce o(z _d1y+d22+d3
_b1x+b2’

ey texztes ey teztes

a(y)

then K(x,y, z)<a> is rational over K.

Proof. Let f(7T') and ¢g(T') be the characteristic polynomials of

it C (3
a a
and dl dz d3 5
b1 by
ey e e3

respectively.
Case 1: f(T) is reducible. We can find ue K(x) such that K(x) = K(u) and o(u) =

Ju + ¢ for some 4, e€ K. By Theorem 2.2, the rationality problem of K (x,y,z)<"” is

reduced to that of K(y,z)<“>, which is rational over K by Theorem 1.2.
Case 2: g(T) is reducible. Thus we may assume the action of ¢ on y and z
becomes

o(y) =cny+enz+d, 0(z) = cuy+enz+d,

where (c¢;)eGL,(K) and dy,d>»eK. Let h(T) be the characteristic polynomial of

(cif)y <i,j<2°
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Case 2.1: h(1)#0. If h(T) is not the minimal polynomial of (¢;),; ;<», then
(¢i)1<i j<o is a scalar matrix and o(y) = ¢y + d\, 0(z) = ¢z + d>. Thus K(x,y, )¢
is rational over K by Theorem 2.2 and Liiroth’s Theorem.

If A(T) is the minimal polynomial of (¢;),, j<,, then we may linearize the action
by Lemma 7.1. Therefore we may assume that d; = d, = 0. It follows that the action
of ¢ on y/z and z is given by

o(y/z) = (en(y/2) + c)/(en(y/2) + en),  a(2) = uz,

where u = ¢31(y/z) + ¢ € K(y/z). Thus, the rationality of K(x,y,z)¢"” is reduced to

that of K(x,y/z)¢°” by Theorem 2.2. The rationality of K(x,y/z)¢°” follows from
Theorem 1.2.
Case 2.2. h(1) =0. Then the matrix (cj),<; ;<, is either diagonalizable or is

(01)

Thus, without loss of generality, we may assume that

conjugate to

c(y)=cy+d, o(z)=cz+d>
or
0(2)=Z+y+d1, O'(y):y—}—dz.

In either case, K(x,y,z)<" is rational over K because of Theorem 2.2.

Case 3: Both f(T) and g(T) are irreducible and f(T) is inseparable. In this case,
char K =2, g(T) is separable and f(T) = T* — a.

Let L= K(u,0,03) where ¢g(7)= (T —oy)(T —o)(T —a3) and consider
K(x,,2)¢” = {L(x,y,2)¢"”}“ where G is the Galois group of L over K.

Applying standard arguments in the preceding sections, we can find
u,v,we L(x,y,z) such that L(x,y,z) = L(u,v,w) and

o(u)=aju, o) =hv, ow)=rlw,

where ord(/;) is either infinite or an odd integer because char K = 2.

Thus L(x,y,z)<"2> = L(u, My, M), L(u,M) or L(u) where M|, M,, M are

monomials in v and w. Moreover, M|, M,, M are fixed by ¢. Hence L(x, y, z)<‘7> =

Lu+ (a/u), My, Ma), L{u+ (afu), M) or L(u+ (a/u)).
It follows that {L(x,y,2z)<°”}¢ is the function field of an algebraic torus of
dimension <2. Thus it is rational by Theorem 2.5.

Case 4: Both f(T) and g(T) are irreducible and g(T) is inseparable. The case is

)<0>

similar to Case 3. Note that K(y;, > is rational over K if a(y;) = y2, a()2) =
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a/(y1y2) where ae K\{0} by Hajja [3]. The rest of the proof is almost the same as in
Case 3 and is omitted.

Case 5: Both f(T) and g(T) are separable irreducible. Let L be the splitting field of
f(T)g(T) and G be the Galois group of L over K. Then G~7Z, x Z3,S5 or Z, X S;
where S is the symmetric group of degree 3.

Applying standard arguments in the preceding section, we get a function
field of an algebraic torus of dimension <3. If the dimension is <2, we are
finished because of Theorem 2.5. If it is a three-dimensional algebraic torus,
apply [10, Theorem 1] because a three-dimensional algebraic torus is
rational if the Galois group of its splitting field is isomorphic to Z, x Z3,S3 or
ZQ X S3. O
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