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Abstract. Let R be a prime ring and d a derivation of R. In the ring of additive
endomorphisms of the abelian group (R, +), let S be the subring generated by arpd™,
where a € R and m > 0 and where ay:x € R — ax € R for a € R. We compute the
prime radical and minimal prime ideals of S via the skew polynomial ring R[z;d] by

the surjective ring homomorphism

n

©: Zaﬂ:n_i € R[z;d] — Z(ai)Ldn_i e S.
i=0

=0

We compute explicitly the kernel A of ¢, the prime radical P over A and minimal
prime ideals over A (Theorem 2). We obtain a necessary and sufficient condition
for S to be simple, prime or semiprime (Corollary 3). As an application, let d be
nilpotent. We show that the d-extension of R defined in [6] is canonically isomorphic
to the quotient ring of S modulo its prime radical (Corollary 14).
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1. Results

Throughout this paper, R is always a prime ring, not necessarily with 1, and d
is a derivation of R. Additive endomorphisms of the abelian group (R,+) form a
ring End (R, +) under the pointwise addition and the composition multiplication.
Obviously, d € End (R,+). For a € R, let ar, € End (R, +) be the left multiplication
by a defined by ar:x € R — ax € R. Let S be the subring generated by a;d™,
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where a € R and m > 0 are arbitrary. If R possesses 1 then S is the ring generated
by d and ar, a € R. We compute the prime radical and minimal prime ideals of
S as follows: Let R[x;d] be the skew polynomial ring with the multiplication rule:
xr =rx +d(r) for r € R. Since day, = d(a)r, + ard for a € R, the map

(p:aox" + -+ ap_1T +ay € R[x,d] — (ao)Ld" +---+ (an_l)Ld+ (an)L eS

defines a surjective ring homomorphism from R[z;d] onto S. Let A denote the kernel
of ¢. The ring S is then isomorphic to the quotient ring R[z;d]/A and the prime
radical of S corresponds to the ideal P of R[z;d] such that P O A and such that
P/ A is the prime radical of R[z;d]/A. We call P the prime radical of R[x;d] over
A. We call an ideal Z of R[x;d] prime over A if Z O A and if Z/A is a prime ideal
of R[z;d]/A. Our aim is to describe explicitly the ideals A, P and also minimal
prime ideals over A in the ring R[z,d]. Notations introduced above will be retained

throughout.

Let Ry and ) denote respectively the left Martindale quotient ring and the sym-
metric Martindale quotient ring of R. The center C' of Rr coincides with the center
of @ and is called the extended centroid of R. We refer these notions to [2] or [13]
for details. It is well-known that d can be uniquely extended to a derivation of ()
and also of Rz, which we also denote by d. We thus form the skew polynomial ring
Rz(x;d], which forms an overring of R[z;d] in a natural way. Given f(z) in the
center of Rz|[x;d|, we define

(f(@)) & Rlw: d] 0 f(2) Ryla;d
= {g(x) € R[z;d] | g(z) is a multiple of f(z) in Rzr[z;d]}.

We will show that 4, P and all minimal prime ideals over A are of the form (f(z))
for some central elements f(x) € Rr[z;d]. We also want to compute these central
elements f(x) explicitly. For this purpose, we must investigate the center of Rz[x;d].
Fortunately, this has been completely done in [14]. But we need some more notions
given in the following to restate it.

Given b € R, the map ad(b):r € R +— [b,r] CE b — b obviously defines a
derivation, called the inner derivation defined by the element b. We call a derivation
outer if it is mot of this form. If a derivation of R extends to an inner derivation
of Rz, say ad(b), where b € Rr, we see easily that b € Q. A derivation of R is
called X-inner if its extension to Rz (or to @) is inner, that is, it is of the form
r € R+ [b,r] for some b € Q. We call a derivation X-outer if it is not X-inner.
Given a subset S of Rz, the set of constants of d on S, denoted by S(4 | is defined by
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§(d) 4t {r € S |d(r) = 0}. Particularly, C¥) = {a € C | d(a) = 0}. We are ready
to cite the following elegant result.

Theorem 1 (Matczuk [14]). The center of Rz[x;d] is equal to the center of Q[x;d]
and can be described as follows:

(1) Assume char R = 0. If d + ad(b) = 0 for some b € Rz, then the center of
Rr[x;d] is equal to CD[¢], where ¢ o+ b If there is no such b € Rz, then the
center of Rx[x;d] is merely C(4),

(2) Assume char R = p > 0. If there exists b € R and aq,-++ ,a; € C@D such
that

(1) & +ord” -+ ayd + ad(b) =0,

then we let (1) be the one with s as minimal as possible and set

def

¢ =g —|—oz1mps_1 + -+ asz+b.

The center of Rx[x;d] is equal to C'D[C]. If there is no such expression (1), then the
center of Rx[x;d] is merely C(4),

We call the derivation d left algebraic over Rz or left Rz-algebraic for short, if
there exist 0 # bg, b1, -+ ,bn_1 € Rx such that

bod™ (r) + byd" *(r) + -+ by_1d(r) =0

for all r € R. If all b; € R (or all b; € C respectively), then we say that d is left R-
algebraic (or C-algebraic respectively). It is easy to see that the left Rxr-algebraicity,
the left R-algebraicity and the C-algebraicity of a derivation d are all equivalent. If
d is not left R-algebraic, then A = 0 and S is isomorphic to R[x;d]. Since the ring
R[z;d] is prime, we have P = 0 and the only minimal prime ideal over A is {0}.
There is nothing to prove in this case. We hence assume that our derivation d is left

R-algebraic or, equivalently, left Rz-algebraic. Our main theorem is as follows:

Theorem 2. Let R be a prime ring and let d be a left R-algebraic derivation of R.
Let ¢, b be as described in Theorem 1. Let u(\) be the minimal polynomial of b over
CD . Then the following hold:

(1) A= {u(Q)).

(2) We factorize p(\) into the product of monic irreducible factors in C @ [)]:
w(A) = m(AN)" e (A)2 (N . Then P = (m1(Q)m2(C) -+ m(¢)) and minimal
prime ideals of R[x;d] over A are (ms(C)), s=1,--- k.



An ideal I of R is d-invariant if d(I) C I. Obviously, R has two d-invariant ideals
R and {0}, which we call trivial d-invariant ideals. We have the following:

Corollary 3. In the notations of Theorem 1, we have the following:

(1) The ring S is semiprime if and only if the minimal polynomial of b over C(@)
has no square factors.

(2) The ring S is prime if and only if the minimal polynomial of b over C(? is
irreducible.

(8) The ring S is simple if and only if R has no nontrivial d-invariant ideals and

the minimal polynomial of b over C? is irreducible.

Before proceeding to the proof of Theorem 2, let us compute explicitly the ¢ of
Theorem 1 for a left R-algebraic derivation d: We apply Kharchenko’s theorem [11,

Corollaries 2 and 3]. If char R = 0, then d + ad(b) = 0 for some b € Rz and we set

¢ def. . +b. If char R =p > 0, then d, d, dPQ, ... are C-dependent modulo X-inner

derivations. Let s > 0 be the minimal integer such that

1

dv Pt dPd

are C-dependent modulo X-inner derivations. By the minimality of s, there exist
a; € C and b € @ such that

(2) & +a1d” 4+ agd+ad(b) = 0.

By the minimality of s again, we see easily that d(«;) = 0 and d(b) € C. We divide

our discussion into two cases:

Case 1. d(b) € d(C): Say, d(b) = d(«), where a € C. Then d(b — «) = 0. Since b
and b — « define the same X-inner derivation, we may replace b by b — a and assume
that d(b) = 0. So we have

C::rps—l—alxps_l—l—---—l—asx—i—b.

Case 2. d(b) ¢ d(C): Since d(c;) = 0, all left multiplications («;); commutes with
d. Since d(b) € C, we have for r € R,

d(ad(b)(r)) = d([b,7]) = [d(b), ] + [b.d(r)] = [b,d(r)] = ad(b) (d(r)).

So ad(b) also commutes with d. Using this commutativity and noting (ad(b))p =
ad(bP), we raise both sides of (2) to the p-th power. This gives the equality:

P+ abdP 4 4 aPdP + ad(bP) = 0.



Obviously, d(b?) = pbP~1d(b) = 0. So we have ¢ = 2P + aPaP” + - + aPaP + bP.
The differential identity (2) of R also vanishes on Rz [12, Theorem 2]. In particu-
lar, the evaluation of (2) on C shows that the restriction of d to C' is C-algebraic. In
view of [1, Theorem 1], C is finite-dimensional over C(9). The left R z-algebraicity of
d implies the left Rz-algebraicity of ad(b) and the latter implies the C-algebraicity of
b. In view of the finite-dimensionality of C' over C(9), we see that b is C(?-algebraic.

We summarize what we have shown in the following:

Lemma 4. Let d be a left Rr-algebraic derivation and let ( be as described in
Theorem 1. If char R = 0, then d + ad(b) = 0 for some b € Q and ( = x +b. If
char R = p > 2, then there exists the minimal integer s > 0 such that

& +ard” 4+t agd+ad(b) =0
for some a; € C'D and b € Q with d(b) € C. In the case of d(b) € d(C), we may
choose b € Q@D and ¢ = 2P° +ay2?” +-- -+ asz+b. In the case of d(b) ¢ d(C), we
have bP € QY and ¢ = IS ozfxps + -+ ala? +bP. Moreover, b above is always

C' D _algebraic.

To prove Theorem 2, we need another important result from [14], which, unfor-
tunately, is not explicitly stated in [14]. For our purpose, we formulate it in the
following form but refer its proof to [5, Lemma 1.3], [14] or [15, Theorem 3.3]. Al-
though the ring R is assumed unital in [5, 14, 15], we can modify their proofs to our

case that prime rings are not necessarily with an identity element.

Theorem 5 (Matczuk). Given an ideal Z # 0 of R[x;d], there exist an ideal I # 0 of
R and a unique monic polynomial f(x) in the center of Ry[x;d] such that If(x) C

ZC(f(x)).

Following [5], we call call f(x) above the canonical polynomial of Z. Obviously,
f(z) = 1if and only if Z N R # 0. In this case, we can take the ideal I in Theorem
5 above to be Z N R. Following [4], we call an ideal of R[x;d] principal closed if it
is of the form (f(z)) for some f(x) in the center of Rr[z;d]. Let Z,J be ideals of
R[z;d]. If T C J then the canonical polynomial of J divides that of Z. This will be
used frequently.

Following [9], we use the surjective ring homomorphism ¢: R[z;d] — S to define
an action — of R[z;d] on R as follows: Given g(z) € R[z;d] and r € R, we define
g(x) = rtobe p(g(z))(r). If g(x) = apz™ +---+apn—12+a, € R[x;d|, where a; € R,
then (g(z)) = (ap)rd” + -+ + (an—1)rd + (a,)r, and hence

g(z) = r = ((a0)Ld™ + - + (an—1)rd + (an))(r)
= aod"(r) + + ap-1d(r) + anr.
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It is well-known that R forms a left R[z;d]-module under the action —. (See [9] for
example.) Note that

A={g(z) € R[z;d] | g(z) = R = 0}.

We define similarly g(x) — r for g(x) € Rr[z;d] and r € Rxr. Obviously, the
action — of Rz[x;d] on Rz extends the action — of R[z;d] on R. We observe a
simple but important property of central elements in Rx[z;d].

Lemma 6. If apx™ + -+ ap—12 + ay, lies in the center of Ry[x;d], then

(agz™ 4+ -+ an_1x + a,) = r =ray, for allr € Rg.

Proof. We say that g(z) € R[z;d] has the constant term ¢ € R if g(x) can be written
in the form g(x) = ¢+ terms ending in z. Set f(z) = apx™ + -+ + ap—12 + a,. Let
r € Rrg. Note that apd"(r) + -+ + an—1d(r) + a,r is the constant term of f(z)r
and that ra,, is the constant term of rf(x). Since f(z) is central, the two skew
polynomials f(z)r, rf(z) are equal and hence so are their constant terms. Thus

apd™(r) 4+ -+ - + ap-1d(r) + apr = ra,, proving the lemma.

An ideal 7 of R|x;d] is called R-disjoint if ZN R = {0}. [5, Theorem 1.6] gives the
following elegant characterization of R-disjoint prime ideals of R[z;d] .

Lemma 7. An ideal of R[x;d] is prime and R-disjoint if and only if it is of the form
(m(€)) for a monic irreducible 1 # w(\) € C[A].

We are now ready to give the

Proof of Theorem 2. By Theorem 5, there exist the canonical polynomial f(x)
of A and an ideal I # 0 of R such that If(z) C A C (f(x)). Since If(z) C A,
we have 0 = I'f(z) = R = I(f(z) — R) and hence f(z) = R = 0. This implies
(f(x)) = R =0 and hence A = (f(x)).

By assumption, d is Rr-algebraic. Let

{m—i—b, if charR=0
B —l—ozlxps_l +---+asz+b, ifcharR=p>0
be given as in Theorem 1. As in the proof of Lemma 6, we say that g(z) €

R[z;d] has the constant term ¢ € R if g(z) can be written in the form g(z) =

¢ + terms ending in x.
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Claim. ¢* has the constant term b* for k > 0. This is obvious if k = 0. For k > 1,

we have
¢% = ¢*1(b+ terms ending in )

= (*1b + terms ending in z

= bC*~! 4 terms ending in z
If ¢*~1 has the constant term b*~!, then ¢* has the constant term b*. The claim
follows by induction on k.

Applying Theorem 1, we may write
(3) fl@) ="+ Bi¢" 4+ B,
where 3; € C(4. We set
B = A"+ BN 4 6, e CON.

By Claim above, f(z) = n(¢) has the constant term f(b). By Lemma 6, we have
0= f(z) = R = R(b) and so i(b) = 0. The minimal polynomial z()\) of b over C(@)
thus divides zi()\) in C(Y[A]. On the other hand, u(b) is the constant term of u(¢)
by Claim above. Since u(() is central, we have u(¢) = R = Ru(b) = 0 by Lemma 6.
Let J be a nonzero ideal of R such that Ju(¢) C R[x;d]. Then Ju(¢) C A. It follows
from the minimality of the degree of f(x) in A that the degree of u()) is equal to or
greater than the degree of the canonical polynomial f(z) of A. So u(A) = (M) and
f(z) = p(C) follows.

We factorize p()\) into the product of monic irreducible factors in C(D[\]: u()\) =
m1(A)" e (A)"2 - - (A)™*, where each n; > 1. The rest then follows by the more
general Theorem 8 below.

Let Z,J be ideals of R[x;d]. We say that J is prime over Z if J O 7 and if J/Z
is a prime ideal of R[x;d]|/Z. We call J the prime radical over Z if 7 O Z and if J/Z
is the prime radical of R[x;d]|/Z. The following theorem describes the prime radical

and minimal prime ideals over a principal closed ideal.

Theorem 8. Let p(\) € C D[\ be monic. We factorize u()\) into the product of
monic irreducible factors in CD[N]: pu(X) = m(A\)™ w2 (N)"2 - -1 (N)™, where each
n; > 1. Then minimal prime ideals of Rlx;d] over (u(€)) are (ms(C)), s =1,--- ,k,
where ¢ is given as in Theorem 1. Moreover, the prime radical of R[x;d]/{u(C)) is
equal to (w1 (A)ma(A) - mi(A))/{p(C))-

For the proof of Theorem 8, we need a lemma.

Lemma 9. If p1(A\) and puz(\) are monic and relatively prime in C D[\, then
(O} M {2(Q)) = (1 (Qpa(<)), where ¢ is given as in Theorem 1.
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Proof. The inclusion (u1(Q)p2(¢)) € (u1(€)) N (u2(C)) is obvious. For the reverse

inclusion, let f(z) € (u1(C)) N (p2(C)). Write f(z) = g1(x)p1(C) = g2()p2(C), where
gi(z) € Rr[z;d]. Since p1(A\) and pa(A) are relatively prime in C(¥[)\], there exist
A(N), B()\) € C@[)] such that A(X)pu1(\) + B(A\)pa(\) = 1. So

Thus

implying that
f(2) = g1(x)p1 () = (A(Q)g2(x) + g1(2)B(C)) 1 () p2 ().

So f(x) € (u1(Qpa(C)). Thus (p1(€)) N (p2(C)) € (p1(Q)p2(C)), proving the lemma.

Proof of Theorem 8. Let Q be an ideal of R[x;d], which is a minimal prime ideal
over (u(¢)). Then

Q2 (m(Q)™ - mi(Q)™) 2 (ma ()™ -+ (m(C)) ™.

By the primeness of Q, we see that Q includes (m;(¢)) for some i. By Lemma 7,
(mi(¢)) is a prime ideal of R[z;d]. The minimality of Q implies that Q = (m;(()).
This proves that all possible minimal prime ideals of R[z;d] over (u(¢)) are (ms(()),
s=1,--- k. Conversely, we show each (m;(¢)) is a minimal prime ideal over (u(()):
Let Qp be a prime ideal of R[z;d] such that (m;(()) 2O Qo 2 (u(¢)). Applying the
same argument above yields Qg 2 (m;(¢)) for some j and so (m;(¢)) 2 (7;(¢)). Then
;i (¢) divides 7;(¢). So m;(¢) = m;(¢) = Qo follows as asserted. Let H be the prime
radical over the ideal (1(¢)). Choose an integer m > n; for all i. Then

(m(N)ma(A) -+ e (A)™ € (u(C)) € H.

But H is a semiprime ideal of R[x;d]. So (w1 (A)m2(A) -7 (A)) € H follows. On the
other hand, by Lemma 7, each (m;({)) is a prime ideal of R[z;d] and so

HC (m(A) 0 (m(A) S (mM)ma(A) - m(N)),

where the second inclusion is implied by Lemma 9. Thus H = (w1 (A\)m2(\) - - - 7w (A)).

The proof is now complete.



We conclude this section with

Proof of Corollary 3. (1) and (2) follows immediately from Theorem 2. For (3), let
() € C@[)] denote the minimal polynomial of b over C(9). For the implication <,
assume that R has no nontrivial d-invariant ideals and that u(A) is irreducible over
C@D_ Let T be an ideal of R[z;d] properly larger than A. By Theorem 2, A = (u(¢)).
Then the canonical polynomial of Z is a proper divisor of u(¢) and hence must be 1
by the irreducibility of (). SoZNR #0. If r e ZN R then d(r) = zr—rz € TN R.
So Z N R is a d-invariant ideal of R. So Z N R = R, that is, Z O R. This implies
7 = Rz;d]. The simplicity of R[z;d]/A follows as asserted.

For the implication =, we assume that S is simple. Then S is surely prime.
By (2), the minimal polynomial p(\) of b over C? is irreducible. By Theorem 2,
A = (u(¢)). Let I be a nonzero d-invariant ideal of R. Set

Ia;d) S {ao + a1z + - € Rlayd] | ag, ai,... € I}.

Then I[z;d] forms an ideal of R[z;d]. Note that RN I[z;d] = I but RN.A = 0. The
ideal A + I[xz;d] is thus properly larger than A. But S is isomorphic to R[z;d]/A.
By the simplicity of S, A+ I[x;d] = R[z;d]. Given any a € R, we may thus write

a= f(x)+apx" +---+ ap,

where f(z) € A and where a,, ... ,ag € I. Using the ring homomorphism ¢: R[x; d] —|}
S and noting that ¢(f(z)) = 0, we have

ar, = (ap)pd™ + -+ (a1)pd + (ag)rL-
That is, for all y € R,
ay = apd"(y) + -+ + a1d(y) + aoy.

But this differential identity also holds for y € @ by [12, Theorem 2|. Setting y = 1,
we have a = ag € I. This is true for any given a € R. It follows that I = R. So R
has no d-invariant ideals other that R and 0, as asserted.

2. An Application to the Nilpotent Case

Firstly, we need an important notion discovered by Grzezczuk:

Definition ([6, 3]). Let R be a prime ring and let d be a nilpotent derivation of
R. The least integer m such that d"™(R)c = 0 for some nonzero ¢ € R is called the
annihilating nilpotency of d and is denoted by mg(R).
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Let d be a nilpotent derivation of R. We consider the prime subring R+ Z - 1 of
@, where Z is the ring of integers. The derivation d extends to a nilpotent derivation
of R+ Z -1 with the same nilpotencey and annihilating nilpotency. Replacing R by
R+ 7Z -1, we always assume that R has an identity element 1 in this section. In the
ring R[x;d], we consider the two-sided ideal (™), where m = my(R). For r € R,

2 = ™ (T) d(r)z™ 4+ ( >dm_1(r)m +dm ().

Therefore, if apz™ + a1zt + - + a, € (™), then a, € Rd™(R). This implies
Rd™(R) includes (™) N R, which is an ideal of R. Since Rd"(R) has nonzero right
annihilator, we have ()N R = 0. We have now come to an interesting construction,

m
m—1

which has been employed extensively and fruitfully in the literature [6]-[10]:

Definition ([8]). Let d be a nilpotent derivation of R. Write m = m4(R). Let M be
an ideal of R[z;d] which is maximal with respect to the property that ™ € M and
MN R = 0. Obviously, M is a prime ideal of R[z;d]|. The quotient ring R[z;d]/M
is called the d-extension of R.

Although the M obtained above by Zorn’s Lemma is not necessarily unique, our
alm is to prove that M is equal to the ideal P described in Theorem 2. So it is
unique. From now on we always fix such an M. For this purpose we need a structure
result of nilpotent derivations. The following is given in [3, Theorems 1-4].

Theorem 10. Let d be a nilpotent derivation of a prime ring R.

(1) In the case of char R = 0, there exists a nilpotent b € QQ with the nilpotency 1
such that d + ad(b) = 0 and mq(R) = L.

(2) In the case of char R = p > 2, let s be the least integer > 1 such that dpi,
0 < i < s, are C-dependent modulo X-inner derivations. Then there exists b € Q)
such that dP” +ad(b) = 0 and such that the minimal polynomial of b over C assumes
the form (bpt —a)l =0, where « € CD and where 1,1 are integers > 0 such that
(I,p) = 1. Moreover, my(R) = pt1.

For a nilpotent derivation d, we have a detailed description of the ideal M defined
above. We divide our statement into two cases according to whether the characteristic
of R is 0 or not:

Theorem 11. Let d be a nilpotent derivation of a prime ring R and let A, P be
as described in Theorem 2 and M, the ideal described in the definition above. In the
notation of Theorem 10, if char R = 0, then A = (¢') and P = M = ({), where
( = x + b and where | is the nilpotency of b.

We need the following lemma. See [2, Theorem 2.3.3] for the proof.
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Lemma 12. Let vi,vq, - ,v, be C-independent elements in Rx and let I be a
nonzero ideal of R. Then there exist finitely many a;,b; € I such that ), a;vjb; =0
for1<j<mn-—1but)  av,b; #0.

Proof of Theorem 11. We retain the notation of Theorem 10 in the following.
Then, by (1) of Theorem 10, d 4+ ad(b) = 0 for some nilpotent b € @ with the
nilpotency I. That is, b' = 0 but b'~! # 0. By Theorem 1, the center of Rr|x;d] is
equal to C'(@) [¢], where ¢ = z+b. The minimal polynomial of b over C' (d) i obviously
the polynomial A in C(4[)]. Tt follows from Theorem 2 that A = (¢!) and P = (¢).
By Lemma 7, P is prime, as asserted. We compute the ideal M: By Theorem 10,
mgq(R) = . Now, we look at the canonical polynomial of the ideal (z!) of R[x;d):
Write # = ¢ + b. Noting that ' = 0 and ( is central, we have

I _ I Al l — ! —
' =((+b) —C+<1)C 1b+---+(l_1>gb L

implying that (z!) C (¢). Since 1,b,...,b'~! are C-independent, by Lemma 12 there
exist finitely many r;,7} € I such that Y, r;b'~'r] # 0 but such that >, r;bir, =0
for 0 < j <l—1. We have

(') 2 melr; = (l _l 1)((27}()[1%) # 0.

This shows that ¢ is the canonical polynomial of the ideal (z!). But M extends ().
We see easily that the canonical polynomial of M divides the canonical polynomial
¢ of (z'). Since M N R = 0, the canonical polynomial of M cannot be 1 and hence
must be (. So (¢) D M. But (¢) also extends (x') and intersects R trivially. By the
maximality of M, it follows that M = (¢) = P.

The case for char R = p > 2 is more complicate:

Theorem 13. Let d be a nilpotent derivation of a prime ring R and let A, P be
as described in Theorem 2 and M, the ideal described in the definition above. In the

notation of Theorem 10, if char R = p > 2, then we have the following two cases:

(1) Suppose that b is chosen such that d(b) = 0. Set ¢ = 2P" +b. Then

t

A=((¢" —a)) and M=P=(""—al/?"),

where u is the largest integer such that 0 < u <t and such that a'/?" € C(%,
(2) Suppose that d(b) ¢ d(C). Set ( = 2?4+ P Then

t—1

A=("" —a)l) and M=P=("

—1—u . al/pu>7
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where u s the largest integer such that 0 < u <t —1 and such that /Pt e 0@

Proof. Assume char R = p > 2. Let s be the least integer > 1 such that dpi, 0<:<s,
are C-dependent modulo X-inner derivations. By Theorem 10, there exists b € Q)
such that d?” +ad(b) = 0 and such that the minimal polynomial of b over C' assumes
the form (bpt —a)l =0, where a € C, I,t > 0 and (I,p) = 1. By Theorem 10 again,
ma(R) = p**'l.

Our next step is to find the canonical polynomial of the ideal (z™), where m =
mq(R) = p**tl. For this purpose, we must first decide ¢ described in Theorem 1.
Analogous to Lemma 4, we divide our argument into two cases:

Case 1. d(b) € d(C): By Lemma 4, we may assume that d(b) = 0 and so
¢ =aP" +b. Applying d to (bpt —a)! =0, we obtain

—1(b*" — o)l d(a) = 0.

Since I # 0 modulo p and (b*" — a)!=! # 0, it follows d(e) = 0. So ¢ — a is also in
the center of Rz[x;d]. Using this and noting that (b*" — a)! = 0, we compute

stt; t t t

= (=0 = (=) = (¢ —a) = (7 —a))

i V()@ - -y

™" = P

I
~ @
= O

;)@ - o

i=0
So ™ € <Cpt — «a) and hence z™ C (Cpt —a). So (P — « divides the canonical
polynomial of (™). On the other hand, since [ is the nilpotency of w'— a, the
elements 1, b’ — Qyonny (bpt — oz)l_l are C-independent. By Lemma 12, there exist
ri, 1y € I such that ), ra(bP — o)L © # 0 but such that ), ri(bP" — a)irl =0 for
0 < j <1l—1. Multiplying the above dlsplayed expression of ™ by r;,r; from the
left and right respectively and then adding them up, we have

O#Zn ri=1(¢ _04>(Z7“z‘(bpt—oz)l—1rg> € (™).
The canonical polynomial of the ideal (z™) thus has (-degree < p' and hence must
be equal to Cpt — Q.
Let u be the largest integer such that 0 < u <t and such that al/P" e 0@, Set
B =al/P" Then ¢? —a = (P " = B)*". Note that \? " — 8 € CD[)] is irreducible.
Since M D (2™), the canonical polynomial of M is a divisor of (/\ptiu — B)P". Say,
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t—u

(AP — )Y, where 0 < v < p“, is the canonical polynomial of M. Since MNR = 0,
v must be > 0. We have

MC((¢" " =By C (¢ - ).

u

Since (¢P" " — B) N R =0, it follows that M = (¢?"
We now compute the ideals A and P by Theorem 2: Since the minimal polynomial
of b over C@D is (A" —a)t = (W' = g)P"L € C[)], the ideal A is thus equal to

— () by the maximality of M.

()
The only irreducible factor of (AP — 8)P"Lis A’ “ — 3. So the ideal P is given by
(¢
Case 2. d(b) ¢ d(C): We have ¢ = 22" 4+ b by Lemma 4. We claim t > 0
Assume otherwise ¢t = 0. That is, (b — a)! = 0. Applying d and noting d(b) € C, we
obtain

— ) and is hence equal to M, as asserted.

1(b—)'=1(d(b) — d(a)) = 0.

Since d(b) ¢ d(C), d(b) — d(«) # 0. But I Z 0 modulo p by our assumption and
(b*" — @)=! # 0 by the minimality of /. This contradiction shows ¢ > 0 as claimed.
Applying d to (b*" — a)! = 0 and using d(b) € C and t > 0, we obtain [(b*" —
a)'=td(a) = 0. Tt follows that d(a) = 0. So « is also in the center of Rz[z;d]. Using
this and noting that (bpt —a)! =0, we compute analogously

s+tl t—1

== (T = () = (T —a) = (0 - )

:l ()@ - —ay

o~ =
= o

t

(—1)* <l) € =) — @)

7

=0

As in Case 1, the canonical polynomial of (z™) is CPFI — . We let u be the largest
integer such that 0 < u <t — 1 and such that al/P" e ¢4, Set 8= al/P" . Then

t—1

¢ —a=(C

P B)P". Arguing as in Case 1, we have

M= (""" = p).

The minimal polynomial of b” over C@ is (AP"
By Theorem 2, A is equal to



14

1—

" B)Plis AP = 3, the ideal P is given
— ) and is also equal to M, as asserted.

Since the only irreducible factor of ()\pt_
by (¢P "
We conclude our paper with the following immediate

Corollary 14. Let d be a nilpotent derivation of a prime ring R. The d-extension of
R is isomorphic to S modulo its prime radical via the ring homomorphism ¢: R|x; d] —|}

S.
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