行政院國家科學委員會專題研究計畫 成果報告

代數性導算其常數之質根

<u>計畫類別</u>: 個別型計畫 <u>計畫編號</u>: NSC93-2115-M-002-014-<u>執行期間</u>: 93 年 08 月 01 日至 94 年 07 月 31 日 執行單位: 國立臺灣大學數學系暨研究所

計畫主持人: 莊正良

報告類型: 精簡報告

<u>處理方式:</u>本計畫可公開查詢

中 華 民 國 94年11月14日

DERIVATIONS AND SKEW POLYNOMIAL RINGS

Chen-Lian Chuang and Tsiu-Kwen Lee Department of Mathematics, National Taiwan University Taipei 106, Taiwan E-mail: chuang@math.ntu.edu.tw E-mail: tklee@math.ntu.edu.tw

Abstract. Let R be a prime ring and d a derivation of R. In the ring of additive endomorphisms of the abelian group (R, +), let S be the subring generated by $a_L d^m$, where $a \in R$ and $m \ge 0$ and where $a_L : x \in R \mapsto ax \in R$ for $a \in R$. We compute the prime radical and minimal prime ideals of S via the skew polynomial ring R[x; d] by the surjective ring homomorphism

$$\varphi: \sum_{i=0}^{n} a_i x^{n-i} \in R[x;d] \mapsto \sum_{i=0}^{n} (a_i)_L d^{n-i} \in S.$$

We compute explicitly the kernel \mathcal{A} of φ , the prime radical \mathcal{P} over \mathcal{A} and minimal prime ideals over \mathcal{A} (Theorem 2). We obtain a necessary and sufficient condition for S to be simple, prime or semiprime (Corollary 3). As an application, let d be nilpotent. We show that the d-extension of R defined in [6] is canonically isomorphic to the quotient ring of S modulo its prime radical (Corollary 14).

1

2000 Mathematics Subject Classification. 16W25, 16S36, 16N60.

Key words and phrases. Prime ring, Martindale quotient ring, skew polynomial ring, algebraic derivation.

Members of Mathematics Division, National Center for Theoretical Sciences at Taipei. Corresponding author: Tsiu-Kwen Lee

1. Results

Throughout this paper, R is always a prime ring, *not* necessarily with 1, and d is a derivation of R. Additive endomorphisms of the abelian group (R, +) form a ring End (R, +) under the pointwise addition and the composition multiplication. Obviously, $d \in \text{End} (R, +)$. For $a \in R$, let $a_L \in \text{End} (R, +)$ be the left multiplication by a defined by $a_L: x \in R \mapsto ax \in R$. Let S be the subring generated by $a_L d^m$,

1

where $a \in R$ and $m \ge 0$ are arbitrary. If R possesses 1 then S is the ring generated by d and a_L , $a \in R$. We compute the prime radical and minimal prime ideals of S as follows: Let R[x; d] be the skew polynomial ring with the multiplication rule: xr = rx + d(r) for $r \in R$. Since $da_L = d(a)_L + a_L d$ for $a \in R$, the map

$$\varphi: a_0 x^n + \dots + a_{n-1} x + a_n \in R[x; d] \mapsto (a_0)_L d^n + \dots + (a_{n-1})_L d + (a_n)_L \in S$$

defines a surjective ring homomorphism from R[x; d] onto S. Let \mathcal{A} denote the kernel of φ . The ring S is then isomorphic to the quotient ring $R[x; d]/\mathcal{A}$ and the prime radical of S corresponds to the ideal \mathcal{P} of R[x; d] such that $\mathcal{P} \supseteq \mathcal{A}$ and such that \mathcal{P}/\mathcal{A} is the prime radical of $R[x; d]/\mathcal{A}$. We call \mathcal{P} the prime radical of R[x; d] over \mathcal{A} . We call an ideal \mathcal{I} of R[x; d] prime over \mathcal{A} if $\mathcal{I} \supseteq \mathcal{A}$ and if \mathcal{I}/\mathcal{A} is a prime ideal of $R[x; d]/\mathcal{A}$. Our aim is to describe explicitly the ideals \mathcal{A} , \mathcal{P} and also minimal prime ideals over \mathcal{A} in the ring R[x, d]. Notations introduced above will be retained throughout.

Let $R_{\mathcal{F}}$ and Q denote respectively the left Martindale quotient ring and the symmetric Martindale quotient ring of R. The center C of $R_{\mathcal{F}}$ coincides with the center of Q and is called the extended centroid of R. We refer these notions to [2] or [13] for details. It is well-known that d can be uniquely extended to a derivation of Q and also of $R_{\mathcal{F}}$, which we also denote by d. We thus form the skew polynomial ring $R_{\mathcal{F}}[x;d]$, which forms an overring of R[x;d] in a natural way. Given f(x) in the center of $R_{\mathcal{F}}[x;d]$, we define

$$\langle f(x) \rangle \stackrel{\text{def.}}{=} R[x;d] \cap f(x) R_{\mathcal{F}}[x;d]$$

= { $g(x) \in R[x;d] \mid g(x) \text{ is a multiple of } f(x) \text{ in } R_{\mathcal{F}}[x;d]$ }.

We will show that \mathcal{A}, \mathcal{P} and all minimal prime ideals over \mathcal{A} are of the form $\langle f(x) \rangle$ for some central elements $f(x) \in R_{\mathcal{F}}[x;d]$. We also want to compute these central elements f(x) explicitly. For this purpose, we must investigate the center of $R_{\mathcal{F}}[x;d]$. Fortunately, this has been completely done in [14]. But we need some more notions given in the following to restate it.

Given $b \in R$, the map $\operatorname{ad}(b): r \in R \mapsto [b, r] \stackrel{\text{def.}}{=} br - rb$ obviously defines a derivation, called the inner derivation defined by the element b. We call a derivation outer if it is not of this form. If a derivation of R extends to an inner derivation of $R_{\mathcal{F}}$, say $\operatorname{ad}(b)$, where $b \in R_{\mathcal{F}}$, we see easily that $b \in Q$. A derivation of R is called X-inner if its extension to $R_{\mathcal{F}}$ (or to Q) is inner, that is, it is of the form $r \in R \mapsto [b, r]$ for some $b \in Q$. We call a derivation X-outer if it is not X-inner. Given a subset S of $R_{\mathcal{F}}$, the set of constants of d on S, denoted by $S^{(d)}$, is defined by

 $S^{(d)} \stackrel{\text{def.}}{=} \{r \in S \mid d(r) = 0\}$. Particularly, $C^{(d)} = \{\alpha \in C \mid d(\alpha) = 0\}$. We are ready to cite the following elegant result.

Theorem 1 (Matczuk [14]). The center of $R_{\mathcal{F}}[x;d]$ is equal to the center of Q[x;d]and can be described as follows:

(1) Assume char R = 0. If d + ad(b) = 0 for some $b \in R_{\mathcal{F}}$, then the center of $R_{\mathcal{F}}[x;d]$ is equal to $C^{(d)}[\zeta]$, where $\zeta \stackrel{\text{def.}}{=} x + b$. If there is no such $b \in R_{\mathcal{F}}$, then the center of $R_{\mathcal{F}}[x;d]$ is merely $C^{(d)}$.

(2) Assume char R = p > 0. If there exists $b \in R_{\mathcal{F}}^{(d)}$ and $\alpha_1, \dots, \alpha_s \in C^{(d)}$ such that

(1)
$$d^{p^s} + \alpha_1 d^{p^{s-1}} + \dots + \alpha_s d + \operatorname{ad}(b) = 0,$$

then we let (1) be the one with s as minimal as possible and set

$$\zeta \stackrel{\text{def.}}{=} x^{p^s} + \alpha_1 x^{p^{s-1}} + \dots + \alpha_s x + b$$

The center of $R_{\mathcal{F}}[x;d]$ is equal to $C^{(d)}[\zeta]$. If there is no such expression (1), then the center of $R_{\mathcal{F}}[x;d]$ is merely $C^{(d)}$.

We call the derivation d left algebraic over $R_{\mathcal{F}}$ or left $R_{\mathcal{F}}$ -algebraic for short, if there exist $0 \neq b_0, b_1, \dots, b_{n-1} \in R_{\mathcal{F}}$ such that

$$b_0 d^n(r) + b_1 d^{n-1}(r) + \dots + b_{n-1} d(r) = 0$$

for all $r \in R$. If all $b_i \in R$ (or all $b_i \in C$ respectively), then we say that d is left Ralgebraic (or C-algebraic respectively). It is easy to see that the left $R_{\mathcal{F}}$ -algebraicity, the left R-algebraicity and the C-algebraicity of a derivation d are all equivalent. If d is not left R-algebraic, then $\mathcal{A} = 0$ and S is isomorphic to R[x; d]. Since the ring R[x; d] is prime, we have $\mathcal{P} = 0$ and the only minimal prime ideal over \mathcal{A} is $\{0\}$. There is nothing to prove in this case. We hence assume that our derivation d is left R-algebraic or, equivalently, left $R_{\mathcal{F}}$ -algebraic. Our main theorem is as follows:

Theorem 2. Let R be a prime ring and let d be a left R-algebraic derivation of R. Let ζ , b be as described in Theorem 1. Let $\mu(\lambda)$ be the minimal polynomial of b over $C^{(d)}$. Then the following hold:

(1) $\mathcal{A} = \langle \mu(\zeta) \rangle.$

(2) We factorize $\mu(\lambda)$ into the product of monic irreducible factors in $C^{(d)}[\lambda]$: $\mu(\lambda) = \pi_1(\lambda)^{n_1}\pi_2(\lambda)^{n_2}\cdots\pi_k(\lambda)^{n_k}$. Then $\mathcal{P} = \langle \pi_1(\zeta)\pi_2(\zeta)\cdots\pi_k(\zeta) \rangle$ and minimal prime ideals of R[x;d] over \mathcal{A} are $\langle \pi_s(\zeta) \rangle$, $s = 1, \cdots, k$. An ideal I of R is d-invariant if $d(I) \subseteq I$. Obviously, R has two d-invariant ideals R and $\{0\}$, which we call trivial d-invariant ideals. We have the following:

Corollary 3. In the notations of Theorem 1, we have the following:

(1) The ring S is semiprime if and only if the minimal polynomial of b over $C^{(d)}$ has no square factors.

(2) The ring S is prime if and only if the minimal polynomial of b over $C^{(d)}$ is irreducible.

(3) The ring S is simple if and only if R has no nontrivial d-invariant ideals and the minimal polynomial of b over $C^{(d)}$ is irreducible.

Before proceeding to the proof of Theorem 2, let us compute explicitly the ζ of Theorem 1 for a left *R*-algebraic derivation *d*: We apply Kharchenko's theorem [11, Corollaries 2 and 3]. If char R = 0, then $d + \operatorname{ad}(b) = 0$ for some $b \in R_{\mathcal{F}}$ and we set $\zeta \stackrel{\text{def.}}{=} x + b$. If char R = p > 0, then d, d^p, d^{p^2}, \ldots are *C*-dependent modulo X-inner derivations. Let $s \geq 0$ be the minimal integer such that

$$d^{p^s}, d^{p^{s-1}}, \cdots, d^p, d$$

are C-dependent modulo X-inner derivations. By the minimality of s, there exist $\alpha_i \in C$ and $b \in Q$ such that

(2)
$$d^{p^s} + \alpha_1 d^{p^{s-1}} + \dots + \alpha_s d + \operatorname{ad}(b) = 0.$$

By the minimality of s again, we see easily that $d(\alpha_i) = 0$ and $d(b) \in C$. We divide our discussion into two cases:

Case 1. $d(b) \in d(C)$: Say, $d(b) = d(\alpha)$, where $\alpha \in C$. Then $d(b - \alpha) = 0$. Since b and $b - \alpha$ define the same X-inner derivation, we may replace b by $b - \alpha$ and assume that d(b) = 0. So we have

$$\zeta = x^{p^s} + \alpha_1 x^{p^{s-1}} + \dots + \alpha_s x + b.$$

Case 2. $d(b) \notin d(C)$: Since $d(\alpha_i) = 0$, all left multiplications $(\alpha_i)_L$ commutes with d. Since $d(b) \in C$, we have for $r \in R$,

$$d(\mathrm{ad}(b)(r)) = d([b,r]) = [d(b),r] + [b,d(r)] = [b,d(r)] = \mathrm{ad}(b)(d(r)).$$

So ad(b) also commutes with d. Using this commutativity and noting $(ad(b))^p = ad(b^p)$, we raise both sides of (2) to the *p*-th power. This gives the equality:

$$d^{p^{s+1}} + \alpha_1^p d^{p^s} + \dots + \alpha_s^p d^p + \operatorname{ad}(b^p) = 0.$$

Obviously, $d(b^p) = pb^{p-1}d(b) = 0$. So we have $\zeta = x^{p^{s+1}} + \alpha_1^p x^{p^s} + \dots + \alpha_s^p x^p + b^p$.

The differential identity (2) of R also vanishes on $R_{\mathcal{F}}$ [12, Theorem 2]. In particular, the evaluation of (2) on C shows that the restriction of d to C is C-algebraic. In view of [1, Theorem 1], C is finite-dimensional over $C^{(d)}$. The left $R_{\mathcal{F}}$ -algebraicity of d implies the left $R_{\mathcal{F}}$ -algebraicity of ad(b) and the latter implies the C-algebraicity of b. In view of the finite-dimensionality of C over $C^{(d)}$, we see that b is $C^{(d)}$ -algebraic. We summarize what we have shown in the following:

Lemma 4. Let d be a left $R_{\mathcal{F}}$ -algebraic derivation and let ζ be as described in Theorem 1. If char R = 0, then $d + \operatorname{ad}(b) = 0$ for some $b \in Q$ and $\zeta = x + b$. If char $R = p \ge 2$, then there exists the minimal integer $s \ge 0$ such that

$$d^{p^s} + \alpha_1 d^{p^{s-1}} + \dots + \alpha_s d + \operatorname{ad}(b) = 0$$

for some $\alpha_i \in C^{(d)}$ and $b \in Q$ with $d(b) \in C$. In the case of $d(b) \in d(C)$, we may choose $b \in Q^{(d)}$ and $\zeta = x^{p^s} + \alpha_1 x^{p^{s-1}} + \dots + \alpha_s x + b$. In the case of $d(b) \notin d(C)$, we have $b^p \in Q^{(d)}$ and $\zeta = x^{p^{s+1}} + \alpha_1^p x^{p^s} + \dots + \alpha_s^p x^p + b^p$. Moreover, b above is always $C^{(d)}$ -algebraic.

To prove Theorem 2, we need another important result from [14], which, unfortunately, is not explicitly stated in [14]. For our purpose, we formulate it in the following form but refer its proof to [5, Lemma 1.3], [14] or [15, Theorem 3.3]. Although the ring R is assumed unital in [5, 14, 15], we can modify their proofs to our case that prime rings are not necessarily with an identity element.

Theorem 5 (Matczuk). Given an ideal $\mathcal{I} \neq 0$ of R[x; d], there exist an ideal $I \neq 0$ of R and a unique monic polynomial f(x) in the center of $R_{\mathcal{F}}[x; d]$ such that $If(x) \subseteq \mathcal{I} \subseteq \langle f(x) \rangle$.

Following [5], we call call f(x) above the *canonical polynomial* of \mathcal{I} . Obviously, f(x) = 1 if and only if $\mathcal{I} \cap R \neq 0$. In this case, we can take the ideal I in Theorem 5 above to be $\mathcal{I} \cap R$. Following [4], we call an ideal of R[x; d] principal closed if it is of the form $\langle f(x) \rangle$ for some f(x) in the center of $R_{\mathcal{F}}[x; d]$. Let \mathcal{I}, \mathcal{J} be ideals of R[x; d]. If $\mathcal{I} \subseteq \mathcal{J}$ then the canonical polynomial of \mathcal{J} divides that of \mathcal{I} . This will be used frequently.

Following [9], we use the surjective ring homomorphism $\varphi: R[x;d] \to S$ to define an action \to of R[x;d] on R as follows: Given $g(x) \in R[x;d]$ and $r \in R$, we define $g(x) \to r$ to be $\varphi(g(x))(r)$. If $g(x) = a_0 x^n + \cdots + a_{n-1} x + a_n \in R[x;d]$, where $a_i \in R$, then $\varphi(g(x)) = (a_0)_L d^n + \cdots + (a_{n-1})_L d + (a_n)_L$ and hence

$$g(x) \rightharpoonup r \stackrel{\text{def.}}{=} \left((a_0)_L d^n + \dots + (a_{n-1})_L d + (a_n)_L \right)(r)$$
$$= a_0 d^n(r) + \dots + a_{n-1} d(r) + a_n r.$$

It is well-known that R forms a left R[x; d]-module under the action \rightarrow . (See [9] for example.) Note that

$$\mathcal{A} = \{ g(x) \in R[x;d] \mid g(x) \rightharpoonup R = 0 \}.$$

We define similarly $g(x) \rightarrow r$ for $g(x) \in R_{\mathcal{F}}[x;d]$ and $r \in R_{\mathcal{F}}$. Obviously, the action \rightarrow of $R_{\mathcal{F}}[x;d]$ on $R_{\mathcal{F}}$ extends the action \rightarrow of R[x;d] on R. We observe a simple but important property of central elements in $R_{\mathcal{F}}[x;d]$.

Lemma 6. If $a_0x^n + \cdots + a_{n-1}x + a_n$ lies in the center of $R_{\mathcal{F}}[x;d]$, then

$$(a_0x^n + \dots + a_{n-1}x + a_n) \rightharpoonup r = ra_n \text{ for all } r \in R_{\mathcal{F}}.$$

Proof. We say that $g(x) \in R[x; d]$ has the constant term $c \in R$ if g(x) can be written in the form g(x) = c + terms ending in x. Set $f(x) = a_0 x^n + \cdots + a_{n-1}x + a_n$. Let $r \in R_{\mathcal{F}}$. Note that $a_0 d^n(r) + \cdots + a_{n-1}d(r) + a_n r$ is the constant term of f(x)rand that ra_n is the constant term of rf(x). Since f(x) is central, the two skew polynomials f(x)r, rf(x) are equal and hence so are their constant terms. Thus $a_0 d^n(r) + \cdots + a_{n-1}d(r) + a_n r = ra_n$, proving the lemma.

An ideal \mathcal{I} of R[x; d] is called *R*-disjoint if $\mathcal{I} \cap R = \{0\}$. [5, Theorem 1.6] gives the following elegant characterization of *R*-disjoint prime ideals of R[x; d].

Lemma 7. An ideal of R[x; d] is prime and R-disjoint if and only if it is of the form $\langle \pi(\zeta) \rangle$ for a monic irreducible $1 \neq \pi(\lambda) \in C^{(d)}[\lambda]$.

We are now ready to give the

Proof of Theorem 2. By Theorem 5, there exist the canonical polynomial f(x)of \mathcal{A} and an ideal $I \neq 0$ of R such that $If(x) \subseteq \mathcal{A} \subseteq \langle f(x) \rangle$. Since $If(x) \subseteq \mathcal{A}$, we have $0 = If(x) \rightarrow R = I(f(x) \rightarrow R)$ and hence $f(x) \rightarrow R = 0$. This implies $\langle f(x) \rangle \rightarrow R = 0$ and hence $\mathcal{A} = \langle f(x) \rangle$.

By assumption, d is $R_{\mathcal{F}}$ -algebraic. Let

$$\zeta = \begin{cases} x+b, \text{ if char } R = 0\\ x^{p^s} + \alpha_1 x^{p^{s-1}} + \dots + \alpha_s x + b, \text{ if char } R = p > 0 \end{cases}$$

be given as in Theorem 1. As in the proof of Lemma 6, we say that $g(x) \in R[x;d]$ has the constant term $c \in R$ if g(x) can be written in the form g(x) = c + terms ending in x.

Claim. ζ^k has the constant term b^k for $k \ge 0$. This is obvious if k = 0. For $k \ge 1$, we have

$$\zeta^{\kappa} = \zeta^{\kappa-1}(b + \text{terms ending in } x)$$
$$= \zeta^{k-1}b + \text{terms ending in } x$$
$$= b\zeta^{k-1} + \text{terms ending in } x$$

If ζ^{k-1} has the constant term b^{k-1} , then ζ^k has the constant term b^k . The claim follows by induction on k.

Applying Theorem 1, we may write

(3)
$$f(x) = \zeta^n + \beta_1 \zeta^{n-1} + \dots + \beta_n,$$

where $\beta_i \in C^{(d)}$. We set

$$\widetilde{\mu}(\lambda) = \lambda^n + \beta_1 \lambda^{n-1} + \dots + \beta_n \in C^{(d)}[\lambda]$$

By Claim above, $f(x) = \tilde{\mu}(\zeta)$ has the constant term $\tilde{\mu}(b)$. By Lemma 6, we have $0 = f(x) \rightarrow R = R \tilde{\mu}(b)$ and so $\tilde{\mu}(b) = 0$. The minimal polynomial $\mu(\lambda)$ of b over $C^{(d)}$ thus divides $\tilde{\mu}(\lambda)$ in $C^{(d)}[\lambda]$. On the other hand, $\mu(b)$ is the constant term of $\mu(\zeta)$ by Claim above. Since $\mu(\zeta)$ is central, we have $\mu(\zeta) \rightarrow R = R\mu(b) = 0$ by Lemma 6. Let J be a nonzero ideal of R such that $J\mu(\zeta) \subseteq R[x;d]$. Then $J\mu(\zeta) \subseteq \mathcal{A}$. It follows from the minimality of the degree of f(x) in \mathcal{A} that the degree of $\mu(\lambda)$ is equal to or greater than the degree of the canonical polynomial f(x) of \mathcal{A} . So $\mu(\lambda) = \tilde{\mu}(\lambda)$ and $f(x) = \mu(\zeta)$ follows.

We factorize $\mu(\lambda)$ into the product of monic irreducible factors in $C^{(d)}[\lambda]$: $\mu(\lambda) = \pi_1(\lambda)^{n_1}\pi_2(\lambda)^{n_2}\cdots\pi_k(\lambda)^{n_k}$, where each $n_i \geq 1$. The rest then follows by the more general Theorem 8 below.

Let \mathcal{I}, \mathcal{J} be ideals of R[x; d]. We say that \mathcal{J} is prime over \mathcal{I} if $\mathcal{J} \supseteq \mathcal{I}$ and if \mathcal{J}/\mathcal{I} is a prime ideal of $R[x; d]/\mathcal{I}$. We call \mathcal{J} the prime radical over \mathcal{I} if $\mathcal{J} \supseteq \mathcal{I}$ and if \mathcal{J}/\mathcal{I} is the prime radical of $R[x; d]/\mathcal{I}$. The following theorem describes the prime radical and minimal prime ideals over a principal closed ideal.

Theorem 8. Let $\mu(\lambda) \in C^{(d)}[\lambda]$ be monic. We factorize $\mu(\lambda)$ into the product of monic irreducible factors in $C^{(d)}[\lambda]$: $\mu(\lambda) = \pi_1(\lambda)^{n_1}\pi_2(\lambda)^{n_2}\cdots\pi_k(\lambda)^{n_k}$, where each $n_i \geq 1$. Then minimal prime ideals of R[x;d] over $\langle \mu(\zeta) \rangle$ are $\langle \pi_s(\zeta) \rangle$, $s = 1, \cdots, k$, where ζ is given as in Theorem 1. Moreover, the prime radical of $R[x;d]/\langle \mu(\zeta) \rangle$ is equal to $\langle \pi_1(\lambda)\pi_2(\lambda)\cdots\pi_k(\lambda) \rangle/\langle \mu(\zeta) \rangle$.

For the proof of Theorem 8, we need a lemma.

Lemma 9. If $\mu_1(\lambda)$ and $\mu_2(\lambda)$ are monic and relatively prime in $C^{(d)}[\lambda]$, then $\langle \mu_1(\zeta) \rangle \cap \langle \mu_2(\zeta) \rangle = \langle \mu_1(\zeta) \mu_2(\zeta) \rangle$, where ζ is given as in Theorem 1.

Proof. The inclusion $\langle \mu_1(\zeta)\mu_2(\zeta)\rangle \subseteq \langle \mu_1(\zeta)\rangle \cap \langle \mu_2(\zeta)\rangle$ is obvious. For the reverse inclusion, let $f(x) \in \langle \mu_1(\zeta)\rangle \cap \langle \mu_2(\zeta)\rangle$. Write $f(x) = g_1(x)\mu_1(\zeta) = g_2(x)\mu_2(\zeta)$, where $g_i(x) \in R_{\mathcal{F}}[x;d]$. Since $\mu_1(\lambda)$ and $\mu_2(\lambda)$ are relatively prime in $C^{(d)}[\lambda]$, there exist $A(\lambda), B(\lambda) \in C^{(d)}[\lambda]$ such that $A(\lambda)\mu_1(\lambda) + B(\lambda)\mu_2(\lambda) = 1$. So

$$A(\zeta)\mu_1(\zeta) + B(\zeta)\mu_2(\zeta) = 1.$$

Thus

$$g_{1}(x) = A(\zeta)g_{1}(x)\mu_{1}(\zeta) + g_{1}(x)B(\zeta)\mu_{2}(\zeta)$$

= $A(\zeta)g_{2}(x)\mu_{2}(\zeta) + g_{1}(x)B(\zeta)\mu_{2}(\zeta)$
= $(A(\zeta)g_{2}(x) + g_{1}(x)B(\zeta))\mu_{2}(\zeta),$

implying that

$$f(x) = g_1(x)\mu_1(\zeta) = (A(\zeta)g_2(x) + g_1(x)B(\zeta))\mu_1(\zeta)\mu_2(\zeta)$$

So $f(x) \in \langle \mu_1(\zeta)\mu_2(\zeta) \rangle$. Thus $\langle \mu_1(\zeta) \rangle \cap \langle \mu_2(\zeta) \rangle \subseteq \langle \mu_1(\zeta)\mu_2(\zeta) \rangle$, proving the lemma.

Proof of Theorem 8. Let \mathcal{Q} be an ideal of R[x; d], which is a minimal prime ideal over $\langle \mu(\zeta) \rangle$. Then

$$\mathcal{Q} \supseteq \langle \pi_1(\zeta)^{n_1} \cdots \pi_k(\zeta)^{n_k} \rangle \supseteq \langle \pi_1(\zeta) \rangle^{n_1} \cdots \langle \pi_k(\zeta) \rangle^{n_k}.$$

By the primeness of \mathcal{Q} , we see that \mathcal{Q} includes $\langle \pi_i(\zeta) \rangle$ for some *i*. By Lemma 7, $\langle \pi_i(\zeta) \rangle$ is a prime ideal of R[x;d]. The minimality of \mathcal{Q} implies that $\mathcal{Q} = \langle \pi_i(\zeta) \rangle$. This proves that all possible minimal prime ideals of R[x;d] over $\langle \mu(\zeta) \rangle$ are $\langle \pi_s(\zeta) \rangle$, $s = 1, \dots, k$. Conversely, we show each $\langle \pi_i(\zeta) \rangle$ is a minimal prime ideal over $\langle \mu(\zeta) \rangle$: Let \mathcal{Q}_0 be a prime ideal of R[x;d] such that $\langle \pi_i(\zeta) \rangle \supseteq \mathcal{Q}_0 \supseteq \langle \mu(\zeta) \rangle$. Applying the same argument above yields $\mathcal{Q}_0 \supseteq \langle \pi_j(\zeta) \rangle$ for some *j* and so $\langle \pi_i(\zeta) \rangle \supseteq \langle \pi_j(\zeta) \rangle$. Then $\pi_i(\zeta)$ divides $\pi_j(\zeta)$. So $\pi_i(\zeta) = \pi_j(\zeta) = \mathcal{Q}_0$ follows as asserted. Let \mathcal{H} be the prime radical over the ideal $\langle \mu(\zeta) \rangle$. Choose an integer $m \ge n_i$ for all *i*. Then

$$\langle \pi_1(\lambda)\pi_2(\lambda)\cdots\pi_k(\lambda)\rangle^m \subseteq \langle \mu(\zeta)\rangle \subseteq \mathcal{H}.$$

But \mathcal{H} is a semiprime ideal of R[x;d]. So $\langle \pi_1(\lambda)\pi_2(\lambda)\cdots\pi_k(\lambda)\rangle \subseteq \mathcal{H}$ follows. On the other hand, by Lemma 7, each $\langle \pi_i(\zeta)\rangle$ is a prime ideal of R[x;d] and so

$$\mathcal{H} \subseteq \langle \pi_1(\lambda) \rangle \cap \cdots \langle \pi_1(\lambda) \rangle \subseteq \langle \pi_1(\lambda) \pi_2(\lambda) \cdots \pi_k(\lambda) \rangle,$$

where the second inclusion is implied by Lemma 9. Thus $\mathcal{H} = \langle \pi_1(\lambda) \pi_2(\lambda) \cdots \pi_k(\lambda) \rangle$. The proof is now complete. We conclude this section with

Proof of Corollary 3. (1) and (2) follows immediately from Theorem 2. For (3), let $\mu(\lambda) \in C^{(d)}[\lambda]$ denote the minimal polynomial of b over $C^{(d)}$. For the implication \Leftarrow , assume that R has no nontrivial d-invariant ideals and that $\mu(\lambda)$ is irreducible over $C^{(d)}$. Let \mathcal{I} be an ideal of R[x; d] properly larger than \mathcal{A} . By Theorem 2, $\mathcal{A} = \langle \mu(\zeta) \rangle$. Then the canonical polynomial of \mathcal{I} is a proper divisor of $\mu(\zeta)$ and hence must be 1 by the irreducibility of $\mu(\zeta)$. So $\mathcal{I} \cap R \neq 0$. If $r \in \mathcal{I} \cap R$ then $d(r) = xr - rx \in \mathcal{I} \cap R$. So $\mathcal{I} \cap R$ is a d-invariant ideal of R. So $\mathcal{I} \cap R = R$, that is, $\mathcal{I} \supseteq R$. This implies $\mathcal{I} = R[x; d]$. The simplicity of $R[x; d]/\mathcal{A}$ follows as asserted.

For the implication \Rightarrow , we assume that S is simple. Then S is surely prime. By (2), the minimal polynomial $\mu(\lambda)$ of b over $C^{(d)}$ is irreducible. By Theorem 2, $\mathcal{A} = \langle \mu(\zeta) \rangle$. Let I be a nonzero d-invariant ideal of R. Set

$$I[x;d] \stackrel{\text{def.}}{=} \{a_0 + a_1 x + \dots \in R[x;d] \mid a_0, a_1, \dots \in I\}.$$

Then I[x; d] forms an ideal of R[x; d]. Note that $R \cap I[x; d] = I$ but $R \cap \mathcal{A} = 0$. The ideal $\mathcal{A} + I[x; d]$ is thus properly larger than \mathcal{A} . But S is isomorphic to $R[x; d]/\mathcal{A}$. By the simplicity of S, $\mathcal{A} + I[x; d] = R[x; d]$. Given any $a \in R$, we may thus write

$$a = f(x) + a_n x^n + \dots + a_0,$$

where $f(x) \in \mathcal{A}$ and where $a_n, \ldots, a_0 \in I$. Using the ring homomorphism $\varphi: R[x; d] \to \mathbb{I}$ S and noting that $\varphi(f(x)) = 0$, we have

$$a_L = (a_n)_L d^n + \dots + (a_1)_L d + (a_0)_L$$

That is, for all $y \in R$,

$$ay = a_n d^n(y) + \dots + a_1 d(y) + a_0 y.$$

But this differential identity also holds for $y \in Q$ by [12, Theorem 2]. Setting y = 1, we have $a = a_0 \in I$. This is true for any given $a \in R$. It follows that I = R. So R has no d-invariant ideals other that R and 0, as asserted.

2. An Application to the Nilpotent Case

Firstly, we need an important notion discovered by Grzezczuk:

Definition ([6, 3]). Let R be a prime ring and let d be a nilpotent derivation of R. The least integer m such that $d^m(R)c = 0$ for some nonzero $c \in R$ is called the *annihilating* nilpotency of d and is denoted by $m_d(R)$.

Let d be a nilpotent derivation of R. We consider the prime subring $R + \mathbf{Z} \cdot 1$ of Q, where \mathbf{Z} is the ring of integers. The derivation d extends to a nilpotent derivation of $R + \mathbf{Z} \cdot 1$ with the same nilpotencey and annihilating nilpotency. Replacing R by $R + \mathbf{Z} \cdot 1$, we always assume that R has an identity element 1 in this section. In the ring R[x; d], we consider the two-sided ideal (x^m) , where $m = m_d(R)$. For $r \in R$,

$$x^{m}r = rx^{m} + \binom{m}{1}d(r)x^{m-1} + \dots + \binom{m}{m-1}d^{m-1}(r)x + d^{m}(r).$$

Therefore, if $a_0x^n + a_1x^{n-1} + \cdots + a_n \in (x^m)$, then $a_n \in Rd^m(R)$. This implies $Rd^m(R)$ includes $(x^m) \cap R$, which is an ideal of R. Since $Rd^m(R)$ has nonzero right annihilator, we have $(x^m) \cap R = 0$. We have now come to an interesting construction, which has been employed extensively and fruitfully in the literature [6]–[10]:

Definition ([8]). Let d be a nilpotent derivation of R. Write $m = m_d(R)$. Let \mathcal{M} be an ideal of R[x;d] which is maximal with respect to the property that $x^m \in \mathcal{M}$ and $\mathcal{M} \cap R = 0$. Obviously, \mathcal{M} is a prime ideal of R[x;d]. The quotient ring $R[x;d]/\mathcal{M}$ is called the d-extension of R.

Although the \mathcal{M} obtained above by Zorn's Lemma is not necessarily unique, our aim is to prove that \mathcal{M} is equal to the ideal \mathcal{P} described in Theorem 2. So it is unique. From now on we always fix such an \mathcal{M} . For this purpose we need a structure result of nilpotent derivations. The following is given in [3, Theorems 1–4].

Theorem 10. Let d be a nilpotent derivation of a prime ring R.

(1) In the case of char R = 0, there exists a nilpotent $b \in Q$ with the nilpotency l such that d + ad(b) = 0 and $m_d(R) = l$.

(2) In the case of char $R = p \ge 2$, let s be the least integer ≥ 1 such that d^{p^i} , $0 \le i \le s$, are C-dependent modulo X-inner derivations. Then there exists $b \in Q$ such that $d^{p^s} + \operatorname{ad}(b) = 0$ and such that the minimal polynomial of b over C assumes the form $(b^{p^t} - \alpha)^l = 0$, where $\alpha \in C^{(d)}$ and where l, t are integers ≥ 0 such that (l, p) = 1. Moreover, $m_d(R) = p^{s+t}l$.

For a nilpotent derivation d, we have a detailed description of the ideal \mathcal{M} defined above. We divide our statement into two cases according to whether the characteristic of R is 0 or not:

Theorem 11. Let d be a nilpotent derivation of a prime ring R and let \mathcal{A} , \mathcal{P} be as described in Theorem 2 and \mathcal{M} , the ideal described in the definition above. In the notation of Theorem 10, if char R = 0, then $\mathcal{A} = \langle \zeta^l \rangle$ and $\mathcal{P} = \mathcal{M} = \langle \zeta \rangle$, where $\zeta = x + b$ and where l is the nilpotency of b.

We need the following lemma. See [2, Theorem 2.3.3] for the proof.

Lemma 12. Let v_1, v_2, \dots, v_n be *C*-independent elements in $R_{\mathcal{F}}$ and let *I* be a nonzero ideal of *R*. Then there exist finitely many $a_i, b_i \in I$ such that $\sum_i a_i v_j b_i = 0$ for $1 \leq j \leq n-1$ but $\sum_i a_i v_n b_i \neq 0$.

Proof of Theorem 11. We retain the notation of Theorem 10 in the following. Then, by (1) of Theorem 10, $d + \operatorname{ad}(b) = 0$ for some nilpotent $b \in Q$ with the nilpotency l. That is, $b^l = 0$ but $b^{l-1} \neq 0$. By Theorem 1, the center of $R_{\mathcal{F}}[x;d]$ is equal to $C^{(d)}[\zeta]$, where $\zeta = x + b$. The minimal polynomial of b over $C^{(d)}$ is obviously the polynomial λ^l in $C^{(d)}[\lambda]$. It follows from Theorem 2 that $\mathcal{A} = \langle \zeta^l \rangle$ and $\mathcal{P} = \langle \zeta \rangle$. By Lemma 7, \mathcal{P} is prime, as asserted. We compute the ideal \mathcal{M} : By Theorem 10, $m_d(R) = l$. Now, we look at the canonical polynomial of the ideal (x^l) of R[x;d]: Write $x = \zeta + b$. Noting that $b^l = 0$ and ζ is central, we have

$$x^{l} = (\zeta + b)^{l} = \zeta^{l} + {l \choose 1} \zeta^{l-1} b + \dots + {l \choose l-1} \zeta b^{l-1},$$

implying that $(x^l) \subseteq \langle \zeta \rangle$. Since $1, b, \ldots, b^{l-1}$ are *C*-independent, by Lemma 12 there exist finitely many $r_i, r'_i \in I$ such that $\sum_i r_i b^{l-1} r'_i \neq 0$ but such that $\sum_i r_i b^j r'_i = 0$ for $0 \leq j < l-1$. We have

$$(x^{l}) \ni \sum_{i} r_{i} x^{l} r_{i}' = \binom{l}{l-1} \zeta \left(\sum_{i} r_{i} b^{l-1} r_{i}' \right) \neq 0.$$

This shows that ζ is the canonical polynomial of the ideal (x^l) . But \mathcal{M} extends (x^l) . We see easily that the canonical polynomial of \mathcal{M} divides the canonical polynomial ζ of (x^l) . Since $\mathcal{M} \cap R = 0$, the canonical polynomial of \mathcal{M} cannot be 1 and hence must be ζ . So $\langle \zeta \rangle \supseteq \mathcal{M}$. But $\langle \zeta \rangle$ also extends (x^l) and intersects R trivially. By the maximality of \mathcal{M} , it follows that $\mathcal{M} = \langle \zeta \rangle = \mathcal{P}$.

The case for char $R = p \ge 2$ is more complicate:

Theorem 13. Let d be a nilpotent derivation of a prime ring R and let \mathcal{A} , \mathcal{P} be as described in Theorem 2 and \mathcal{M} , the ideal described in the definition above. In the notation of Theorem 10, if char $R = p \ge 2$, then we have the following two cases:

(1) Suppose that b is chosen such that d(b) = 0. Set $\zeta = x^{p^s} + b$. Then

$$\mathcal{A} = \langle (\zeta^{p^t} - \alpha)^l \rangle \quad and \quad \mathcal{M} = \mathcal{P} = \langle \zeta^{p^{t-u}} - \alpha^{1/p^u} \rangle,$$

where u is the largest integer such that $0 \le u \le t$ and such that $\alpha^{1/p^u} \in C^{(d)}$. (2) Suppose that $d(b) \notin d(C)$. Set $\zeta = x^{p^{s+1}} + b^p$. Then

$$\mathcal{A} = \langle (\zeta^{p^{t-1}} - \alpha)^l \rangle \quad and \quad \mathcal{M} = \mathcal{P} = \langle \zeta^{p^{t-1-u}} - \alpha^{1/p^u} \rangle$$

where u is the largest integer such that $0 \le u \le t-1$ and such that $\alpha^{1/p^u} \in C^{(d)}$.

Proof. Assume char $R = p \ge 2$. Let s be the least integer ≥ 1 such that d^{p^i} , $0 \le i \le s$, are C-dependent modulo X-inner derivations. By Theorem 10, there exists $b \in Q$ such that $d^{p^s} + \operatorname{ad}(b) = 0$ and such that the minimal polynomial of b over C assumes the form $(b^{p^t} - \alpha)^l = 0$, where $\alpha \in C$, $l, t \ge 0$ and (l, p) = 1. By Theorem 10 again, $m_d(R) = p^{s+t}l$.

Our next step is to find the canonical polynomial of the ideal (x^m) , where $m = m_d(R) = p^{s+t}l$. For this purpose, we must first decide ζ described in Theorem 1. Analogous to Lemma 4, we divide our argument into two cases:

Case 1. $d(b) \in d(C)$: By Lemma 4, we may assume that d(b) = 0 and so $\zeta = x^{p^s} + b$. Applying d to $(b^{p^t} - \alpha)^l = 0$, we obtain

$$-l(b^{p^t} - \alpha)^{l-1}d(\alpha) = 0.$$

Since $l \neq 0$ modulo p and $(b^{p^t} - \alpha)^{l-1} \neq 0$, it follows $d(\alpha) = 0$. So $\zeta - \alpha$ is also in the center of $R_{\mathcal{F}}[x;d]$. Using this and noting that $(b^{p^t} - \alpha)^l = 0$, we compute

$$\begin{aligned} x^{m} &= x^{p^{s+t}l} = (\zeta - b)^{p^{t}l} = (\zeta^{p^{t}} - b^{p^{t}})^{l} = \left((\zeta^{p^{t}} - \alpha) - (b^{p^{t}} - \alpha) \right)^{l} \\ &= \sum_{i=0}^{l} (-1)^{i} \binom{l}{i} (\zeta^{p^{t}} - \alpha)^{l-i} (b^{p^{t}} - \alpha)^{i} \\ &= \sum_{i=0}^{l-1} (-1)^{i} \binom{l}{i} (\zeta^{p^{t}} - \alpha)^{l-i} (b^{p^{t}} - \alpha)^{i}. \end{aligned}$$

So $x^m \in \langle \zeta^{p^t} - \alpha \rangle$ and hence $x^m \subseteq \langle \zeta^{p^t} - \alpha \rangle$. So $\zeta^{p^t} - \alpha$ divides the canonical polynomial of (x^m) . On the other hand, since l is the nilpotency of $b^{p^t} - \alpha$, the elements $1, b^{p^t} - \alpha, \ldots, (b^{p^t} - \alpha)^{l-1}$ are *C*-independent. By Lemma 12, there exist $r_i, r'_i \in I$ such that $\sum_i r_i (b^{p^t} - \alpha)^{l-1} r'_i \neq 0$ but such that $\sum_i r_i (b^{p^t} - \alpha)^j r'_i = 0$ for $0 \leq j < l-1$. Multiplying the above displayed expression of x^m by r_i, r'_i from the left and right respectively and then adding them up, we have

$$0 \neq \sum_{i} r_{i} x^{m} r_{i}' = l(\zeta^{p^{t}} - \alpha) \Big(\sum_{i} r_{i} (b^{p^{t}} - \alpha)^{l-1} r_{i}' \Big) \in (x^{m}).$$

The canonical polynomial of the ideal (x^m) thus has ζ -degree $\leq p^t$ and hence must be equal to $\zeta^{p^t} - \alpha$.

Let u be the largest integer such that $0 \le u \le t$ and such that $\alpha^{1/p^u} \in C^{(d)}$. Set $\beta = \alpha^{1/p^u}$. Then $\zeta^{p^t} - \alpha = (\zeta^{p^{t-u}} - \beta)^{p^u}$. Note that $\lambda^{p^{t-u}} - \beta \in C^{(d)}[\lambda]$ is irreducible. Since $\mathcal{M} \supseteq (x^m)$, the canonical polynomial of \mathcal{M} is a divisor of $(\lambda^{p^{t-u}} - \beta)^{p^u}$. Say, $(\lambda^{p^{t-u}} - \beta)^v$, where $0 \le v \le p^u$, is the canonical polynomial of \mathcal{M} . Since $\mathcal{M} \cap R = 0$, v must be > 0. We have

$$\mathcal{M} \subseteq \langle (\zeta^{p^{t-u}} - \beta)^v \rangle \subseteq \langle \zeta^{p^{t-u}} - \beta \rangle$$

Since $\langle \zeta^{p^{t-u}} - \beta \rangle \cap R = 0$, it follows that $\mathcal{M} = \langle \zeta^{p^{t-u}} - \beta \rangle$ by the maximality of \mathcal{M} .

We now compute the ideals \mathcal{A} and \mathcal{P} by Theorem 2: Since the minimal polynomial of b over $C^{(d)}$ is $(\lambda^{p^t} - \alpha)^l = (\lambda^{p^{t-u}} - \beta)^{p^u l} \in C^{(d)}[\lambda]$, the ideal \mathcal{A} is thus equal to

$$\langle (\zeta^{p^{t-u}} - \beta)^{p^u l} \rangle.$$

The only irreducible factor of $(\lambda^{p^{t-u}} - \beta)^{p^u l}$ is $\lambda^{p^{t-u}} - \beta$. So the ideal \mathcal{P} is given by $\langle \zeta^{p^{t-u}} - \beta \rangle$ and is hence equal to \mathcal{M} , as asserted.

Case 2. $d(b) \notin d(C)$: We have $\zeta = x^{p^{s+1}} + b^p$ by Lemma 4. We claim t > 0: Assume otherwise t = 0. That is, $(b - \alpha)^l = 0$. Applying d and noting $d(b) \in C$, we obtain

$$l(b-\alpha)^{l-1}(d(b) - d(\alpha)) = 0$$

Since $d(b) \notin d(C)$, $d(b) - d(\alpha) \neq 0$. But $l \neq 0$ modulo p by our assumption and $(b^{p^t} - \alpha)^{l-1} \neq 0$ by the minimality of l. This contradiction shows t > 0 as claimed. Applying d to $(b^{p^t} - \alpha)^l = 0$ and using $d(b) \in C$ and t > 0, we obtain $l(b^{p^t} - \alpha)^{l-1}d(\alpha) = 0$. It follows that $d(\alpha) = 0$. So α is also in the center of $R_{\mathcal{F}}[x;d]$. Using this and noting that $(b^{p^t} - \alpha)^l = 0$, we compute analogously

$$\begin{aligned} x^{m} &= x^{p^{s+t}l} = (\zeta - b^{p})^{p^{t-1}l} = (\zeta^{p^{t-1}} - b^{p^{t}})^{l} = \left((\zeta^{p^{t-1}} - \alpha) - (b^{p^{t}} - \alpha) \right)^{l} \\ &= \sum_{i=0}^{l} (-1)^{i} \binom{l}{i} (\zeta^{p^{t-1}} - \alpha)^{l-i} (b^{p^{t}} - \alpha)^{i} \\ &= \sum_{i=0}^{l-1} (-1)^{i} \binom{l}{i} (\zeta^{p^{t-1}} - \alpha)^{l-i} (b^{p^{t}} - \alpha)^{i}. \end{aligned}$$

As in Case 1, the canonical polynomial of (x^m) is $\zeta^{p^{t-1}} - \alpha$. We let u be the largest integer such that $0 \le u \le t - 1$ and such that $\alpha^{1/p^u} \in C^{(d)}$. Set $\beta = \alpha^{1/p^u}$. Then $\zeta^{p^{t-1}} - \alpha = (\zeta^{p^{t-1-u}} - \beta)^{p^u}$. Arguing as in Case 1, we have

$$\mathcal{M} = \langle \zeta^{p^{t-1-u}} - \beta \rangle.$$

The minimal polynomial of b^p over $C^{(d)}$ is $(\lambda^{p^{t-1}} - \alpha)^l = (\lambda^{p^{t-1-u}} - \beta)^{p^u l} \in C^{(d)}[\lambda]$. By Theorem 2, \mathcal{A} is equal to

$$\langle (\zeta^{p^{t-1-u}} - \beta)^{p^u l} \rangle.$$

Since the only irreducible factor of $(\lambda^{p^{t-1-u}} - \beta)^{p^u l}$ is $\lambda^{p^{t-1-u}} - \beta$, the ideal \mathcal{P} is given by $\langle \zeta^{p^{t-1-u}} - \beta \rangle$ and is also equal to \mathcal{M} , as asserted.

We conclude our paper with the following immediate

Corollary 14. Let d be a nilpotent derivation of a prime ring R. The d-extension of R is isomorphic to S modulo its prime radical via the ring homomorphism $\varphi: R[x; d] \rightarrow \mathbb{S}$.

References

- A.S. Amitsur, A generalization of a theorem on linear differential equations, Bull. Amer. Math. Soc. 54 (1948), 937–941.
- [2] K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, "Rings with Generalized Identities", Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.
- [3] C.-L. Chuang and T.-K. Lee, Nilpotent derivations, J. Algebra 287 (2005), 381– 401.
- [4] M. Ferrero, Prime and principal closed ideals in polynomial rings, J. Algebra 134 (1990), 45–59.
- [5] M. Ferrero and J. Matczuk, Prime ideals in skew polynomial rings of derivation type, Comm. Algebra 18(3) (1990), 689–710.
- [6] P. Grzeszczuk, On nilpotent derivations of semiprime rings, J. Algebra 149 (1992), 313–321.
- [7] P. Grzeszczuk, Constants of algebraic derivations, Comm. Algebra 21(6) (1993), 1857–1868.
- [8] P. Grzeszczuk, Constants of algebraic derivations and fixed points of algebraic automorphisms, J. Algebra 171 (1995), 826–844.
- [9] P. Grzeszczuk, A. Leroy and J. Matczuk, Artinian property of constants of algebraic q-skew derivations, Israel J. Math. 121 (2001), 265–284.
- [10] P. Grzeszczuk and J. Matczuk, Goldie conditions for constants of algebraic derivations of semiprime algebras, Israel J. Math. 83 (1993), 329–342.
- [11] V.K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (1978), 220–238. (Engl. Transl., Algebra and Logic 17 (1978), 154–168.)
- [12] T.-K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), 27-38.
- [13] W.S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584.

- [14] J. Matczuk, Extended centroids of skew polynomial rings, Math. J. Okayama Univ. 30 (1988), 13–20.
- [15] J.D. Rosen and M.P. Rosen, Ideals and quotient ring of skew polynomial rings, Comm. Algebra 21(3) (1993), 799–823.