
102 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

Fast Postplacement Optimization
Using Functional Symmetries

Chih-Wei (Jim) Chang, Ming-Fu Hsiao, Bo Hu, Kai Wang, Malgorzata Marek-Sadowska, Fellow, IEEE,
Chung-Kuan Cheng, Fellow, IEEE, and Sao-Jie Chen

Abstract—The timing-convergence problem arises because esti-
mations made during logic synthesis may not be met during phys-
ical design. In this paper, an efficient rewiring engine is proposed
to explore maximal freedom after placement. The most important
feature of this approach is that the existing placement solution is
left intact throughout the optimization. A linear-time algorithm is
proposed to detect functional symmetries in the Boolean network
which are then used as the basis for rewiring. Integration with an
existing gate-sizing algorithm further proves the effectiveness of
our technique. Three applications are demonstrated: delay, power,
and reliability optimization.

Index Terms—Functional symmetry, logic restructuring, logic
synthesis, physical synthesis, postlayout optimization, timing
closure.

I. INTRODUCTION

I N THIS PAPER, we present a technique focusing on the
identification of symmetries when the target Boolean

function is represented as a mapped Boolean network. In
general, when two wires are functionally symmetric, they can
be swapped without changing the overall circuit functionality.
We have established a relationship between implication super-
gate [24] and functional symmetry. Based on our analysis of
supergates, we propose a linear-time algorithm for symmetry
identification in a multilevel netlist. We have developed ef-
ficient postplacement performance-improvement algorithms
which apply symmetry-based rewiring and gate sizing.

Power consumption and speed are two primary cost functions
in today’s integrated circuit design. As mobile computation de-
vices prevail in the market, the ability to design fast, low-power
devices is of paramount importance. However, these two objec-
tives often conflict: a faster circuit consumes more power, but
a low-power circuit runs slower. Hence, designers often need
to tradeoff power for speed and vice versa to meet the desired
specifications. To get the best performance, power and speed

Manuscript received August 24, 2001; revised February 25, 2002, July 9,
2002, and March 7, 2003. This paper was recommended by Associate Editor
M. Sarrafzadeh.

C.-W. Chang is with Cadence Design Systems, San Jose, CA 95134 USA
(e-mail: cwchang1@yahoo.com).

M.-F. Hsiao is with the Faraday Technology Corporation, Sunnyvale, CA
94085 USA.

B. Hu, K. Wang, and M. Marek-Sadowska are with the Department of Elec-
trical and Computer Engineering, University of California, Santa Barbara, CA
93106 USA.

C.-K. Cheng is with the Department of Computer Science and Engineering,
University of California, San Deigo, La Jolla, CA 92093 USA.

S.-J. Chen is with the Department of Electrical Engineering, National Taiwan
University, Taipei 106, Taiwan.

Digital Object Identifier 10.1109/TCAD.2003.819904

are considered at various stages of the design cycle, including
architecture, register-transfer level, gate, and layout levels.

Circuit reliability is another emerging design consideration.
Design trends, such as device miniaturization, system-on-a-chip
integration, and higher operating frequencies, increase concerns
about circuit reliability. Hot-carrier effect (HCE) is one of the
major failure mechanisms affecting long-term reliability. As
the device dimensions shrink to the deep submicron ranges, the
electric field in a transistor’s channel increases significantly.
Electrons and holes traveling in the channel may gain high
enough kinetic energy to be injected into the gate oxide and
cause permanent changes in the oxide-interface charge distri-
bution. In an NMOS transistor, HCE leads to transconductance
degradation, shift in the threshold voltage, and decrease in the
drain-current driving capability. The performance degradation
of particular devices leads to degradation in the overall circuit
performance. The transistor degradation behavior is a function
of time, the number of transitions, its fanins’ driving capability,
and geometric dimensions. The effects accumulate while the
device is in operation. As a result, circuits age.

Our proposed rewiring technique will be used to target delay,
power, and reliability optimization specifically at the postplace-
ment level when the gate level netlist is already placed on a two-
dimensional plane. The rationale behind this methodology is
that delay, power, and reliability cannot be determined without
physical information. The optimization effort could be misled
by inaccurate estimation of the objective function. However,
since the placement is already done, optimization techniques
used at this level must not perturb the existing placement so-
lution too much, in order to guarantee timing closure. Buffer in-
sertion and gate sizing are traditionally the only two techniques
that are suitable for this purpose. However, these two techniques
are limited to the existing netlist, not enabling us to explore a
larger solution space by restructuring the logic. In recent years,
rewiring techniques, such as redundancy-addition-and-removal
[11] have been successfully applied at postlayout stages to re-
structure the logic. This technique has the property that only
wires are reconnected without disturbing the existing placement
solution. This important property allows logic changes to be
guided by accurate delay information. Our proposed functional
symmetry-based rewiring technique explores another degree of
freedom compared with the existing techniques.

II. PRELIMINARIES

A Boolean network [1] is a directed acyclic graph (DAG)
, where is the set of vertices and is the set

0278-0070/04$20.00 © 2004 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

CHANG et al.: FAST POSTPLACEMENT OPTIMIZATION USING FUNCTIONAL SYMMETRIES 103

of edges connecting vertices. Let be a vertex in . The (im-
mediate) fanout of is a set of nodes such that there is an
edge from to . Similarly, the (immediate) fanin of is a set
of nodes , such that there is an edge from to . A node is
called an internal node if it is neither a primary input (PI) nor a
primary output (PO). The fanout cone of , or transitive fanout
of , is a set of nodes , such that there exists a directed path
from to . Similarly, the fanin cone of , or transitive fanin of

, is a set of nodes such that there exists a directed path from
to . The terms “vertex” and “node” are used interchangeably.
Each vertex has a function associated with it. Function
maps the Boolean space spanned by its fanins to the space

spanned by its fanouts. In practice, we are interested only in the
case when is a single-output function. All fanouts of are fed
by the same . Even though is a single-output function, the
number of fanouts of can be more than one.

Let be a library of logic gates. A Boolean network is
mapped when the function associated with each vertex is
implemented by a gate from . Otherwise, it is unmapped.
Let be a gate in . An in-pin of is the connector of to
which outputs of other gates can connect. An out-pin of is the
connector that can drive other gates’ in-pins. The logic type of

is denoted type . We do not distinguish between the name
of a gate and its out-pin.

Let be a fanout-free network rooted at . By fanout-free,
we mean that each node inside has only a single fanout. A
path is an alternating sequence of pins and gates such that for
any two consecutive gates the former is driving the latter. For
example, a path starts from the
in-pin of gate and ends at the in-pin of gate . A
path is fanout-free if all gates along the path are fanout-free. An
input to a gate on the path is a side input if the gate driving

is not on the path.
Definition 1: An input-controlling value of an in-pin of a

gate , denoted , is the logic value which, when set at
, uniquely determines the output of regardless of the logic

values on other inputs. An output-controlled value of a gate ,
denoted , is ’s output value when one of its input pins
is set to its input controlling value.

For example, when type NAND, the input-controlling
value of an in-pin of is 0, and output-controlled value of is
1. For buffers and inverters, both 0 and 1 are input-controlling
values, since they uniquely determine the output. The input-con-
trolling value of the in-pins of an exclusive-or (XOR) gate is un-
defined since no logic value at any single input can uniquely
determine the output. In this case, the output controlled value is
also undefined.

Definition 2: An output noncontrolled value of the gate ,
denoted , is the logic value which, when set at the output
of , uniquely implies the logic values at the inputs of . An
input noncontrolling value of an in-pin of , denoted ,
is the logic value inferred when the output of is set to its output
noncontrolled value.

For example, when type NAND, the output noncontrolled
value of is 0, since a 0 at ’s output uniquely implies that all
inputs to have to be set to 1, the input noncontrolling value.
For buffers and inverters, both 0 and 1 are output noncontrolled
values since they also imply the only input’s logic value. The

output noncontrolled value and input noncontrolling values are
undefined for exclusive-or gate.

Logic implication is a process of inferring consistent logic
values based on known logic values. Given a logic value as-
signed at the out-pin of gate , the direction of implication can
be forward or backward, until no more logic values can be in-
ferred. If , all in-pins of can be inferred with
logic value . This process is called direct backward im-
plication. For example, let type AND and . All in-pins
of are inferred with logic value 1. Direct backward implica-
tion stops at a gate when the value assigned at the out-pin
of is not equal to and hence no logic value at the
in-pins of can be further inferred. is the value
set at a pin during direct backward implication.

Let be an ordered list of nodes from a Boolean network. If
for any preceding in is not in the transitive fanout cone
of , then is in a topological order. is in reverse topological
order if for any , in , is not in the transitive fanin cone
of .

We will use the following two types of symmetries.
Definition 3: and are nonequivalence symmetric

(NES) [8] in if and only if . That is,
.

By plugging in all four possible value combinations to
and in the above equation, we can derive the following four
relationships:

The first and fourth relationships are clearly tautological.
Hence, for and to be NES, the cofactors and
have to be equivalent. The name “nonequivalence symmetric”
was derived from the fact that in the second and third relation-
ships, and are of opposite logic values.

Definition 4: and are equivalence symmetric
(ES) [8] in if and only if . That is,

.
Again, we could plug in all four possible value combinations

to and in the above equation and derive the following four
relationships:

This time, the second and third relationships are tautological.
Hence, for and to be ES, the cofactors and
have to be equivalent. The name “equivalence symmetric” was
derived from the fact that in the first and fourth relationships,
and are of the same logic values.

Definition 5: and are symmetric in if they are
either NES or ES in . That is, when the distinction between
NES and ES is not of importance in the context, we use the term
“symmetric” to mean the relationship is either NES or ES.

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

104 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

Detecting symmetry has long been an active area of research
in switching theory. In [16], necessary conditions for the ex-
istence of symmetry in a completely specified Boolean func-
tion are identified using the structural properties of ROBDD [1].
Chang et al. [4] present an extension to handle incompletely
specified functions. In [19], symmetry detection is transformed
into a test generation problem and solved using automatic test
pattern generation (ATPG) techniques.

We briefly review some terminology used in test generation.
After a chip has been designed and fabricated, it must be tested
to determine whether it is working correctly. This is done by ap-
plying input vectors and then capturing and analyzing the output
response. For a sequential circuit, up to vectors may be
tested, where is the number of primary inputs and is the
number of flip-flops. Applying all of the possible input vec-
tors may take too much time. The single stuck-at-fault model
assumes that the physical defects manifest themselves as wires,
which are permanently connected to either V or GND, and
that only one such stuck-at wire exists in a given circuit.

For the single stuck-at-fault model, a wire from a node
to a node could be stuck at either 1 or 0. Let be a

multiple-input multiple-output Boolean function implemented
by a combinational circuit C. The functions and
are implemented by the faulty and good circuits, respectively.
We use the D-notation [21] to represent the fault effect. D (1/0)
means that in the good circuit, the value of a particular wire is
1 whereas in the faulty circuit the value of the same wire is 0.

denotes the opposite case. The fault on is testable if there
exists a primary input vector such that .
That is, the difference between the good and faulty circuits can
be observed at primary outputs when the primary input vector

is applied. When no vector exists, which can distinguish the
faulty circuit from the good one, the fault on is redundant
and can be removed by assigning the constant stuck-at-value on

. The process of finding such a vector through algorithmic
means is called automatic test pattern generation (ATPG). The
processes of test generation and redundancy identification are
known to be NP-hard.

In test generation, each node in the network could assume
one of five different logic values which are 0, 1, , , or unas-
signed. Logic operations work in a bit-wise fashion. For ex-
ample, the logic-OR operation (+) between 1 and D can be de-
termined from the individual operations in the good and faulty
circuits, that is, 1 1 in the good circuit, and 1 0 in the faulty
circuit. The result is 1 in the good circuit, and 1 in the faulty
circuit. In short, . Other operations can be similarly
deduced.

We now reiterate the main results of [19] in the following
lemma.

Lemma 1: Two inputs and are of NES if and only if no
test exists that sets to D, sets to , and propagates D or
to the output of . Furthermore, and are of ES if and only
if no test exists that sets to D, sets to D, and propagates D
or to the output of . Here we assume is represented as a
mapped Boolean network.

Lemma 1 simply conveys Definitions 3 and 4 from the view-
point of test generation. For example, when no D or can prop-
agate to the output of when and , it means the

1

f

0

0

0

(a)

h

1

f

0

0

0

(b)

h

k

k

Fig. 1. h and k are swappable.

function is indistinguishable
from the function , which is
exactly Definition 3. Lemma 1 establishes the link between the
theory of test generation and the traditional definition of func-
tional symmetry.

All previous attempts at symmetry detection have focused on
finding symmetries in the primary inputs of a given function.
Let be a multiple-input, multiple-output
Boolean function defined on repre-
sented by a mapped Boolean network . Also, let be a
single-output subnetwork of and let be the corresponding
Boolean function defined on , where
is a set of internal signals of . Instead of finding symmetries
for , with respect to , we focus on the identification
of symmetries for , with respect to . The number
of detected symmetries increases dramatically since is only a
subfunction of . This analysis forms the basis of our rewiring
technique.

Symmetries detected inside a Boolean network immediately
provide ways to restructure the network for better performance.
In Fig. 1(a), if we know and are symmetric, they can be
swapped without changing the overall circuit functionality. De-
pending on the optimization goal, one of the two circuits might
be better than the other. We now present our approach to detect
functional symmetries inside a Boolean network.

III. DETECTION OF SYMMETRIES IN A NETWORK

In this section, we use the theory of ATPG as a tool for the
proofs. Our algorithm does not use ATPG.

A. Symmetry Detection

Let be a fanout-free network rooted at . Let and be
two in-pins in as illustrated in Fig. 2. Since is fanout-free,
there exists a unique path from to , where p is an in-pin of

. Similarly, there exists a unique path from to , where is
an in-pin of . We use the notation and for
these two paths, respectively. All of the following lemmas and

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

CHANG et al.: FAST POSTPLACEMENT OPTIMIZATION USING FUNCTIONAL SYMMETRIES 105

f

a

b

p

q

Fig. 2. Two unique paths in a fanout-free network.

p
i g

j

p
i gj

(a) (b)

p
j p

j

Fig. 3. (a) AND-OR reachability. (b) XOR reachability.

theorems in this section are considered under the assumption
that the underlying structure is fanout-free. We also assume that

and do not properly contain each other.
Definition 6: Let be an in-pin of a gate and be a

gate in the fanout cone of . is a path
from to . is AND-OR-reachable from , if has an
inferred logic value via direct backward implication when is
set to . is XOR-reachable from if all gates along P
(including) are of type either XOR, INV, or BUF, with at least
one gate of type XOR.

Since an XOR gate has no controlling value, it is clear that
these two definitions are mutually exclusive. That is, if is
AND-OR-reachable from , it cannot be XOR-reachable from .
Also, if is XOR-reachable from , it cannot be AND-OR-reach-
able from .

Fig. 3 illustrates the definition of AND-OR and XOR reacha-
bility. In Fig. 3(a), when the output of is set to 1, it implies

to 1, which further infers a 0 through the inverter. The back-
ward implication ends at with a 1 implied. By definition, we
say is AND-OR reachable from . In Fig. 3(b), the path from

to consists of an XOR gate followed by two XNOR gates.
An XNOR gate can be viewed as an XOR gate followed by an in-
verter. Since all gates on the path are of either XOR or INV, is
XOR-reachable from by definition.

In order to detect symmetries of two pins (,) with respect
to , consider the case when is assigned D and is assigned

. We use to denote the logic value assigned at pin
and value .

Lemma 2: Let be AND-OR-reachable from the gate with
input pin . When value is set to D, it is logically inconsistent
if value is set to . That is, when value is set to D,
value cannot be set to .

Proof: Assume value is assigned . Since is
AND-OR-reachable from , assigning at results in ei-
ther 0 or 1 being implied at , depending on the number of
inversions along the path. This is in conflict with being as-
signed D initially. By contradiction, value cannot be set to

. .
Take Fig. 3(a) as an example. is AND-OR reachable from
. Let a logic value D be set at . At , if we set a logic value

1, which is the input noncontrolling value of the in-pin , it
immediately implies a 1 at . This would contradict the fact

TABLE I
VALUE ASSIGNMENT WHEN type(f)=AND

value(p) value(q) implied
value(f)

satisfies

D D D Condition 1

D D D Condition 1

1 D D Condition 2

1 D D Condition 2

D 1 D Condition 2

D 1 D Condition 2

that a D has already been set at . As a result, when we set a D
at , we cannot set an at the input pin .

Lemma 3: Let be XOR-reachable from gate and
value , value can only be either D or .

Proof: Since and , it is clear that
the propagation of D (or) from can only be inverted along
the path. That is, value is either D or , depending on the
number of inversions and value assignments on the side inputs
along the path; value cannot be assigned to 0 or 1. .

In Lemma 3, whether value is D or depends on the
number of inversions and side input assignments along the path.
Note that this condition differs from that of Lemma 2, where
value is D or depending only on the number of inversions
along the underlying path.

Lemma 4: Consider a fanout-free network rooted at . Let
be neither AND-OR-reachable nor XOR-reachable from gate

and value ; can always be assigned 0 or 1.
Proof: We first assume there exists no XOR gate along the

path . Since is not AND-OR-reachable, direct
backward implication from stops before reaching the pin .
Under the assumption that the underlying structure is fanout-
free, the propagation of D from can always be stopped at the
gate where direct backward implication from stops. Hence

of either 0 or 1 is always justifiable. In the case when
there exists an XOR gate along the path, since is not
XOR-reachable, there exists at least one AND/OR gate along
the path. The propagation of D from can always be stopped
by assigning the side input pin of with . This
assignment is also justifiable because is fanout-free. Hence,

being 0 or 1 is also justifiable. .
We now discuss the conditions on pin and pin such that

a fault effect D or can appear at the output of the gate .
First, when type {AND, OR}, we have the following two
conditions.

Condition 1: Both value and value are D or both are .
Condition 2: One of value and value is assigned their

corresponding input noncontrolling value and the other is D
or .

Table I lists value assignments on pin and such that either a
D or is implied at the output of , when type AND. Other
value assignments, such as value and value , or
value and value , imply constant logic value 0
at the output of .

Second, when type {XOR}, the condition on pin and
pin becomes the following.

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

Condition 3: Only one of value and value is D or ;
the other can be either 0 or 1.

For example, when value and value , the
output at gate is . On the other hand, when Condition 3 is
not satisfied, such as the case when both value and value
are D, the output is a constant logic value.

If Conditions 1 and 2 fail when the type of is either AND

or OR, or Condition 3 fails when is XOR type, there exists no
consistent value assignment that can propagate either a D or ,
to the output of . This situation, by Lemma 1, implies (,)
are symmetric with respect to .

A direct consequence of Lemma 4 is the following.
Lemma 5: Let be neither AND-OR-reachable nor

XOR-reachable from a gate ; then (,) is not symmetric with
respect to .

Proof: When value is set to D, it is always possible
to propagate this value to such that value is either D or

, since the underlying structure T is fanout-free. Whether the
value at is D or depends on the number of inversions along
the path from to . From Lemma 4, we know that value
can be assigned either 0 or 1 when is neither AND-OR-reach-
able nor XOR-reachable from gate . When type AND, we
can assign value to 1, which is the of . Similarly, we
can assign value to 0, when type OR and to either 0 or 1,
when type XOR. In any case, either Condition 2 or Condi-
tion 3 is satisfied and hence (,) is not symmetric with respect
to . .

An important result is stated in the following theorem.
Theorem 1: (,) are symmetric in realized as a

fanout-free network if and only if and are AND-OR-reachable
from the root of or and are XOR-reachable from the root
of .

Proof: The proof of the if part is trivial and, hence,
omitted.

We prove that if (,) are symmetric in , then and are
AND-OR-reachable or XOR-reachable from the root of . From
Lemma 5, we know that if and are not both AND-OR-reach-
able nor XOR-reachable, (,) cannot be symmetric. By the law
of contraposition, we conclude that and are both AND-OR-
reachable or XOR-reachable if (,) are symmetric. .

The importance of Theorem 1 is twofold. First, it expresses
functional symmetry in terms of AND-OR, XOR reachability in a
fanout-free network. Second, it provides the theoretical foun-
dation for an efficient linear time algorithm for symmetry de-
tection. Generally speaking, the condition of AND-OR and XOR

reachability leads to the identification of NES and ES among
the input pins. Knowing NES and ES directly allows us to swap
pins with or without adding inverters. Details of the algorithm
will be presented in the next section.

B. Generalized Implication Supergate (GISG)

To improve the efficiency of the test generation process, im-
plication supergate extraction has been proposed by Tsai et al.
in [24]. The extraction starts by assigning output noncontrolled
value to each of the primary outputs, and direct backward impli-
cations are performed as far as possible. Gates at which impli-
cations stop are called implication supergate roots and are as-

g

1

0

f

Fig. 4. Implication conflicts at the fanout stem.

signed their corresponding output noncontrolling value to start
another round of direct backward implication. The gates that are
reached by the same round of direct backward implication form
an implication supergate rooted at the output of the gate from
which the process has begun. The concept of implication super-
gate is extended in the following definition:

Definition 7: Let T be a fanout-free subnetwork of N rooted
at gate . A GISG of is the set of gates in T that are either
AND-OR-reachable or XOR-reachable from . A gate is covered
by the GISG rooted at if . An in-pin is covered
by a GISG if the gate to which it is attached is covered by the
GISG.

The boundary-in-pins of a GISG are the in-pins covered by
the whose fanins are neither AND-OR-reachable nor
XOR-reachable from the supergate’s root .

Here, the original definition of an implication supergate [24]
has been extended to include XOR gates. Even though the prop-
erty of AND-OR and XOR reachability can cross multiple fanout
points, we restrict GISG to fanout-free regions for the purpose
of keeping symmetry detection easy.

To extract the maximal GISG from a given netlist, we start
from the primary outputs and process each gate in a reverse
topological order. At each primary output, depending on its
gate type, we attempt either direct backward implication or XOR

propagation. Multiple-fanout nodes, or nodes where backward
propagation stops, are treated as new GISG roots, and the
propagation process continues. This procedure stops when all
primary inputs are reached. After the extraction, the network
is uniquely partitioned into AND, OR, and XOR supergates with
inverters and buffers at their pins.

Definition 8: In a GISG network, each gate represents a root
in the extracted network which contains all nodes that are cov-
ered by the same round of backward propagation originating
from this root. A GISG is trivial if it covers only one gate. The
type of a GISG is the same as the type of its root.

During GISG extraction, redundancy can often be easily
found. We show two cases in the following.

• Case 1: backward implication conflicts at a fanout stem
(see Fig. 4)

In this case, we can write the following propositions:

so, and . That is, the
value of f is independent of the value of . This means the
s-a-fault at g is untestable, and hence is redundant.

• Case 2: backward implication does not conflict at a fanout
stem . That is, . So,
one of the fanout stems of is s-a-1 untestable and hence
redundant (see Fig. 5).

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

CHANG et al.: FAST POSTPLACEMENT OPTIMIZATION USING FUNCTIONAL SYMMETRIES 107

g

1

1

f

Fig. 5. Implication agrees at the fanout stem.

IV. SWAPPABLE PINS

Definition 9: Let be an in-pin of and be an in-pin of
in a mapped Boolean network . Assume that the out-pin of
connects to and the out-pin of connects to . If con-

necting to and to does not change the functionality
of , then and are noninverting swappable. If connecting

through an inverter to and through an inverter to does
not change the functionality of , then and are inverting
swappable.

The notion of noninverting and inverting swappable pins
corresponds to NES and ES. When there is no ambiguity, we
use “swappable” to denote both noninverting swappable and
inverting-swappable.

A. Identification of Swappable Pins

The main purpose of the GISG extraction is to explore the
functional symmetry inside a network. Equipped with the infor-
mation of functional symmetry, we can find wires that can be
exchanged without changing the functionality of the network.

Lemma 6: If two in-pins and are covered by the same
GISG rooted at and and do not properly
contain each other, they are swappable.

The reason for the nonproper containment constraint is as fol-
lows. Since the underlying structure is fanout-free, if one path
properly contains the other, it implies that swapping of these
two pins will create loops and hence cause malfunction. Take
Fig. 3(a) as an example. Pins and are covered by the same
GISG rooted at . However, the path from to is properly
contained by the path from to . Swapping of these two pins
will create a cycle in the circuit. In the following, we implicitly
assume that target pins fulfill the nonproper containment con-
straint.

Let the in-pin of a gate is AND-OR-reachable from the
gate . is the value set at during direct back-
ward implication from .

Lemma 7: Let in-pins and both be AND-OR-reachable
from gate . If , then (,)
are inverting swappable. If ,
then (,) are noninverting swappable.

Proof: Assume the output noncontrolling value at is ,
, and . By definition of

direct backward implication, we have

(1)

By the law of contraposition, the above propositions can be
rewritten as

(2)

Without loss of generality, assume and in the
case when . Equation (2) can be written as

(3)

In other words, . This in turn implies
, which is the definition of ES. That

is, when , then (,) are
inverted swappable. Other value combinations of and can
be similarly proved. .

Lemma 8: Let the in-pins and both be XOR-reachable
from the gate ; then and are both inverting and nonin-
verting swappable.

Proof: By applying , , or , ,
the inputs to will always have value combinations such as D
and D, and , or D and , because XOR gates along the path
can never stop the fault effect. In either case, no fault effect can
be seen at the output of the . That is, inputs to XOR-reachable
gates are always both ES and NES. .

Fig. 1(a) shows an GISG rooted at . There,
and . By Lemma 7, we know and are

noninverting swappable. That is, they can be swapped without
introducing inverters. This is shown in Fig. 1(b).

B. Cross-Supergate Swapping

Previous theorems show that pins that are covered by the same
GISG are symmetric and, hence, swappable. Further analysis
shows that groups of pins belonging to different implication su-
pergates may also be swappable.

Definition 10: (DeMorgan transformation on an impli-
cation supergate) Let SG1 be an implication supergate and

{AND, OR}. We define operator DeMorgan (SG1)
as the addition of inverters to all inputs and the output of SG1.

Theorem 2: Let SG1 and SG2 be two implication supergates.
and are the sets of fanins to SG1 and SG2 and

. If the outputs of SG1 and SG2 are sym-
metric and type(SG1) and type {AND, OR},
and are swappable under DeMorgan transformation of
SG1 and SG2.

Proof: Without loss of generality, assume type
AND and type OR. Since output(SG1) and output(SG2)
are symmetric, these two pins are swappable. However, instead
of swapping these two pins, we can connect fanins(SG1) to
DeMorgan(SG2) and connect fanins(SG2) to DeMorgan(SG1).
That is, we make type(DeMorgan(SG2)) equal to type(SG1)
and type(DeMorgan(SG1)) equal to type(SG2). If both SG1 and
SG2 are of the same type, no DeMorgan transform is necessary.
This swapping and transformation procedure clearly preserves
the functionality of the network. .

The example in Fig. 6 shows the process of cross-supergate
swapping.

V. DELAY OPTIMIZATION

Two types of postplacement performance optimizations are
made possible by exploiting GISGs.

• Wire length reduction: Fig. 7(a) shows a set of placed gates
and two signals and coming from geometrically fixed

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

108 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

De Morgan
transform

a
b
c

d

g

g
e
d

g
e
d

e

equivalent
De Morgan

transform
equivalent

b

d
e
g

a

c

circuitcircuit

SG2

SG1

Fig. 6. Cross-supergate swapping.

(a)

a b a b

(b)

g1

g3g2 g2 g3

g1

Fig. 7. Application of swapping.

Fig. 8. Logic-level reduction.

locations. Replacement of gates , , and cannot lead
to better solutions because of the connectivities from other
fixed instances. However, swapping and can clearly re-
duce the wire length. If either net or is critical, reducing
wire length directly contributes to loading reduction. Con-
gestion may also be relieved.

• Logic level reduction: In Fig. 8, let be the late-arriving
signal. Swapping with reduces the number of logic
levels the late signal has to travel and, hence, reduces the
overall delay.

A. Timing Model

We assume that final routing has not been done yet, that only
placement has been completed. Therefore, a net model is nec-
essary to estimate the delay along the interconnect. We adopt
the analytical model proposed in [20]. Assume all pins have
known coordinates after placement. Each net is modeled as a
star: the center of the star is the center of gravity of all its termi-
nals. A net is divided into several segments: from the source to
the star center and from the star center to each sink. Each seg-
ment is modeled by a lumped RC. We use the Elmore model [9]
for delay calculation. Since the distance from the star center to
each sink may vary, each sink may have a different delay from
the source.

We use a load-dependent model for gate delay. The delay
from an input pin to an output pin is

Here, is the load capacitance at the output of a gate , and
is the intrinsic delay from in-pin to the out-pin of , and
is the load-dependent coefficient. Each and has two

values corresponding to the rise and fall transitions, respectively.

B. Problem Formulation and the Algorithm

Timing optimization at postplacement stage is crucial in
today’s very large scale integration design flow. At this stage,
all gates have already been assigned fixed locations. It is
possible to use some logic restructuring techniques to further
speedup the critical path. For example, a certain part of the logic
close to the critical path could be collapsed and technology
mapping could be redone for better performance [1]. These
logic structures are first removed from the existing placement
and then placed back to available slots after resynthesis.
However, there could potentially be many cell overlapping
in the placement that would need to be resolved with an
engineering-change-order (ECO) placer. This would inevitably
introduce undesirable perturbation to the existing placement
because the resynthesis is based on the timing constraints from
that placement.

We consider GISG-based logic restructuring to be best suited
for a postplacement scenario since the restructuring involves
only wire swapping and some inverter insertion. Our goal is
to minimize the maximum arrival time among all primary out-
puts while limiting any perturbation of the existing placement
solution.

We have observed that GISG-based rewiring for performance
optimization is similar to the gate-sizing problem. To use gate-
sizing for performance optimization, each gate in the netlist can
be sized either up or down to its logically equivalent gates from
the technology library. In our case, we first perform generalized
supergate extraction to get a netlist of GISGs. For each GISG, a
set of swappable pins is identified. Each swap can be viewed
as a different library implementation of the GISG. Thus, the
problem of performance-driven GISG-based rewiring is trans-
formed into a gate sizing problem on the GISG netlist. Cross-su-
pergate swapping is not considered in the current formulation
since the occurrences of such supergates is relatively less in the
test suite we used.

Our algorithm is based on the gate-sizing heuristics proposed
by Coudert [6]. The idea is to maximize the minimum slack
through iterative neighborhood search and relaxation. Our
overall algorithm is shown in Fig. 9. The function to the left
labeled is called by the function to the right labeled

as an internal routine. We first discuss the function
. Each gate-resizing and wire-swapping choice is

viewed as a possible move for the optimization and is annotated
with a value called fitness, which is the potential gain in terms
of the cost function in the local neighborhood when the move
is executed. The type of the cost function is specified by an
external variable , which can be either “S” or “TS.” When

, the cost of a neighborhood is defined as the minimum
slack among all nodes in the neighborhood. When ,

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

CHANG et al.: FAST POSTPLACEMENT OPTIMIZATION USING FUNCTIONAL SYMMETRIES 109

Fig. 9. Algorithm for implication supergate-based optimization.

the cost of a neighborhood is defined as the summation of
slacks of all nodes in the neighborhood. While is the
direct target for delay optimization, it has been observed in
[6] that offers a good measure for relaxation. For
each GISG in the netlist, we find the best move based
on the fitness value calculated over the local neighborhood.
For that is trivial, we consider resizing as the set of the
candidate moves. After finding best moves for each , the
algorithm sorts all of the s into a sequence with respect to
their fitness values. A series of best moves is determined by
traversing the sequence of moves. We do not stop at the first
maximum found when traversing the sequence. Instead, we
traverse the whole sequence and determine the best sequence
in order to escape from local optima. This is implemented in
the BestMultipleMoves(N) function. After applying the moves,
the set of gates that are in the neighborhood of the perturbed
gates is put into the update list as candidates for the next
iteration. The function stops when convergence conditions
are met—either the iteration limit has been exceeded or the
improvement is lower than a given threshold.

The second function calls in an iterative
fashion by switching the optimization goal between S and TS. In
the phase, we seek the best move which maximizes the
minimum slack in its neighborhood. In the , the best
move is taken to maximize the summation of all slacks in its
neighborhood. The goal of this phase is to speed up the network
globally and escape from a local minimum. These two phases
iterate until no further improvement is possible [6].

C. Experimental Results

Our prototype tool Rewiring After Placement usIng easily
Detectable Symmetries (RAPIDS) has been implemented on
top of SIS 1.3 [23] and tested on both Microelectronics Center
of North Carolina’91 and International Symposium on Circuits
and Systems’89 benchmark suites. Sequential circuits are

treated as combinational ones with all sequential elements re-
moved. All benchmarks are optimized by SIS script.rugged and
mapped by command “map -n 1 -AFG.” We use a commercial
0.35- m standard cell library consisting of INV, BUF, NAND,
NOR, XOR, and XNOR with number of inputs ranging from 2 to
4. Each type has four different implementations. The mapped
netlist is fed to a commercial timing-driven placer. We set the
required time at primary outputs by taking 80% of the preplace-
ment arrival time. This figure is used as the timing constraint
to the placer. Cell locations are extracted after placement. To
model interconnect, we use 2 pf/cm for unit capacitance and
2.4 cm for unit resistance. All experiments are performed
on a Sun Ultra10 with 128 MB of memory. We do not perform
cross-supergate swapping in our experiment. Also, we do not
utilize the redundancies found during supergate extraction.

To evaluate the effect of using GISG-based rewiring for delay
optimization, three algorithms have been implemented:

• : Use only GISG-based rewiring;
• : Use only gate sizing [6];
• : For gates covered by nontrivial GISGs, use

GISG-based rewiring. Otherwise, consider gate sizing for
that gate. To couple these two choices tightly, our algo-
rithm works on a netlist of extracted GISGs. Each possible
swap in a GISG can be viewed as an electrically different
instance of a functionally equivalent implementation from
a virtual library for this GISG.

Table II shows the results of our experiments. Column 3
shows the initial critical path delay after placement. Columns
4–6 show the delay improvement by , , and ,
respectively. Columns 7–9 show the runtime (in seconds) for
these three algorithms. Columns 10 and 11 show the percentage
of increase/decrease in the area. We consider only the area
taken by gates in the netlist. Column 12 shows the percentage
of gates covered by nontrivial GISGs. On average, 27.6% gates
are covered. Column 13 shows the largest number of inputs
among all GISGs in the netlist. In benchmark , a GISG with

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

TABLE II
TIMING OPTIMIZATION RESULTS

benchmark # of gates

initial
worst
slack
 (ns)

gsg
worst
slack
(%)

GS
worst
slack
(%)

gsg+ GS
worst
slack
(%)

gsg
cpu

GS
cpu

gsg + GS gsg + GS
cpu

(second)(second)(second)

GS
area
 (%)

area
 (%)

gsg
co verage

(%) L # of red.
of

symmetries

alu2 516 7.6 6.9 2.7 9.7 3.5 1.6 6.8 -2.7 -2.1 23.4 9 7 760

alu4 1004 10.2 6.8 8.0 11.1 14.2 4.5 22.5 -3.1 -3.0 27.5 12 14 1827

c432 291 8.6 4.5 1.4 6.8 2.0 0.3 2.9 -1.1 -3.1 49.5 9 6 674

c499 625 6.1 2.8 4.9 10.6 1.7 2.0 5.1 -0.9 +1.2 20.8 3 2 538

c1355 625 6.0 2.3 7.3 10.3 1.4 1.8 6.8 -0.3 +0.9 20.8 3 2 538

c1908 730 9.7 1.5 7.1 7.4 2.9 2.2 11.4 -3.2 -3.4 32.6 8 5 999

c2670 911 7.0 2.6 2.8 8.8 2.6 1.9 4.5 -4.5 -4.5 21.5 20 23 1483

c3540 1809 11.7 2.9 4.2 7.2 13.5 11.2 29.8 -2.4 -2.4 25.4 10 33 3064

c5315 2379 9.8 2.8 5.1 6.5 5.6 13.5 16.3 -2.6 -3.4 25.7 9 103 2977

c6288 5000 34.4 1.4 5.9 7.6 16.5 71.0 103.2 -5.3 -5.8 28.7 3 52 4262

c7552 2565 9.3 1.8 5.1 7.5 5.5 8.5 13.9 -2.8 -2.7 18.3 7 26 2147

i10 3397 15.3 0.1 7.4 11.0 11.3 17.2 44.4 -0.7 -1.3 24.6 11 40 4472

x3 1010 4.8 5.8 9.5 14.2 2.4 3.2 8.6 -2.2 -3.4 27.1 10 46 1227

i8 1229 4.8 3.9 4.5 8.0 10.2 5.6 14.6 -2.4 -2.8 30.5 7 229 2510

k2 1484 6.7 8.0 3.0 10.1 91.2 3.2 59.9 -0.6 -0.7 43.6 43 16 11306

s5378 1811 5.9 2.0 4.8 7.6 5.1 3.7 13.6 -2.9 -2.7 24.4 9 112 2194

s13207 2900 9.7 2.3 6.2 10.2 35.8 8.0 76.2 -2.1 -1.9 27.7 24 90 8032

s15850 4640 12.4 0.1 7.2 8.2 54.1 18.4 135.2 -2.4 -1.8 25.8 20 366 10822

s38417 10090 14.7 0.7 4.8 7.7 81.6 35.4 140.6 0 -0.4 25.8 21 1474 18579

ave. 3.1 5.4 9.0 -2.2 -2.3 27.6

43 inputs exists. Column 14 shows the number of redundancies
found during GISG extraction. The last column shows the
number of symmetries found in each benchmark circuit—a
considerable number of them. The ability to explore such
flexibility suggests a huge potential for optimization.

The results show that GISG-based rewiring and gate-sizing
complement each other. Applying , the total improve-
ment is often larger than the sum of the individual improve-
ments. Our explanation is that or may easily get stuck
in local optima because critical paths often conflict with each
other. On the other hand, and can help extricate each
from local optima by exploring a much larger solution space.

The results also show that the area is often reduced after ei-
ther or . For most benchmarks, achieves
better delay improvement than alone while reducing the
area more. This further confirms our approach of sizing only
gates covered by trivial GISGs. We assume that such minimal
area perturbation can be easily resolved by an ECO placer. Also,
all benchmark runs finish within three minutes of CPU time.

Although in our experiment we resized only gates covered
by trivial supergates, we can also resize gates covered by non-
trivial supergates. This resizing can potentially enlarge the so-
lution space for better performance, a potential that is shaping
the direction of our future study.

VI. DELAY-CONSTRAINED POWER OPTIMIZATION

In this section, we present a delay-constrained power opti-
mization algorithm using functional symmetries. Some power
estimation techniques are reviewed first.

A. Power Model

The average power dissipation in a CMOS gate consists of
three major factors

The first term is the power consumed when charging
and discharging the output load of the gate. It depends on the
output loading capacitance and the toggle rate (number of tran-
sitions per time unit). The second term indicates the short
circuit current during the CMOS gate’s switching. It depends on
the input transition time, internal load, and the toggle rate. The
last term is the power consumed due to the device leakage
current. Since and are more device-related, we need
only consider the optimization of , which is the dominating
factor of [17].

The toggle rate depends on the relative delays of signals prop-
agating through the circuit. A gate can undergo a series of tran-
sitions before settling into a steady state. However, it is compu-
tationally very expensive to determine this effect, as it involves
an event-driven simulator with all timing information taken into
consideration [17]. In order to use the estimation as a subroutine
inside our algorithm, we choose to neglect the effect of glitching
and use a zero-delay model instead.

Najm has introduced the notion of equilibrium probability
and transition density for power estimation [18]. The equilib-
rium probability of a signal , denoted by , is the fraction
of time when is evaluated to logic 1. The transition density of

, denoted by , is the average number of transitions per
unit time. Under spatial and temporal independency assump-
tions, an efficient algorithm was introduced to propagate the

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

CHANG et al.: FAST POSTPLACEMENT OPTIMIZATION USING FUNCTIONAL SYMMETRIES 111

density values from the primary inputs throughout the circuit.
To see how the propagation algorithm works, recall the concept
of Boolean difference: if is a Boolean function that depends
on , then the Boolean difference of with respect to is de-
fined as

Here, represents the Boolean exclusive-or function. The
Boolean difference is the XOR of the positive and negative co-
factors with respect to . Essentially, is the condition
that if there is a transition at , there is a corresponding tran-
sition at . For example, let be a two-input AND gate (i.e.,

). The Boolean difference of with respect to is
. So, when , any transition at

will cause a corresponding transition at .
It has been shown in [18] that under the spatial independency

assumption, the transition density at the output of an -input
function can be calculated by the following:

Intuitively, is the summation of each of the inputs’ tran-
sition densities multiplied by the probability of setting other side
inputs for the propagation of the transition. The overall power
consumption estimation under this measure is then

where is the supply voltage, is the load capacitance
seen from node , and is the total number of nodes in the
circuit.

B. Property of Functional Symmetry

We now analyze the effect of wire swapping on transition
density.

Theorem 3: Let be a function defined over support set
and be of NES (ES) with respect to

variables , . That is, and can be swapped without
(with) adding inverters. Let be the transition density
at after swapping and . Then, the transition density after
the swap will equal the transition density before the swap. That
is, .

Proof: Without loss of generality, we assume is of NES
with respect to variables , . That is,

(4)

The case for ES can be proved similarly. The swap is illus-
trated in Fig. 10.

By definition, the transition density of before swap is

Fig. 10. Swap effect on transition density (a) before swap and (b) after swap.

For simplicity, we denote as the last two terms of .
That is

The new transition density of after the swap is

We denote the last two terms of as
. Observe, that

is now associated with . It is clear that
if and only if . Now, we

proceed by expanding and

Shannon Expansion)

(5)

Shannon Expansion)

(6)

By assumption, and are of NES, so (4) holds. Plugging
(4) into (5) and (6), we obtain . This
result once more proves the equivalence between and

. Finally, we conclude that the new transition density
after the swap is the same as the one before the swap. .

The importance of Theorem 3 is twofold. First, it provides
the theoretical foundation for the effect of symmetric swapping
on transition density. Changes in transition density are guaran-
teed to be bounded inside the associated implication supergate.
Second, at each of the GISG roots, transition densities serve as
a set of fixed points throughout the optimization. As a result,
our algorithm can take a global view of the whole optimization
process. The detailed algorithm will be discussed in the next
section.

C. Algorithm

The algorithm for delay-constrained power optimization is
an extension of the algorithm developed for delay optimization.
Wire swapping contributions to delay-constrained power opti-
mization are as follows.

1) The transition density of gates covered by the same GISG
can potentially be changed. Thus, it is beneficial to lower

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

TABLE III
EXPERIMENTAL RESULTS

† gs-only is unable to reach 10% power reduction.

initial circuit

fixed delay
constraint

fixed power
constraint area change

CPU
(second)

benchmark GS
gsg+
GS GS gsg+GS GS

gsg+
GS GS

gsg+
GS

gates
Delay

(D)
 Power

(P)
Area
(A) %P %P %D %D %A %A

alu2 516 9.1 2104 56526 7.7 -1.3 1.1
alu4 1004 12.6 3844 5111253 2.3 0.2 0.6
C432 291 9.8 1194 31573 2.9 -0.9 -0.7
C499 625 5.8 4740 69992 3.8 2.4 -3.6
C1355 625 5.7 4855 70495 10.5 7.5 -4.2
C1908 730 9.4 3536 79411 8.1 5.5 0.5
C2670 911 6.9 5257 101777 4.5 1.9 -1.2
C3540 1809 12.7 11559 204197 13.2 3.1 0.1
C5315 2379 9.5 16158 267644 6.7 2.1 -4.1
C6288 5000 39.1 167898 584906 7.0 1.2 -10.9
C7552 2565 9.8 15577 286032 7.5 3.3 -2.3

k2 1484 6.7 3087 164329 12.5 0.3 -0.2
i8 1229 6.4 6802 139671 NA† 5.9 0.8
i10 3397 17.4 23341 384827 0.7 -7.9 -2.7

s13207 2900 10.7 13291 329798 2.1 0.1 -4.3
s15850 4640 12.8 28248 536498 1.8 0.9 -4.7
s38417 10090 15.1 82094 1139460 0.1 0.0 -2.0
average 5.7 1.4 -2.2

-8.1
-10.7
-7.5

-10.3
-4.6
-8.2

-11.1
-6.3
-7.2
-7.1
-6.8
-6.6
-6.6

-13.1
-11.4
-10.3
-5.3
-8.3

-12.1
-12.5
-9.3

-15.6
-5.0

-11.3
-13.8
-13.5
-15.9
-25.5
-12.5
-11.9
-10.0
-14.5
-12.7
-11.9
-6.0

-12.6

0.6
1.1
-0.8
-4.0
-1.7
1.0
0.4
0.5
-3.6
-10.1
-1.9
0.5
0.0
-2.6
-3.7
-4.4
-1.6
-1.8

14
27
4

12
14
18
23
53
45
158
48
30
101
701
44
124
732

26
55
7
28
19
21
35
93
79

143
71
74

163
125
106
288
420

the transition density at gates with high loading by wire
swapping.

2) Gate resizing lowers the power consumption at the risk
of delay penalty. When the allowable delay penalty is
reached, no further power reduction is possible.

The solution space for tradeoff can be enlarged by covering the
delay losses with wire swapping, which has been shown to be
good for delay optimization. For GISGs that are nontrivial, we
consider each swap as a possible move. For a trivial GISG, im-
plementations of this gate from the technology library form the
set of possible moves. Hence, a move in our algorithm can be
either gate resizing or wire swapping.

Now, we analyze the effect for each type of move. Basically,
the resizing will affect the slack and power of the
circuit under optimization. In [6], Coudert observed that the ef-
fect on slack tends to be confined within the local neighbor-
hood of the move. Here, we concentrate on the effect of a swap.
The change in slack can be calculated by updating the arrival/re-
quired time in the local neighborhood. The change in power con-
sumption comes from two sources: 1) the loading capacitances
of the swapped pins are changed and 2) the transition densities
of the fanouts of the swapped pins are changed up to the root
of the supergate. This effect can be efficiently calculated by an
event-driven procedure.

We adopted an approach based on a benefit/penalty func-
tion for the delay-constrained power optimization problem by
defining the fitness function of each move as follows:

Fitness
otherwise

where is the change in minimum slack in the local neigh-
borhood, is the change of power consumption of the whole
circuit, and and are predefined constants. A move
is assigned zero fitness value (gain) if the move causes both
the slack and power to become worse. Moves with zero fitness
are immediately discarded. Otherwise, the gain is defined as a
function depending on both and . In general, we want to
choose a move that trades as little to achieve as much as
possible. A move can be either a gate resizing or a wire swap-
ping. They are distinguished only by their fitness values.

The overall algorithm is similar to the one used for delay op-
timization shown in Fig. 9. The cost of the network is redefined
as the primary optimization goal—power consumption. The fit-
ness function defined above is used for delay-constrained power
optimization.

D. Experimental Results

The experimental setting is the same as the one used for delay
optimization. Table III shows the results. The first column lists
the name of each benchmark. Column 2 shows the number of
gates in the mapped netlist. To have a fair comparison with the
gate-sizing-only technique, we preprocess the circuit by mini-
mizing the critical path delay, using only gate sizing. Columns
3–5 show the corresponding delay, power, and area after timing
optimization. Columns 6 and 7 show the corresponding power
reduction for the gate-sizing-only approach and for our hybrid
approach when the delay constraint is set at 5% worse than that
of the preprocessed circuit. To demonstrate the result from an-
other angle, we set the power constraint to be 10% less than

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

CHANG et al.: FAST POSTPLACEMENT OPTIMIZATION USING FUNCTIONAL SYMMETRIES 113

Fig. 11. Power-delay tradeoff curves (a) C3540, (b) C5315, (c) C6288, and (d) alu2.

that of the preprocessed circuit and show the delay tradeoff. The
results for both approaches are shown in Columns 8 and 9, re-
spectively. We also show the percentage of area perturbation and
CPU time (in seconds) when deriving the power-delay tradeoff
curve from Columns 10 to 13. That is, we show the runtime from
the preprocessed circuit with the best possible slack compared
with the circuit with the best possible power reduction. The area
perturbation is reported for the fixed delay experiment.

The results clearly show the benefits of using functional sym-
metry together with gate sizing for postplacement power-delay
tradeoff. In all benchmark runs, the hybrid approach has
achieved better power reduction with less delay penalty.
For example, in benchmark C6288, the gate-sizing-only
approach reduces power by 7.1% at 5% of delay penalty.
At the same delay penalty, the hybrid approach reaches as
much as 25.5% reduction in power consumption. On the other
hand, delay penalties reach 7.0% and 1.2%, respectively, for the
gate-sizing-only and the hybrid approach when the same bench-
mark is reduced to 90% of its original power consumption. This
shows the great potential for applying our approach to trade
lower delay penalty for better power reduction. On average, at
5% delay penalty, our hybrid approach achieves 12.6% power
reduction, as compared with 8.3% of the gate-sizing-only
approach. At 10% power reduction, we tradeoff only 1.4% of
delay, whereas using the gate-sizing-only approach we incur
5.7% delay penalty. In our experiment, we considered only

trivial supergates for resizing. Further improvements are still
possible by relaxing this constraint.

Our approach can potentially explore a much larger solution
space than can be obtained by the gate-sizing-only approach.
This can be seen in the power-delay tradeoff curves in Fig. 11.
It is easily seen from the curves that our hybrid approach can
quickly reach a significant power reduction while incurring only
a very small delay penalty. In Fig. 11(d), the processed bench-
mark alu2 has power level at 2104 and delay at 9.07. Our hy-
brid approach immediately finds a solution with a delay of 8.95,
while consuming the same amount of power. This shows that be-
cause we have a much larger solution space, we can have much
more freedom to trade less delay for more power reduction.

VII. DELAY-CONSTRAINED RELIABILITY OPTIMIZATION

HCEs have been studied extensively in the past few decades
[10], [13], [27]. Efficient techniques for accurate transistor-level
reliability simulations have been implemented in both academic
[25] and commercial tools [3]. However, transistor-level simu-
lations of large industrial circuits are computationally too ex-
pensive to be feasible. A probabilistic approach was proposed
in [14] to estimate the degradation effects on timing. Recently,
a ratio-based gate-level degradation model was proposed in [28]
as a higher level abstraction. Each cell from the technology li-
brary is precharacterized for its degradation behavior under var-
ious stress conditions. For an excellent review, refer to [13].

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

Design-for-reliability (DfR) techniques considering HCEs
fall into two categories. One category includes such techniques
as transistor reordering and resizing [7], technology mapping
[5], and technology-independent factorization [22] to minimize
the maximum hot-carrier degradation effects among all tran-
sistors in the circuit. That is, each transistor in the circuit is
labeled with a relative degradation factor and the optimization
goal is to minimize the maximum of these factors. This goal
targets improvement of the mean-time-to-failure (MTTF)
under the assumption that if any device in the circuit fails, the
whole circuit fails. The other category of techniques includes
the method proposed by Li et al., which performs input pin
reordering and gate resizing [15] to minimize the impact of
performance degradation on the entire circuit. The idea is
that not all devices in the circuit are of equal importance as
far as overall performance is concerned. Devices not on the
critical paths can potentially tolerate more degradation without
affecting the overall performance.

However, all of these techniques operate at the gate/transistor
level without knowledge of the physical layout information,
which has a tremendous impact on device degradation. For
example, input slew rate to a transistor and effective output
switching are identified as the most important factors [12],
[15] determining device degradation. Due to the resistive
behavior of deep submicron interconnects, estimation of slew
rates at the gate level is very inaccurate when the placement
and routing information is unknown. Also, because of the
underlying Boolean functionality, some gates experience more
switching than others. Switching activity cannot be controlled
for optimization purposes without changing the logic structure
of the circuit.

A. Reliability Model

In this section, we first review the ratio-based degradation
model from [26] and [28].

Let and be the fresh and aged pin-to-pin signal
delays. is the aged-to-fresh signal delay ratio which character-
izes the overall pin-to-pin delay degradation of a gate due to the
HCE. These variables are defined for each transition type (rise
or fall) in each signal path of the logic gates. The relationship
between , , and is shown in

(7)

is a value larger than one and can be characterized by the
following equation:

(8)

where is the number of transistors in series and is the
aged-to-fresh delay ratio when only pin is under stress. It is
defined as follows:

(9)

In this equation, is the slew rate of the input pin. is
the load capacitance of the gate output. is the number of
effective switchings of the input pin. By “effective,” we mean
that the input-pin switching leads to an output-pin switching. We
can view as a degradation factor of the th transistor in se-

Fig. 12. Ratio derivation.

ries in the conducting path. Conceptually, slower slew rates can
put transistors in undesirable bias conditions for longer periods
of time, larger load capacitances can stress the transistor longer
during charging and discharging, and more effective switching
can stress the transistors more often. These stresses cause tran-
sistors to wear out more frequently. Function is determined
in the process of transistor level simulation. The results are used
to build a three-dimensional table for later reference.

Equation (8) deserves further explanation. Essentially, it
decouples/simplifies the effect of degradation on the con-
ducting path into individual contributions from transistors
along the path. For example, consider the high-to-low delay of
a two-input NAND gate in Fig. 12(a). As a first-order simplifi-
cation, transistors in series are regarded as resistors in series in
Fig. 12(b). When only M1 switches in the whole lifetime, R1
degrades to with and the delay degradation ratio

can be written as follows:

Fig. 12(c) shows the effect. Similarly, if only transistor M2
switches over the whole lifetime as in Fig. 12(d), can be
written as follows:

Now, after characterizing degradation of each of the indi-
vidual transistors, the effect of both degraded transistors M1 and
M2 along the conducting path can be added [see Fig. 12(e)] and
the resulting is as follows:

This equation is for the case when equals two. When the
number of transistors in a series is , this equation can be gen-
eralized yielding (8). Based on this extended pin-to-pin delay
model, full chip timing/reliability simulation is demonstrated
to be 2 to 4 orders of magnitude faster [28], while accuracy is
within 1% of the transistor-level counterpart.

B. Problem Formulation

Even though large-scale, fast-yet-accurate reliability simu-
lation is feasible, there are no systematic ways to correct the
timing degradation found. In [12], design-for-reliability consid-
erations at circuit level are given as a set of guidelines. Here, we
move one step further by considering the design for reliability
issues at the logic level guided by accurate layout information.
Our main argument is that circuit level consideration by itself
is not adequate. From (9), it is clear that degradation is affected

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

CHANG et al.: FAST POSTPLACEMENT OPTIMIZATION USING FUNCTIONAL SYMMETRIES 115

Fig. 13. Pin position affects delay and reliability.

by three variables: namely, , , and . In a digital
circuit, these three parameters could potentially vary dramati-
cally among different gates. In other words, the stress is uneven.
Some transistors wear out faster than others. For example, be-
cause of the underlying Boolean logic, some gates in the circuit
switch much more frequently than others, and some gates bear
larger loads than others. Circuit-level techniques simply cannot
address all of these phenomena.

We now discuss the effect of gate sizing, pin reordering, and
rewiring on HCE and circuit performance. To improve of
an input pin, the driver of the pin can be sized up for better
driving capability to improve the slew rate. However, a larger
driver causes larger loading on the preceding stage, which
needs to be taken into account in the tradeoff. Rewiring can be
used either to reduce the loading of the driver by minimizing the
interconnect loading, or simply to replace the driver by another
which has better driving capability or which is physically closer
to the sink pin, to reduce the interconnect length. The effective
switching can be changed only by rewiring the netlist.

Another HCE effect concerning the ordering of transistors has
been observed in [12] and [15]. For example, in Fig. 13(a), the
top nMOS transistors that are directly connected to the output
node have the potential of experiencing the most damage if they
switch last. This is because the stress on nMOS transistor is di-
rectly related to (drain-to-source voltage difference). Sup-
pose there is an effective transition on pin (other inputs have
already arrived). When connects to the output node, is
larger than in the case when is closer to the ground. This
effect is due to the charge redistribution on internal nodes. In
Fig. 13(b), when is connected close to the ground and the
other two transistors are conducting, the charge stored at the
output is redistributed to the two internal parasitics. This ef-
fectively lowers the -induced HCE damage on . However,
conventional timing optimization techniques tend to put the last
arriving signal closer to the output node to minimize the overall
arrival time. This tradeoff also needs to be considered during
optimization.

Let and be the nondegraded and de-
graded critical path delays of a design . We formulate the
following problem:

Fresh Delay Constrained Aged Delay Optimization Problem
(FDCADOP): Instance: We assume that we are given a placed
and routed standard-cell design and a hot-carrier degradation,
precharacterized, standard cell library . Let be the family of
the sets of pins that are identified as functionally symmetric and

which can be swapped without changing the overall function-
ality of the design .

Configuration: Each gate can be resized by a
functionally equivalent though electrically different cell from

. Each functionally symmetric pin pair can be swapped
to change the logic structure of . We consider pin reordering
to be a special case of functional symmetry.

Optimization: Let be the new design after gate resizing
and pin swapping from the original design . The goal is to find
a that satisfies the following requirements:

minimize

Essentially, we want to minimize the performance degrada-
tion of the aged design by redistributing the stress to logic ele-
ments that are not on the timing-critical path. However, we are
not willing to sacrifice any performance loss in the fresh design.
We observe that simply optimizing (traditional delay
optimization goal) does not necessarily lead to an optimized so-
lution of . This is because the optimized
might place to unfavorable stress conditions on the transistors
along the critical path. As discussed in the previous section,
various tradeoffs have to be considered simultaneously, and we
need a unified algorithm that takes into account both the perfor-
mance requirement and the aging effect to resolve this situation.
Our algorithm will be detailed in the next section.

C. Algorithm

To solve the FDCADO problem, we adopt a probabilistic ap-
proach based on [18] to estimate the effective switching of
each pin of the gate. Under the spatial and temporal indepen-
dency assumptions, for a pin of gate under zero-delay
model can be expressed as

where is the per-unit time transitions number of the input
pin , is the probability of propagating a transition
from pin to the output of gate , and is the total time period.
We assume that half of the transitions are low-to-high and
half are high-to-low.

The algorithm is very similar to what we have used for delay-
constrained power optimization. We change the fitness function
to:

Fitness
otherwise

where and are the changes of minimum slack
caused by the move in the local neighborhood, defined as gates
within a user-specified level limit from the source of the move.
The upper part of the fitness function defines the situation when
the move degrades both the fresh and aged circuits. This un-
desirable kind of move is assigned zero fitness value, which
means it will never be executed. On the other hand, the expo-
nential dependency on gives priority to

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

TABLE IV
EXPERIMENTAL RESULT

initial PR GS Ours CPU (second)

Circuit
Tfresh

(D)
Taged

(D) %
Taged

(Dí) %
Taged

(Dí) %
Taged

(Dí) %

0.0

-2.1

-0.2

-2.4

0.0

-2.1

-1.5

-0.2

-0.4

-1.0

PR GS Ours

C432 11.0 12.1 -10.4 12.1 -10.2 11.3 -2.6 11.00 1.0 1.4 6.3

17.1

6.0

16.9

15.4

47.5

29.1

104.6

21.3

C499 6.4 7.2 -11.8 7.2 -11.5 6.8 -5.4 6.6 3.2 6.4

C880 10.7 11.3 -6.1 11.1 -4.6 11.0 -2.7 10.7 1.5 4.5

C1355 6.3 7.1 -12.0 7.1 -11.4 6.7 -5.5 6.5 3.2 6.8

C1908 10.4 10.9 -5.1 10.9 -5.1 10.8 -4.4 10.4 2.6 3.8

C3540 14.2 16.0 -12.2 15.8 -11.3 15.0 -5.4 14.5 13.2 19.0

C5315 10.2 11.2 -9.8 11.0 -8.4 10.5 -3.2 10.3 6.8 12.0

C6288 40.4 44.7 -10.5 44.5 -9.9 44.2 -9.3 40.5 18.2 36.4

C7552 10.7 11.5 -7.7 11.5 -7.1 11.0 -2.9 10.7 7.8 10.4

average -9.5 -8.8 -4.6

moves which accelerate both the fresh and aged circuits. Typi-
cally, is chosen to be much larger than to penalize the situ-
ation in which the fresh delay is degraded while the aged delay
is improved.

When designing our algorithm, we intentionally made no as-
sumption about the property of the function in (9). That is,
no matter how is characterized, either by analytical equation,
empirical formula, or simply a table-look-up method, our algo-
rithm still applies. This further demonstrates the robustness of
our approach.

D. Experimental Results

The experimental setting is the same as that in delay and
delay-constrained power optimization. To characterize the cell
library with aging information, we use the transistor level aging
simulator BERT [25] together with HSPICE and verify it with
analytical equations obtained from [13] for an ten-year period.
We characterize the aging effect only on NMOS transistors since
the degradation of PMOS transistors is relatively negligible [13]
for the technology we are using.

Three algorithms have been implemented to show their rel-
ative strength in optimizing the aged circuit under fresh delay
constraint: 1) pin reordering; 2) gate sizing; and 3) a hybrid
approach discussed in the previous section. Experimental re-
sults are shown in Table IV. The first column lists the name
of each benchmark. The second and third columns show the
fresh and aged delays of the original circuit after placement.
This fresh delay is used as the timing constraint for the aged cir-
cuit optimization. Column 4 is the percentage of performance
degradation due to circuit aging. Columns 5 and 6 show the
aged delays after pin reordering and the corresponding degra-
dation percentages as compared with the original fresh delay.
Columns 7 and 8 show the aged delays after gate sizing and
the corresponding degradation percentages. Column 9 shows
the aged delays after our hybrid approach, and column 10 gives
the degradation percentages compared with the original fresh
delay. Columns 11–13 show the CPU times in seconds for pin
reordering, gate sizing, and our approach, respectively.

The results clearly show the advantage of considering logic
restructuring in combination with traditional techniques. On
an average, the percentage of degradation can be lowered to
be within 1% of the original fresh delay using our technique,
whereas pin reordering and gate sizing result in degradation of
8.8% and 4.6%, respectively. The percentage of area change
caused by gate sizing is within 3% and is assumed to be
amenable to corrections by an ECO placer.

VIII. CONCLUSION AND FUTURE WORK

Combining the theory of functional symmetry, ATPG, and
supergates, we have developed a unified framework for sym-
metry identification in Boolean networks. Application for post-
placement delay optimization has also been demonstrated. On
average, the generalized gate sizing proposed here achieves 9%
timing improvement at a very low computational cost and min-
imum perturbation of the existing placement solution.

Postplacement delay-constrained power optimization is also
studied. Theoretical results on the use of functional symmetry
and its effect on transition density are formally stated. With the
GISG roots serving as fixed transition density points during the
logic restructuring, we have developed a restructuring approach
that takes a much more global view than existing greedy restruc-
turing approaches. Our technique can be distinguished from the
existing techniques in several aspects.

1) Instead of trying to globally change the transition den-
sity of the circuit, it keeps a set of fixed transition den-
sity points. This enables wire swapping to cover the delay
losses when optimizing for power in a global fashion.

2) Performing optimization at postplacement stage allows us
to accurately model the interconnect-induced delay and
carefully trade it for power.

Even though we use transition density based on [18] as our pri-
mary means for power estimation, our approach is not limited to
it. Other estimation techniques, such as simulation or symbolic

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

CHANG et al.: FAST POSTPLACEMENT OPTIMIZATION USING FUNCTIONAL SYMMETRIES 117

techniques, can be used for better accuracy. Experimental re-
sults show that our technique achieves much better power-delay
tradeoff when compared with the gate-sizing-only approach. At
postlayout stage, trading as little delay penalty as possible for
large power reduction is very important, as any delay penalty
might lead to failure to meet the performance target.

A timing optimizer targeting directly the circuit-aging be-
havior is also proposed. Combining functional symmetry based
on rewiring, pin reordering, and gate sizing, our approach shows
much better results than the individual traditional approaches.
On the average, we can minimize the impact of circuit aging to
be within one percent of the original design specification.

In [11], a combined buffer insertion and redundancy-
addition-and-removal (RAR) technique is proposed for post-
layout performance optimization. Supergate-based rewiring,
gate sizing, RAR, and buffer insertion can naturally be inte-
grated to form a powerful back-end optimization flow with
minimum perturbation on the current placement solution. As
designs migrate to the deep submicron technologies, the ability
to perform incremental logic restructuring after placement
becomes extremely important. Our integrated technique shows
great promise for solving the timing closure problem.

REFERENCES

[1] R. Brayton, G. Hachtel, and A. Sangiovanni-Vincentelli, “Multilevel
logic synthesis,” Proc. IEEE, vol. 78, pp. 264–300, Feb. 1990.

[2] R. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Computers, vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[3] BTA Technology. [Online] Available: http://www.btat.com.
[4] C.-W. Chang and M. Marek-Sadowska, “Finding maximal symmetric

groups of variables in incompletely specified Boolean functions,” in
Notes Int. Workshop Logic Synthesis, 1999.

[5] Z. Chen and I. Koren, “Technology mapping for hot-carrier reliability
enhancement,” Proc. SPIE, vol. 3216, pp. 42–50, 1997.

[6] O. Coudert, “Gate sizing for constrained delay/power/area optimiza-
tion,” IEEE Trans. VLSI, vol. 5, pp. 465–472, Dec. 1997.

[7] A. Dasgupta and R.Ramesh Karri, “Hot-carrier reliability enhancement
via input reordering and transistor sizing,” in Proc. Design Automation
Conf., 1996, pp. 819–824.

[8] C. R. Edwards and S. L. Hurst, “A digital synthesis procedure under
functional symmetries and mapping methods,” IEEE Trans. Comput.,
vol. C-27, pp. 985–997, Nov. 1978.

[9] W. C. Elmore, “The transient response of damped linear network with
particular regard to wideband amplifier,” J. Appl. Phys., vol. 19, pp.
55–63, 1948.

[10] C. Hu et al., “Hot-electron-induced MOSFET degradation—model,
monitor, and improvement,” IEEE. Trans. Electron Devices, vol.
ED-32, pp. 375–385, Feb. 1985.

[11] Y.-M. Jiang, A. Krstic, K.-T. Cheng, and M. Marek-Sadowska, “Post-
layout logic restructuring for performance optimization,” in Proc. De-
sign Automation Conf., 1997, pp. 662–665.

[12] Y. Leblebici, “Design considerations for CMOS digital circuits with im-
proved hot-carrier reliability,” IEEE J. Solid-State Circuits, vol. 31, pp.
1014–1024, July 1996.

[13] Y. Leblebici and S.-M. Kang, Hot-Carrier Reliability of MOS VLSI Cir-
cuits. Norwell, MA: Kluwer, 1993.

[14] P.-C. Li, G. I. Stamoulis, and I. N. Hajj, “A probabilistic timing approach
to hot-carrier effect estimation,” IEEE Trans. Computer-Aided Design,
vol. 13, pp. 1223–1234, Oct. 1994.

[15] P.-C. Li and I. N. Hajj, “Computer-aided redesign of VLSI circuits for
hot-carrier reliability,” IEEE Trans. Computer-Aided Design, vol. 15,
pp. 453–464, May 1996.

[16] D. Moller, J. Mohnke, and M. Weber, “Detection of symmetry of
Boolean functions represented by ROBDDs,” in Proc. Int. Conf.
Computer-Aided Design, 1993, pp. 680–684.

[17] F. N. Najm, “A survey of power estimation techniques in VLSI circuits,”
IEEE Trans. VLSI Syst., vol. 2, pp. 446–455, Dec. 1994.

[18] , “Transition density: A new measure of activity in digital circuits,”
IEEE Trans. Computer-Aided Design, vol. 12, pp. 310–323, Feb. 1993.

[19] I. Pomeranz and S. M. Reddy, “On determining symmetries in inputs
of logic circuits,” IEEE Trans. Computer-Aided Design, vol. 13, pp.
1428–1434, Nov. 1994.

[20] B. M. Riess and G. G. Ettlt, “Speed: Fast and efficient timing driven
placement,” in Proc. Int. Symp. Circuits Syst., 1995, pp. 377–380.

[21] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,”
IBM J. Res. Develop., vol. 10, pp. 278–291, July 1996.

[22] K. Roy and S. Prasad, “Logic synthesis for reliability: An early start to
controlling electromigration & hot-carrier effects,” IEEE Trans. Relia-
bility, vol. 44, pp. 251–255, June 1995.

[23] “SIS: A system for sequential circuit synthesis,” Univ. California,
Berkeley, Report M92/41, May 1992.

[24] K.-H. Tsai, R. Tompson, J. Rajski, and M. Marek-Sadowska, “STAR-
ATPG: A high speed test pattern generator for large scan designs,” in
Proc. Int. Test Conf., 1999, pp. 1021–1030.

[25] R. H. Tu et al., “Berkeley Reliability Tools—BERT,” IEEE Trans. Com-
puter-Aided Design, vol. 12, pp. 1524–1534, Oct. 1993.

[26] L. Wu et al., “Glacier: A hot carrier gate level circuit characterization
and simulation system for VLSI design,” in Proc. Int. Symp. Quality
Electron. Design, 2000, pp. 73–79.

[27] P. Yang and J.-H. Chern, “Design for reliability: The major challenge for
VLSI,” Proc. IEEE, vol. 81, pp. 730–744, May 1993.

[28] H. Yonezawa et al., “Ratio based hot-carrier degradation modeling for
aged timing simulation of millions of transistors digital circuits,” in
Proc. Int. Electron Devices Meeting, 1998, pp. 93–96.

Chih-Wei (Jim) Chang received the B.S. degree
in electronics engineering from the National
Chiao-Tung University, Hsinchu, Taiwan, in 1993
and the M.S. and Ph.D. degrees in electrical
and computer engineering from the University
of California, Santa Barbara, in 1998 and 2001,
respectively.

From 1993 to 1995, he was a Tactical Control Of-
ficer in the Army Missile Corporation. In 1995, he
was a Lead Teaching Assistant in the Microcomputer
Lab, Department of Computer and Information Sci-

ence, National Chiao-Tung University, Taiwan. From 1996 to 2001, he was
a Graduate Student Researcher in the VLSI Design Automation Lab, Depart-
ment of Electrical and Computer Engineering, University of California, Santa
Barbara. He was with Silicon Graphics Inc., Mountain View, CA, in Summer
1997, Mentor Graphics Corporation, San Jose, CA, in Summer 1999, and the
Strategic Computer-Aided Design Lab, Intel Corporation, Hillsboro, OR, in
Summer 2000. He joined Plato Design Systems, San Jose, CA, in 2001. He is
currently with Cadence Design Systems at San Jose, CA. His research interests
include logic synthesis, timing analysis, signal integrity, and physical design,
with special emphasis on layout-driven logic restructuring and optimization.

Ming-Fu Hsiao received the B.S. degree in electrical
engineering from Chung-Yuan University, Taiwan,
in 1990 and the M.S. and Ph.D. degrees in electrical
engineering from the National Taiwan University,
Taipei, Taiwan, in 1992, and 2003 respectively.

Since 1997, he has been with Faraday Technology
Corporation, where he is currently a Senior Technical
Manager. In 2001, he was a Visiting Scholar in the
Department of Electrical and Computer Engineering,
University of California, Santa Barbara. His current
research interests include very large scale integration

physical design automation, system-on-a chip design methodology, and signal
integrity problem.

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 1, JANUARY 2004

Bo Hu received the B.S. degree in electrical engi-
neering from Tsinghua University, Beijing, China, in
1999 and the M.S. degree in computer engineering, in
2002, from University of California, Santa Barbara,
where he is currently pursuing the Ph.D. degree in
computer engineering.

Since 1999, he has been a Graduate Student
Researcher with the VLSI Design Automation Lab,
Department of Electrical and Computer Engineering,
University of California, Santa Barbara. He was
with Quick Logic Corporation, Sunnyvale, CA, in

2000, with Verplex Systems Inc., Milpitas, CA, in 2001, and with Cadence
Berkeley Labs, Berkeley, CA, in 2002 as a Summer Intern. His current research
interests include logic optimization, technology mapping, physical design and
programmable fabrics.

Mr. Hu is a Student Member of the Association for Computing Machinery.

Kai Wang received the B.S degree in electronic en-
gineering from Tsinghua University, Beijing, China,
in 1999 and the M.S. degree in computer engineering,
in 2002, from the University of California, Santa Bar-
bara, where he is working toward the Ph.D. degree in
computer engineering.

His research interests are in the area of computer-
aided design of very large scale integration, with an
emphasis on power-supply noise analysis and opti-
mization, floor planning, and clock synthesis.

Malgorzata Marek-Sadowska (M’87–SM’95–
F’97) received the M.S. degree in applied mathe-
matics and the Ph.D. degree in electrical engineering
from the Technical University of Warsaw, Warsaw,
Poland, in 1971 and 1976, respectively.

From 1976 to 1982, she was an Assistant Professor
with the Institute of Electron Technology, Technical
University of Warsaw. She became a Research Engi-
neer in the Electronics Research Laboratory, Univer-
sity of California, Berkeley, in 1982 and continued
there until 1990, when she became a Professor in the

Department of Electrical and Computer Engineering, University of California,
Santa Barbara.

Prof. Marek-Sadowska was the Editor-In-Chief of IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS from 1993
to 1995.

Chung-Kuan Cheng (S’82–M’84–SM’95–F’00)
received the B.S. and M.S. degrees in electrical en-
gineering from National Taiwan University, Taipei,
Taiwan, in 1976 and 1978 and the Ph.D. degree in
electrical engineering and computer sciences from
University of California, Berkeley, in 1984.

From 1984 to 1986, he was a Senior Computer-
Aided Design Engineer at Advanced Micro Devices
Inc. In 1986, he joined the University of California,
San Diego (UCSD), where he is a Professor in the
Computer Science and Engineering Department and

an Adjunct Professor in the Electrical and Computer Engineering Department.
He served as a Chief Scientist at Mentor Graphics in 1999. His research interests
include network optimization and design automation of microelectronic circuits.

Prof. Cheng was an Associate Editor of IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS from 1994 to 2003. He
is a recipient of the IEEE Transactions on Computer-Aided Design Best Paper
Awards in 1997 and 2002, the NCR Excellence in Teaching Award, School of
Engineering, UCSD, 1991.

Sao-Jie Chen received the B.S. and M.S. degrees
in electrical engineering from the National Taiwan
University, Taipei, Taiwan, in 1977 and 1982,
respectively, and the Ph.D. degree in electrical
engineering from the Southern Methodist University,
Dallas, Texas, in 1988.

Since 1982, he has been a member of the faculty in
the Department of Electrical Engineering, National
Taiwan University, where he is currently a Full Pro-
fessor. During the Fall of 1999, he was a Visiting
Scholar in the Department of Computer Science and

Engineering, University of California, San Diego. During the Fall of 2003, he
held an Academic Visitor position in the Department of System Level Design,
IBM T. J. Watson Research Center, Yorktown Heights, NY. His current research
interests include very large scale integration physical design automation, wire-
less LAN and bluetooth IC design, and system-on-a-chip hardware/software
codesign.

Dr. Chen is a Member of the Chinese Institute of Engineers and the Associa-
tion for Computing Machinery, and a Senior Member of the IEEE Circuits and
Systems and the IEEE Computer Societies.

Authorized licensed use limited to: National Taiwan University. Downloaded on February 3, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

