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Abstract

We consider the large time behavior for nonlinear Schrédinger—Langevin equation in one dimen-
ston for WKB-initial data with different density at left/right far fields. We show that the momen-
tum damping overwhelms the quantum dispersion. Thus, unlike those in scattering theory, the
solution tends to an asymptotic state determined by a porous media equation. More precisely, the
total density tends pointwise to a nonlinear diffusion wave and the phase tends to a corresponding
function.

1 Introduction and Main results

The theory of quantum mechanics was employed to deal with the dissipative system which were ob-
served, for example, in heavy ion physics and frictional phenomena in fission, etc [25, 20]. Recently,
the nonlinear Schrédinger-Langevin equation is taken into granted to describe the dissipative process
due to frictional force, for instance, in the motion of a Brownian particle in heat bath by Kostin [15],
to characterize directly a class of nonlinear quantum mechanics through nonlinear gauge generaliza-
tion by Doebner-Goldin-Nattermann [5], and to study the motion of charged (quantum) particles in
semiconductor of nano-size [12, 19], and so on. The starting point for the derivation of Schrodinger—
Langevin equation is the (quantum) Langevin equation. It is well-known that the Langevin equation
has been widely used in order to investigate the diffusion of Brownian particles, dissipation and other
non-equilibrium phenomena. In classical mechanics, the Langevin equation for a Brownian particle of
mass m acted on by an external force F'(z) is

‘ (1.1)

m

k + F(z) + T(t),

where k = mg is the momentum, £ > 0 is the friction constant, and T'(¢) is the stochastic force due
to heat bath. This force a purely random centered Gaussian process characterized by

(D() =0, (D(0).T(t')) = 2RT5(t ~ 1),

where T' > 0 is the temperature of heat bath and & is the Boltzmann constant. Based on this
fundamental equation (1.1) one can derive the well-known Fokker-Planck equations [23].
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In quantum mechanical analogy, Ford-Kac-Mazur [7, 8] have proposed the quantum Langevin
equation which is the Heisenberg equation of motion for the (operator) coordinate of a Brownian
particle coupled to a heat bath:

m ¢ (1.2)
K(t) = — =K+ F(X) +T(1).

Here K is the Heisenberg momentum operator, and X is the Heisenberg position operator. Starting
with a friction term propositional to the expectation of the Heisenberg momentum operator K in
the Ehrenfest equation (the second equation above), Kostin [15] was able to derived the nonlinear
Schrodinger—-Langevin equation for a Brownian particle interacting with a thermal background.

In general, the nonlinear Schréodinger—Langevin for the wave function ¥ takes the form

10, ¥ = — %EQA\I/ + (T2 T + %S\I/, in RYxRy, (1.3)
1
S =5e(v/T7), (1.4)

where d > 1, € > 0 is the scaled Planck constant, 7 > 0 is the scaled frictional constant, and U* denotes
the complex conjugate of the wave function W. The function h(|¥|?) represents the self-interaction
potential. We shall assume i’ > 0. Physically it means that the interaction of particles is repulsive.
There are other derivations of the Schrodinger-Langevin equation based on different assumptions,
see [14, 27, 4, 26, 9].

With the frictional force (1.4) acting up, the dynamics of the wave function ¥ of Eq. (1.3) is
completely different from the classical one for nonlinear Schrodinger equation. In fact, it was proven
that Schrodinger-Langevin equation ususally can have no solitary type solutions in the damped free-
particle case in energy sapce [1], and that the coherent quantum-oscillation trajectories are damped
due to the nonlinear friction force in the Sherddinger-Langevin equation where the coherent oscillations
decay exponentially with time [24].

We are interested in the mathematical analysis on the large time behavior of the macroscopic
observable-the mass and the momentum of the nonlinear Schrodinger—Langevin equation caused by
the nonlinear frictional effect. Roughly speaking, the new frictional term SW¥ on the right hand side
of (1.3) caused by the purely random force through Langevin equation is dissipative. Thus, we may
expect a different asymptotic profile of the wave function in large time. To have an intuition, we
apply Madelung’s idea [18] to describe quantum systems in terms of a fluid-dynamical description of
the macroscopic observables such as mass, momentum, and energy. We look for the solution of the
WKB-form ¥ = ,/pexp(iS/e) of Eq. (1.3)-(1.4), substitute it into equations, and separate the real
part and image part respectively, we can obtain the Madelung fluid-type equations for the particle
density p and the momentum J = pV.S for irrotational flow

Op + div(pV S) = 0, (1.5)
2 A 1
O (pVS) +div (pVS @ VS) + Vp(p) = %pv (\/\gﬁ) - ;pVS, (1.6)

where the pressure p = p(p) satisfies p’(p) = ph/(p), and the i-th component of the convective term
div(pu ® u) equals Zzzl Oz, (pu;ug). Let us introduce the re-scaling:

t 1 .t
t — Tt, psz(;,m), ST = ;S(;,x), (1.7)

to transform (1.5)—(1.6) into

Bip + div(pVS) =0, (1.8)
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2 A
720,(pV S) + m2div (pVS ® VS) + Vp(p) = %pv <\/\/;) —pVS, (1.9)

Performing the formal limits € — 0 and 7 — 0, we obtain the following nonlinear parabolic equation
for density
dp = Ap(p). (1.10)

Thus, instead of convergence to that of free Schrodinger equation, we expect the density may tend
to the self-similar solutions of the parabolic equation (1.10). In the present paper, we justify above
expected long-time behavior for nonlinear Schrédinger—Langevin equation (1.3)—(1.4) in one-dimension
for the following WKB initial data:

(x,t =0) = Vo(z) = /po(x)eSo@)/e, (1.11)
po(E£oo) = py >0, Sp(foo) = —h(ps). (1.12)

As shown in [6], Eq. (1.10) in one-dimension admits a unique self-similar solution up to a position

shift, the nonlinear diffusion wave. It has the form p(z,t) = W(¢), (¢ = \/fT-t) with the boundary

conditions:
W(to0) = p. (1.13)

Note that the mass p satisfies the conservation law (1.5). When the initial density pq is a perturbation
of the nonlinear diffusion wave, it causes a shift of the nonlinear diffusion wave in the following
sense[10]:

o0

/[%@—W@mm:MmZdh—LL (1.14)

— 00
where the constant z¢ € R is the shift, and Jx = prus. As it was shown in [10], the momentum
(J—,J4+) can be set to be zero at infinity. In fact, if not, due to the damping of the momentum
equation (at infinity), we can define J.(x,t) and p.(x,t) as the follows:

LkCut)::J,e—%f4-(J+-J;)e—%{/1 p(x)d, (1.15)
A
pe(l‘,t) = %p(z)e Ttv (116)

where p(x) > 0 belongs to C§°(R) and satisfies
/ h plx)dx = 1.
The functions J, carries the initial momentum at infinity, whereas p. contains the mass induced by
J. at far fields. Then the shift x( is determined by
/O<> [po(z) = W(x + zo,t =0) — pe(z,t = 0)]dz = 0. (1.17)
By removing J, from J and p. from p, we may assume

Ji =0. (1.18)

It is convenient to investigate the large time behavior of the IVP for NLS (1.3)—(1.4) and (1.11)—
(1.12) in terms of the physical quantities, the amplitude n = /p and the momentum J = n%S,. The
macroscopic equations take

2nny + J, =0, (1.19)
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J? 1 5 5 (Ngs J
where
P(n) = p(n?). (1.21)
The initial and boundary conditions are given by
n(z,0) =ng(z) >0, J(x,0)=Jy(x), (1.22)
n(too,t) = ny = /px, J(*oo,t)=Jr=0. (1.23)

Set

ala) = [ " (n3(y) — Wy + 20,0))dy,

— 00

wo(z) =no(x) — VW (x 4+ 20,0), no(z) = Jo(x) + p(W(z + 20,0)).

The main theorem on the large time behavior of IVP (1.19)-(1.23) is

Theorem 1.1 Let p'(p) > 0 for p > 0, and |ny —n_| < 1. Assume that z9p € L*(R), wy €
H?(R), no € H*(R) with ||z0]|L2®) + lwollms ) + lInoll mar) sufficiently small, but independent of «.
Then, there is a global classical solution (n,J) of IVP (1.19)—(1.23) such that

[n( ) = VW (- + 20, ) g5 + [[TCo8) +7p (W (- + 20, 1)), [lrs — 0,

as t — oco. Moreover, it holds

In(-,t) = VW (- +0,8) [l < C(1+1)7%,

1TCot) +7p (W (- +20,1),, [z < C(L+1)7

From the solution (p, u) of IVP (1.19)—(1.23), we can construct the solution of IVP for NLS (1.3)-
(1.4) and (1.11)—(1.12). In fact, from (1.20), the equation for velocity u = S, is

1, 5 9 1, (nm> 1
- B - 1.24
U + 2(u ) + h(n%), 25 0 ). Tu, ( )

from which we reckon the total velocity satisfies

/OO u(z, t)de = e /7 /00 ug(z)dz — T[h(n2) — h(n2)](1 — e */7) < cc.

—0o0 —0o0

Thus, the wave function ¥(x,t)
U(z,t) = n(x, t)eS @D/
with

x

S(x,t) = —Th(W_) —l—/ u(y, t)dz (1.25)
is well-defined and satisfies IVP (1.3)—(1.4) and (1.11)—(1.12).
Set
¢0 :S()((,U)—f'Th (W(£C+$0,t:0)). (126)

The large time behavior for the NLS (1.3)—(1.4) and (1.11)—(1.12) is then obtained as the follows:
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Theorem 1.2 Let h'(p) > 0 for p > 0, and |ny —n_| < 1. Assume that (20, ¢0) € L*(R), wy €
H5(R), 1o € HY(R) with ||20]| L2(w) + [[woll 5 ) + 170l 54 (r) sufficiently small. Then, there is a global
classical solution ¥ = ne*S/¢ of IVP (1.3)~(1.4) and (1.11)-(1.12) such that

(U — ) )| ey — 0, as  t— o0, (1.27)
where U = /W (€)eTMW(E)/e ¢ = (z + 0)/V/T + t. Moreover, it holds

() = /W (- + 0, 8), SC,t) + 7h (W (- + 30, 8))) | ooy < C(1+1)75/4, (1.28)

2 Nonlinear diffusion waves

We list some known results concerning the self-similar solution of the nonlinear parabolic equation
(1.10) in this section.

Assume that the pressure-density functions satisfy p’(p) > 0 and 7, € are set to be one. Then the
nonlinear parabolic equation (1.10) reads:

Pt = p(p)wwa p/(p) >0, (2'1)

which possesses a unique self-similar solution w(z,t) (see [6])

pt) SWQ), (=
satisfying
/1 / _ 1
B LA (S LA TS,

p(W(C))
W(to0) = px, (py,p- >0).

This solution is increasing if p_ < p; and decreasing if p_ > p,, and satisfies

6 gk )
D g POl + W(Q) = pileso + () = p-feco < e,
k=1

Wy (2,8)] < CS(L+1)7Y, [Wa(z, )| < C5(1+1)"2,

where and throughout § = |p4 — p_|.

We introduce a new variable
n(x,t) =/ W(z + xo,1).

- 1
ny = %p(’rﬂ)zz

We have the following LP—estimates of the derivatives of W and 7 as ([17]):

From (2.1), 1 satisfies

Lemma 2.1 Let W be the self-similar solution of (1.10) and (1.13) and let n = vVW. Then it holds
that ,
JOFW (1)1, < CO(1+1) 4+, (2.2)

|0FAIA(., 1)L, < CO(1+1)F 3t 2, (2.3)

fork,j >0 and p € [1,00], where C > 0 is some constant.
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In the following section, we will often use the Moser-type calculus inequalities [13]:

Lemma 2.2 Let f,g € L N H®. Then, it holds

107 (f9)ll < Cllgllze= 1107 £Il + Cllflz=[107 91, (2.4)
197 (f9) = F07gll < Cligllz= 1107 fI + Cll 11027 gll, (2.5)
for 1 <a <s. Here, || -|| denotes for L* norm.

3 The perturbed equations

To obtain energy and decay estimates, we shall work on two sets of perturbed equations. One is an
equation for the integral of the perturbed mass and the perturbed momentum:

The other is the equation for the perturbed amplitude and the perturbed momentum:
w=n—-n, n=J+ P(N)s. (3.2)

We derive them and explain why we need to use both equations for energy estimates at the end of
this section.
From (1.19)—(1.23), the corresponding IVP for (z,7) becomes

2t =0, (3.3)
o+ [ 2L 2,y = i)

= %62(W + z5) (%) =0+ (W), (3.4)
z(x,0) = zo(x), (z,0) =no(z), xeR. (3.5)

From (3.3)—(3.5), follows the IVP for the damped “wave equation” for z

Zit + 2 — (p/(W)Zx)x + 3522’(1‘.’61‘36 = (fl + fo+ fS)x . (36)

The corresponding initial data are

z(2,0) = zo(x), zt(x,0) = —no(x). (3.7)
Here,
1 (W + 250)? 1
f1 © e . p(W)s — i€ Wiz, (3.8)
2 (p(W)e + )
f2—?— T (3.9)
fs =p(W + 2) = p(W) = p' (W) 2 (3.10)

and we have used
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We recall that we have assumed p’ > 0. The term (p'(W)z,), is a diffusion term. We denote

minp' (W) =v > 0. (3.11)

From (1.19)-(1.20), we derive the “wave equation” for n = /p as

1 1 J? 1 1 ,n?
Mt + 1 + ﬁn? " on |:P(n) + TL2:| . + Zgzna:xwx - 152% =0,

where we recall P(n) = p(n?), and we have used the relation

2
n n
2 TT TT
n xd x n

Recalling w =n —n and n = J + P(n),, then we obtain the equations for (w,n) as

2(n 4 w)wy + 27w + 1, = 0, (3.12)
1
Wit + Wy — (p/(W)ww)w + 152wwzxa: =01 + 92 + 93, (313)
imposed with the initial values
n(z,0) = no(x), (3.14)
« 1 27
w(@,0) = wo = no — 71, wy(w, 0) = 1io(x) = 7%. (3.15)
Here,
g +w €2 Mgy + Wez)? €2 _
g1(z,t) ( %+ wt) 1 ( m% T wm) = oy Mz T Tt (3.16)
w0 =5 2]
r,t) =—= | —
- 2V L o
1 P(f), —n)?
N ( (~n) n) (3.17)
2(n+ w) (n+w)? |,
gs(z,t) = [P (7 + w)*) (e + we)] | — [P (7%)70a]  — [P (7*)wy]
= [0 (A +w)?) = p'(7®)) (7 +ws)], (3.18)
with 7, defined by (3.12).
There is a relation equation between w and z,:
- 1
2n+w)w =2z, or - (3.19)

YTt w”

which follows from p = n?.
Below we shall use both equations for the energy estimates. Roughly speaking, the left-hand sides

of both z-equation (3.6) and w-equation (3.13) produce two good terms in the energy estimates: the

dissipation energies
t t
[ s, [ uao)?as
0 0
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tzszs twtszs.
/Ont()nd,/on ()2 d

The right-hand side of the w-equation (3.13) produces a term fot |w]|? ds which cannot be con-
trolled in the energy estimate for the w-equation, but it can be controlled by the dissipation en-
ergy of the z-equation, because ||w| ~ |/z;|. On the other hand, the bad term on the right-

and the damping energies

hand side of the z-equation (3.6) is zy4., which produces fot (||th|\2 + Hzm||2) ds in the energy es-
timate. Thus, the energy estimate cannot be closed by itself. Fortunately, this term is bounded by
fo (Jwe]|* + ||wgc||2 + |lw||?) ds from (3.19) and it can be controlled by the dissipation and damping en-

ergies of the w-equation and the z-equation. Notice that the term fg ||z(s)||? ds does not appear in the
energy estimate for the z-equation because its right-hand side is a derivative. Thus, the combination
of the energy estimates for z and w can close both energy estimates.

4 A priori estimates

4.1 A priori assumption

In order to perform the a priori energy estimate, let us assume that it holds for local in time solutions
that for T" > 0,

— k k 5—
op = O%;%XTZ 10F2(8)|| + [|OFw(t) || prs—=x ) < 1 (4.1)
Here, || - ||+ is the Sobolev norm and || - || is the L? norm. Under the smallness assumption of 67 + 4,

our goal is to show that dr is bounded by dg + §, where

leak (O + 10Fw(0) [ -2 (4.2)

involves only the initial data.

Lemma 4.1 Under the assumption (4.1), we have

1 . 3 1 3
5\/0— Sn"""”ﬁi\/ﬁ ’ 50— S < 2p+7 (43)
Proof: From (3.19), ||z5]] < O(JJw||). The lemma follows easily from the smallness of ||z g1,
||w||frr and Sobolev embedding. 0

We have the following relations between z, and w.

Lemma 4.2 It holds that
[[wl ~ [|2z]] (4.4)

and
k

J
10F0}za]l = 3 5 0(6r + 0|0l 0.5 28+ <5, (45)
=0 =0

provided ér < 1.

Proof: The proof follows easily from the relation:
zz = (20 + w)w
assumption (4.1), (2.3) and Lemma 4.1. 0

We have some basic estimates.
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Lemma 4.3 Under the assumption (4.1), it holds that for 0 <t <T

lea’“ )| rrs—2 lef)k M zro—2x,
1

Z 1OF ()| a2, Y N0F T (0) a2+ = O(b7 + 6). (4.6)
k=0

k=0

Proof: From w-equation (3.13), wy; can be expressed in terms of 9F92~2kw with k& < 1. From
assumption (4.1), we get ||we||gr = O(d1). The estimates for ||zz| g5, |22t/ g3 follows from Lemma
4.2 and assumption (4.1). The estimate for ||z g2 follows from the z-equation (3.6). The estimates
for n comes from (3.3), (3.12), (4.1). From J = n — P(n), and the estimates of n and Lemma 4.2, we
get the estimates for J. 0O

From the relations: 7 = —z, z, = (27 + w)w, 2(1 + w)w; + 2w = —1,, we can get the following
equivalent relations.

Lemma 4.4 Under the assumption (4.1), the following norms are equivalent whenever one of them
s small:

12l + 2l s ~ [lzl[me + [l 2
~ Nzl lwllas + lnllas ~ 121+ lwllas + [z + llwdll s (4.7)

We recall that the nonlinear terms have the following expression:

£2 (W + 2z2)? g2
fl - Z W Tz _p(W>t - ZWZDI7
£, 00)+ )
2 W+ 2 )

fs =p(W + 2z) — p(W) = p'(W)2,.

and
(g +we)? &2 (gw + Waz)? €2 .
g1 = o e po — —Ngazx — Nit,
n+w 4 n -+ w 4
oL [P =
YT+ w) | (A+w)? |,

(

From Lemmas 2.1, 4.1, 4.3, we have the following a priori estimates.

g5 = [(p' (7 + w)?

Lemma 4.5 Under the assumption (4.1), the nonlinear terms have the following a-priori estimates:

f1 = O(O1 4 0) 2z + O(0)r2,
f2 = O(5T + 5)215 + 0(5)7“2,
f3=0(67)zz,

where the function ry(x,t) is related to the k' x—derivative of W. It is defined such that

re(t)]|ze < CA+8)"F2FY20 | =0,1,2,--- . (4.8)
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Lemma 4.6 Under the assumption (4.1), the nonlinear terms have the following a-priori estimates:

91 = (a1wy )z + O(0 + dr)w + O(6)ry
92 = (aswy )z + (bowy)y + O(0 + 67)(w + wy + wy) + O()ry
gs = (awa)a: + (67 + 6)('“) + ww)

where

€2 QMg + Way J? 2J
a g = ayo = ——— =
T4 aqw 2 p?’ p

az = p' (7 +w)?) — p' () = O(w).
Lemma 4.7 Under the assumption (4.1), the higher order derivatives of the monlinear terms have
the following a-priori estimates: for 0 < j < 3,

Jj+1

89{91 :(aﬁg{“ )o + O(61 +9) (Zazw+za wt) +O0(0)rj 44,

J+1
8%92 :(aﬁi“w)m + (bgagwt) + O(0r + 9) (Z 3lw + Z o wt> + O(0)r44
g3 =(az0i " w)y + O(dr +6) Y diw

i=1

4.2 Estimates for (z, z)

Lemma 4.8 For the local in time solutions z(t), it holds for 0 <t <T that

1 1 ) 2
§||zt(t)||2 + ZHZ(t)II2 +/ P (W)22de + = 1 Izt )|I?
b2 1 1 [
o [ (et gl 4 5 [ W12 ds
t
<O+ + (@ + 061 +8)) [ (2ea )P + lzae(s) ) s, (4.9)
0
where o 1s a constant such that
1
a+ 00+ dor) < Emin(l,y). (4.10)

Proof: Multiplying (3.6) with (z + 22;) and integrating over R, we get after integration by parts

d o0
& (1l + gl + S lanal? + [~ 2o [ iz

+ el hal?+ [ P W)z G+ 2nde = [ G2k ok ol

— 00 — 00

o0

The diffusion term on the left-hand side has the following estimate:

/OO ' (W)zg - (2 + 22¢)p da > /:’0 (P (W) — O(6 + 67)) 22 dx + % h p'(W)zi dx

— 00
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Using Lemma 4.5 for f,,, and Cauchy’s inequality, we get

’/_ (f+ 2t f3) - (2 + 2200 da| < olllzall® + ll2aell®) + O IF 7 + [1£217 + 11 £51%)

< a(llzal® + lzatl®) + 007 + 0) (llzaa | + l2al® + ll2e/1%) + O(82) (1 + )=/,

Combining these estimates, we get

P/ (W)22 da + / 22 dx)

d o0
oo — 00

212522
= (el + S0 + Szl +
o0

2
Sl 4 (== 0@+ )l + [ (/W) —a - 06 +8r)):2 do

< (a+ 01 +8)) (llzwa |l + [l2e]®) +0(82) (1 +1)/2.

Integrating this in time from 0 to ¢, applying Cauchy’s inequality for [ z,zdz, we get (4.9), provided
a and 0 + 07 satisfy (4.10). 0

4.3 Estimates for (w,w;, wy)

4.3.1 Basic estimates

Lemma 4.9 For the local in time solutions w, it holds

2

1 1 1 [ €
Sl + @+ 5 [ o0k de+ L lhwa @)

t 62 ) 1 9 1 o] , )
+ Zme(S)H + §||wt(5)|| + 5 ' (W)wzdz | ds
0

— 00

< 060 +6)? + (a+0(5T+5))/0 w(s)|2 ds, (4.11)

for 0 <t < T, provided that é1 + 0 is small enough. Here, « is defined by (4.10).

Proof: Multiply (3.13) with (w + 2w;) and integrate it by part over R:

d 2 1 5, € 2 ® 2 >
g (1l 4 10l + Lol + [~ ovuzacs [~ wwds
g2 2 2 * 2
+ o lwzelI” +llwe®+ [ p/(W)wg da
= / 8t(p'(W))w§,dx+/ (w+2w) (g1 + g2 +g3)de = Io + I + Iz + I3.
From Lemma 2.1, the term I has the following estimate:
L= / P (W)w? da = O(8) w1 (4.12)

From Lemma 4.6, integration-by-part and Cauchy’s inequality, we get

/ wgrdxr < —/ alwi dx — / (Oza1)wyw dx

— 00 —0o0 — 00
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+ C (0 + o) |wel|* + afjw||® + C3*(1 + ¢) =772

< O+ 87) (lwel* + lwa|® + wl®) + afw|® + C6>(1 + )72,

oo o0
/ 2uigrdr < —/ 12wy Wt dx

—00 — 00

+ C(6 + 67) ||we||? + aljw||> + CO>(1 + ¢)77/?

o0

<—= | awlde+00+0r)(lwrl? + w,|?) + allw? + 052 (1 + )72
Here, we have used
|0za1||Ls, ||0ar||Le = O(§ + o),

‘/ Ory - (w+ wy) d| < af|Jw||* + |Jwe]|?) + O(6*) (1 + t)77/2.

For g, we get

/OO wge dz < /OO w - [(agwy) s + (bawy) .| dx

+ 087+ 8) (| + [lws|* + l[we|*) + afwl® + C§*(1 + )77

< O(87 + 8)([lws|* + [[w]| + [lwe]|*) + afw|® + C8*(1 + )77/,

2/ wygodr < / 2wy - [(agwy)z + (bowy)z] dx
40067 + D)l + ol + ael?) + | + C5(1 -+ )77
d oo
<=5 ([ awuzas) + 06+ )l + P + s )

="u\J .
+ aljwe|)® + C82(1 +t)77/2.

Here, we have used Lemma 4.3 and the estimates
[0zaz|Loe, [|0¢az|| Lo, |Ozb2| Lo, = O(6 + b1),

which also follow from Lemma 4.3. For g3, we get

o0 d oo
| rwggde <=5 [ aswtdot Olbr + 8) (sl + ol + )

— 00

Here, we have used
||8ICL3||Loo, HatagHLoo = 0(5 + 5T)

We combine the above estimates to get

oo o0

d 1 g?
& (hal? + 1l + el + [~ 6100 +an + a0+ a)w s+ [

—0o0 — 00

wiw dz)

o0

2
+%||wm||2+(1—2a—0(5+5T))Hth2+/ (9 (W) — O + 67)) w? da

— 00

< (a+0(5 +o7))w]?
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Integrating it in time from 0 to ¢, then applying Cauchy’s inequality for [ wwy, using p'(W) > v > 0,
and choosing « and § + d7 to satisfy (4.10), we can obtain (4.11). 0

Proposition 4.10 For local in time classical solution, it holds that

127 + Iz + Tw®)1 + lwe®)]?

¢ 4.13
+/0 (lze()1* + llw(s)l7r2 + llwe(s)]7) ds < C (b0 +0)*. 1

provided é1 + 0 is small enough.

Proof: We add (4.9) and (4.11) together. The terms on its right-hand side are fot(||zm(s)||2 +

l|z2¢(5)]|?) ds and fot |lw(s)||? ds, which can be estimated through the relations in Lemma 4.2 as the

follows: . ,
/0 lw()I? < / OW)l|za(s)I1,

and

t t t
[ il < [ 0@+ 502wl + ul?) < [ 06+ 80 (Il + ur )
0 0 0

t t t
/O zma? < / O + 1) ([[w]]? + [[ws]?) < / 06 + 6% (2o + wall?)

These terms can be absorbed into the damping and diffusion terms of z and w on the left-hand side,
provided § + d7 is sufficiently small. O

4.3.2 Higher order estimates

Applying the similar procedure in proving Lemma 4.9, we further estimate higher order derivatives of

w as the follows. We perform ffooo 07(3.13) - 93 (w + 2wy) dx. After integrating by part, we get
d1'2‘252‘+2200‘ i i+1,,12
100wl + g + 105 2wl + [ (@ dw + 0 (W) |05 wl?) do

— 00

00 ) ) 2
[ Bl + 0kl + 04wl

— 00

= Io-l-/ (8%11)4-28%11&)6%(91 + g2 +93)d.’£ = IO+I1 +IQ+I3, (414)

— 00

where

I == / O (W) (w + 2w) + (1+8y) (o (W) (05 w)?)] de

— 00

<O( +67) (|lwllrs + lwell3) -

Here, we have used Lemmas 2.1, 2.2, 4.3. The rest terms on the right-hand side are estimated as
follows.
d [~ i+1, 12
L <-— 7 a1 (0 w)* dx
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+O(0r + 8)(lwell Fy + lwalls) + (|02 w]| + 194w, |1*) + C82(1 + )=/~ 7/2,

Iy <— % (/_Z az(c?i“w)Qde) +0(0r + ) (lwell s + lwlFpie)
+a(|9fw]|? + [0dw|*) + OF?) (1 + )77~/
Iy <O + 6)([lwell s + l[wllFrs4).
The substitution of these estimates into (4.14) leads to

d 1 ;i 9 ion2 g J+2, 112
= S0 + o ? + 102w

+ % [/ (01w - 03w + (' (W) + a1 + as + a3)|02 w|?) da

— 00

2
+ 082w + (1= a = O3 + dr) || 9w |
+ / (p'(W) —a — O + 67))|02 T w|*da

<OO7 + 0)([Jwel| %5 + [[w]|%551) + O (1 +1)7772 j=1,2,3. (4.15)

Integrating this inequality from 0 to ¢ and taking summation of it (4.15) with respect to j = 0,1,2,3,
we get

lw(®)[I77s + lwe(®)II +/ (lws ()13 + llwe(s) [ 52 )ds
0
<O(ér +5)/0 (lwe(s)ll7s + llwa(s)l17s) ds
+O(6 + 67) /t w(s)||? ds + O(3o + 8)* + O(do + 8)*. (4.16)
0

The first term on the right-hand side can be absorbed into the the damping energy and dissipation
energy on the left-hand side. The term f(f lw(s)||? ds = O(8 + do)? by (4.13). Thus, we obtain

lw(@)lFzs + llwe(®) 17 +/O (lwa ()l Fs + llwe(s) 175 )ds < C (80 +6)?, (4.17)

provided that é7 + ¢ is small enough.
Similarly, by performming

3
/Z 0:09(3.13) - 0,09 (w + 2w,) dx,

Jj=0

we can get

w7z + llwe ()72 +/0 (l[wea ()72 + lwee(s)l172) ds < C(do + 6)*. (4.18)

Combining (4.13), (4.17) and (4.18), we obtain the a priori energy estimate:
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Theorem 4.11 For local in-time solutions (z,w), it holds for 0 <t <T that
12O + 2@ + w5 + lwe () I3s + lweel

+ /()/(I\Zt(S)II2 + wa (8)l[37s + [lwe(s)l[3s + lwee () |72 )ds < C (b0 +6)?, (4.19)

for 0 <t < T, provided é7 + 6 < 1. Where

do = [|2(O) | + [zt (O] + [w(O)[[ 225 + [[w:(0) | 125

4.4 Proof of global existence

Proof of Theorem 1.1: global existence. The local existence of (classical) solutions can be done by
using the same argument as in [11]. The Theorem 4.11 shows that the local solutions satisfy the
uniform bounds for (any) short time (and therefore satisfies (4.1) too) when initial perturbations are
small enough. By using the continuous argument, we extend the local solution globally in time, which
also satisfies Theorem 4.11 for any time. The proof is completed.

Proof of Theorem 1.2: global existence. From (1.24) and (1.25), we find (S + 7h(W)) satisfies

(S +Th(W)): + %uQ + h(p) — h(W) = %62 (VP Jaz — %(S + Th(W)) + Th(W),,

3

where W = W (- + x,t). We express this equation in (w,n):

(P(7)z —m)*
(74 w)*

(h((7 4 w)?) — h(n?)) + %eQM +Th(W),.

(S-FTh(W))t—%(S-FTh(W)) =— T w

Multiply above equation with (S + 7h(W)) and integrate over R. Using Theorem 1.1, Lemma 2.1 and
Cauchy’s inequality, we have

((S+Th(W))?); — %(5 +7h(W))? < O)(Inll* + llwl|32) + O(8%) (1 + )%/
This leads to

ISC8) + Th(W (- + 2o, £)|* <[|1So + Th (W (- + 20,0)) | *e™"/?T 4+ C3(1 + )~/
+C(lInl* + lwle) (4.20)

and

1S(,t) + Th(W (- + x0, ) |5 <|[So + 7h (W (- + x0,0)) || 2se /2" + C82(1 + ) ~3/2
+ CInllFs + llwli3s)- (4.21)

Thus, the proof is completed.

5 Time decay rate

5.1 A priori decay assumption and the main result

We shall use the idea in [22, 21] to obtain the explicit time decay rate for the global classical solutions
and we need more estimates on higher order (both space and time) derivatives. It is not difficult to
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verify that Theorem 1.1-1.2 are also valid for solution with arbitrarily higher Sobolev regularity. In
this section, we consider that the solutions satisfy

z € CH(0,00; H'2%), w € C*(0,00; H572%),k = 0,1,2.

To perform a priori decay estimate, let us assume that for the global classical solution it holds a-priori
that

or = max | [[2(0)] + (1 + )|z ()] +;5§ + U2 g1 obw(t)|| + (14 1205w (B)]| | < 1.
] (5.1)
Notice that when T' = 0,
1 6-—-2k
So = 2(0)[| + [z (O) ]| + > > llofw(0)]| < 1. (5.2)
k=0 j=0

Under the assumption §y < 1, we can repeat the same argument in the previous section to get the
existence of global classical solution with the following energy estimate

12O + [[ze (@) + lw@) Nl e + Nwe () e + [wee|| 2
T
+/ ([[ze(s)[| + lw ()|l e + [lwe(s)[[ s + |lwee(s)|| =) ds < C(o + 9). (5.3)
0
The main result in this section is

Theorem 5.1 Under the assumption (5.1), it holds for the global solutions (z,w) that

2 5—2k t

DS [Ht’“k“naka’ e+ | (1+s>i+2’f||afa;w<s>||2ds]

k=0 i=0 0
3 2k t

DS (kL + [ (149 ook 5] < O 67, (5)
k=0 i=1 0

for 0 <t <T, provided § + o7 is small enough. Here &g denotes the initial perturbation (5.2).

Proof of Theorems 1.1-1.2: decay rate. In terms of the Sobolev Embedding theorem

Iz < A2 DL £, (5:5)
and (4.20)—(4.21), we can infer from Theorem 5.1 that
(1) = /W (. 4 20, 1) || e < C(J0 +0)(1 +1)~3/4, (5.6)

(., >+Tp(W<. +0,1)), [[pe < C(Jo + ) (1 +1) =4, (5.7)
1 (SCot) +7h (W (. + 20, 1)), Iz < C (0 + 8)(1+ )4, (5.8)

by which we complete the proofs of Theorems 1.1-1.2.
Strategy to prove Theorem 5.1: We shall obtain decay estimates through the following procedures:

P,(k,j;1) ::/O (1+s) /jo [(0F 0 (z-equation)) - (97 922)] dx ds (5.9)
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Pk, i) =: /O (14 9) [ (940 (w-equation)) - (5w)] da ds. (5.10)

Let us define

2 52k t
2= Y a0 etlu @l + [ ok ol s
k=0 0

1=0 , t
WEOESS [<1+t>2’f||afz<t>||2+ / <1+s>2k-1||afz<s>||2ds] (5.11)
k=1 0

From Lemma 5.3 below, N is equivalent to the right-hand side of (5.4). So, our goal is to show

N < O(6+ ). (5.12)

5.2 Basic estimates
Lemma 5.2 Under the assumption (5.1), it holds that for 0 < j+2k <5,2<p< oo
0882w (t)||r = O(0p) (1 + t)~3/4F1/2p=3/27k for 0 <t < T. (5.13)

Proof: For k = 0,1, this basically follows from assumption 5.1. The estimate for wy; follows from
w-equation (3.13). 0

From the relation z, = (27 + w)w, and using (2.3) for 7, assumption (5.1) and Lemma 5.2 for w,
we can obtain the following relations between z, and w.

Lemma 5.3 Under the assumption (5.1), it holds that

ko J
|0Fzall = >N 087 + 6)(1 + 1)1 =RFED2algiw|, 0 < 2k +5 < 5. (5.14)
=0 i=0

The assumption 5.1 also implies the following estimates for z, n and J.
Lemma 5.4 Under the assumption (5.1), we have for 0 <t <T, 2 <p < o0,

0F07 2(t)||Lr < O(6p + 8) (1 + )~ V/AFY/2p=3/2=k (< j 4 2k < 6,
tYx
10£0In(t)l| e < O(Sr + ) (1 + t) >/ 4F/2P=I/27k 0 < j 4 2k < 4,
10887 J(t)||r < O(6p + 8)(1 + )~ V2F1/20=3/27k < j 4 ok < 4.
tYx
(5.15)

Proof: The first estimate follows from Lemma 5.2 and assumption (5.1). The second estimate
comes from n = —z;. From J =n — P(n), and (2.3), we obtain the last estimate. 0

Next, we use Lemmas 5.2 and 5.4 to give a priori estimates for the nonlinear terms f; and g; as
the follows.

1] = ‘ M —p(W) — EEQWM

< ~1/2
15 Wz 1 <O(b7 +6) (1 + )72 |z0] + O(8)ra

90 1] < 01 +8) [(1 407 20mal + (148 |zl | + OO)rs

18, f1] < O(67 + 6) [(1 + )2 zpet) + (14 1) g + (1 + t)_3/2|zm|} +O(0)ry



18 Asymptotic of Schrédinger—Langevin equation

(P(W)o + 20)?

W <O+ 67) (1 + )72 2| + O(0)r,

Ile‘

9 fol <O +67) [(14+ 82|zt + (L4 D) 2wl + (1 +8) 7|2l + O@)rs
|8tf2| < 0(5 + 6T) |:(1 + t)_1/2|ztt| + (1 + t)_1|zwt| + (1 + t)_3/2|2’t‘] + 0(5)T4

[fl = [p(W + 22) = p(W) = p'(W)za| = O(|2|?) < O(F1) (1 + 1)1/ 2]

1023 < O07)(1+1) |20
10uf3] < O@r) (L + )7 24

gl_(ﬁt+wt)2 i(ﬁxx+wxx)2_iﬁ _ﬁ
T hatw 4 ntw 4 e

= a1 Way + O(1)(6 + 67) (1 + ) 1wy + O(1)d74 (5.16)
0291 = Q1 Weea + O(0)75

+O(8 + 67) [(1 )73 2w,y + (1+ ) 2wy + (1+8) 73 2w, + (1 + t)_lwtw}
0:91 = a1 Weat + O(6)76

+ 08+ 67) [(1 1) 2w + (1872w, + (1 4+1) 2w, + (1 +6) 72 2w, + (1 + t)*lwtt}

g2 =

1 [(P(ﬁ)x — 77)2]

2n+w) | (n+w)?

= AoWyy + bowgy + O(8)ra + 05 +d7) [(1+1) 72w, + (1 + ) wp + (1 + t)*Qw}
0292 = A2Wyzy + bowyee + O(0)75

+0(5 + br) [(1 1) Mgy 4+ (1 4+ )73 2wy + (14 8) 2w, + (1+) 732w, + (1 + t)‘5/2w}
Org2 = AoWagt + bowgy + O(0)r6

+0(5 + b7) [(1 1) 2wy + (14 8) 7 2way + (14 8) w4+ (1482w, + (1+) 2w, + (1 + t)’?’w]
gs(a,t) = [(' (2 +w)?) = p'(7*)) (Re + wz)] | = agwse + O(8 + 0r) [(1 +1) 7 Pw, + (14 t)’lw]
0293 = a3Wags + O(8 + 01) [(1 1)V 2 + (14 6)  ws + (14 t)—swzw}
Orgs = asweqar + O(6 + 67) [(1 + )7 we + (L4 6) 73w, + (L) wp + (1 + t)_Qw]
0ol (W)wzly = [P/ (W)wazls + O(8) [(1 +4) w, + (1+ t)‘l/me]
Oulp' (W)l = [p/ (W)wiale + 0() (1472w, + (1417 2wy
Here, we recall that

2 o~ 2
€% 2Mpy + Way J 2J ’ e 9 P
al:ziﬁ—i—w 702:—?7 by = —,az = (p'((2 +w)") — p'(2°).
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and we have used

larlloe = O(8 + 67) (1 + 1)1, lazlec = O(07)(1 + 1)~
b2loc = O(67)(1 +1)~1/2, las]loe = O(37)(1 + t)~3/4
latalloe = O + 67) (1 +1)~%/2, laz,alloc = O + o7) (1 +1)~%/2

=00r)(1+1t)7, l|az,z]loo = O + 07) (1 + 1)~/
|a14]l00 = O + 67)(1 + 1) laz.tllse = O(8 + 67) (1 + )2

b2tlloo = O(37) (1 +)=3/2, | =00+ 67)(1+t)7 /4,

which follow from assumption (5.1). We summarize the above estimates as the following lemma.

Lemma 5.5 Under the assumption (5.1), we have for 0 <t < T, 2k + j <4,

k j+2k—-21

OF LA <O@+0r)Y ) > (14 t) 20021009 20+ O(8)ra ok
=0 =0
k Jt2R2 L .

|07 0] f2] < O(6 + 6r) Z Z (L4 6) 7200219000 2| + O(6)rat ok
=0 =0

j4+2k—21
(1 +t)—1/2—kr+l—(j—i)/2|a£aizx|

M?r

0K f3] < O(5 + o7)

Il
=)
-
I
=)

k j+2k-—21
0f0lg1 = [a10f Hwele + OO)rasars; + 00 +67) > Y (L+t) T FH-0=D25/0 0,
=0 =0
) . ) k+1j+2k—21+1 o '
0F0lgs = [a20F DJws]s + [b20f 0dwile + O()ragansy + OB +6r) Y Y (L4827 FH=0=0729l50
=0 1=0

k j+2k—20+1

0F0lgs = [as0f DJwzls + O +07) > D> (1+44) 7 FH=U=925191 0
=0 =0

k j+2k—21
OO (W)l = [/ (W)aF D] + 06 +07) Y S (L 1) 2 k=02l
=0 i=0

5.3 Decay estimates for w

We have seen that by performming ZO<j<4 P,(0,5;0) + P.(0,0;0), we have got the following energy
estimate for (z,w): o

Proposition 5.6 Under the assumption (5.1), it holds for the global solution (z,w) that
12Oz + 2@ + lw(®) e + llwe ()l

/0 (lza ()1 Zn + ze()I* + lw )l Fre + llwe(s)][74) ds < C(8o + 6)?, (5.17)

provided g + 0 < 1.

The integral part of (5.17) will be used for the next-order decay estimate.
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Proposition 5.7 Under the assumption (5.1), it holds for the global solutions w that

4

D@+t (10w (D)2 + 102w (D)])

Jj=0

4 t
+ Z/O (L4 s) T (|07 w(s) |13 + (02w (s)[]?) ds < O(Ny), (5.18)

provided that § + or is small enough. Where
= (6 +60)* + (0 + 67)57. (5.19)

Proof: We perform ffooo 07(3.13) - 93 (w + 2wy) dx for j = 0, ...,4. Using integration by part, we
obtain

o0 2 o0
& (102 + S1ogol + [~ yovy@iwP o+ T1osul + [~ dlwn-oi s )
2 . . o .
+ (ol + 1ol + [ 0@ ) ds )
< / (92(g1 + g2 + g3) - 0% (w + 2wy)) da + I + I, (5.20)

o= [ @000 0 - 0 (W)w.) - @2 w)] de,

— 00

o /DO [0, (5 (W)@ w)?) — 208 (o (W)w,) - 93+ ] de. (5.21)

—00

By using Lemma 5.5, the terms on the right-hand side of (5.20) are estimated as the follows.
_ J
Io| < O@) 03w + 0(6) 3 (1 + 8177+ 9l
i=1

Bl= [ @ 0 — 2 [ ()0, — 02 (W)w,)], - D] da

< O(O) (1 +6) oI w|? + al|dwe | + || [ (W), — 820 (W )wa)la||”
J+1
<01+ 1) 07w + al|dw]* + O(8) Z(l +8) 720w
=1
< al|0dw | + 0(8) Y (1 +1) 2|0 wl|? (5.22)
=1

/ 3 (g1 + g2) - Bwda < — / (ar + az)(@ w)? dr + a1+ 1) D]

1 j+1-21
OB+ > (L+0) T4 00,w]* + 06 |Iras |

=0 =0

+(1+1)

= - / (a1 + a2)(@ w)? do + a1+ )~ D w]|

oo



I.-L. Chern & H.-L. Li 21

j+1-21
(14 ) 73+2=0%19L98 w]|2 4+ O(6%) (1 + t) /277

M-

+O(6 + 0r)?
l

I
o

%

Il
o

© . d oo . ,
[ ot +a 20tute <=5 ([ G a)oi o) + alodunl + 00 + ol

<-4 ([ @+ meriw?an) v afogo?
1 j+1-21
+0(6+67)°> (14 )~ 4+2=0%1 9L 98 w]|2 4+ O(6%) (1 + t)~7/27 (5.23)

l

/ X gs - Pwdr < —/ az(02 M w)? dx
+ 06+ 07)(1 + ) Holw||* + O(S + 67) (1 +t) Z (1+8)" 27949k w]|?

I
o

%

Il
o

1<i<j+1
0 . j+1 . . .
< / 05O w)2 dz + O(6 + 57) S (1 + £) 17+ 9w 22
- =0
Sy , d [ [® , . i+l o
/ g3 - 200wy dx < % (/ az(09 T w)? dx) + af| @ ||? +O(6+5T)22(1+t)_2_3+1||8;w||2.
—00 —0o0 1=0

(5.24)

Hence, we obtain for j =0, ...,4

o 2 o . .
& (100wP 4 GlozulP + [~ /%) - 06+ o) @2 w)do + L ul + [ ol 0 wds

— 00

o0

2 .
n (6|a;+2w||2 +(1=a= 06 + ool + [

W (W) — a— O@r + 8)) (25 +w)? dx)
J j—1
O + 07 +a) Y (148 4 w]|? + O(8 +d7) S (1+) " 7 9kwy|? + O(8%)(1 + £)~5/>7.
=0 =0
(5.25)

Now, take j = 0 in the above equation. We perform fot(l + 5)%(5.25)j=0 ds for i = 1. This yields

(1+t)(||w(t)\|?qz+|th(t)ll2)+/0 L+ 8)(lwa ()l + Nwe(s)II?) ds
§0(50+6)2+/0 (Jlws (3) 1121 +||wt(s)||2)ds+0(5+5T+oz)/0 lw(s)|>ds < O(Ny).  (5.26)

Here, the last step follows from (5.17).
Next, we perform fot(l +5)(5.25),=1 ds. When i = 1, using (5.17), we get

(L +8) [lwe (Ol + lwee O] + [ 1+ 8)(lwaa ()1 + llwee(s)II?) ds
0

< 0(5+50)2+/0 (lwa ()17 + \Iwwt(S)IIQ)dS+/O (006 + 67 + @) (Jlwa () + (1 + 5) " w(s)|*)] ds
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Now, we combine this with the result in (5.26) to get
t
/ (1 + 8)(lwa ()l 72 + llwae(s)]|?) ds < O(N7). (5.27)
0
Thirdly, we perform fot(l +5)%(5.25)j=1 ds. Using (5.27), we obtain
t
(1 + )% (Jlwa ()72 + [lwae ) +/0 (1 + 8)* (lwaa ()71 + lwae(5)%) ds < O(Ny).
For j = 2,3, 4, through the same procedures
t .
/ (14 s)"(5.25);ds
0
fori=1,...,5 + 1, we can inductively obtain that for j = 2,3,4
t
1+ ) (02w (®) 132 + 102w (t)]%) +/ (1 + ) (05w () 170 + |02we(s)[|?) ds < O(IN:).
0

O

Proposition 5.8 Under the assumption (5.1), it holds for the global solutions w that for j =0, ...,4,
0<t<T,

1+ )7 2(|0%we (0)|* + |07 w()|[F2) + /O (L+ )" [0fwi(s)[|* ds < O(Ny), (5.28)

provided & + Or is small enough. Where Ny is defined by (5.19).

Proof: For j =0,...,4, we perform
/ d9(3.13) - 200wy da.

By integration by parts, we obtain

d ) o0 . 2 . . ) 3 .
& (100w + [~ yovezoP o+ 1ol ) + lodul? < alodud? + Y- [okgn P + 1

m=0

where I is defined by (5.21). We use (5.22), (5.23), (5.24) and

/ 0741 00w, dr < al|@wq||? + O(6%) (1 41) /273

to get
d . o0 _ 2 .
G 108 [ V) a1t a0 @2 0)? + 0Ll |+ (1= - OG-+ 62)) ok P
j+1 . . . j_l . . . .
<0(5 + br) (Zu PO ok (1 t)‘Q‘J“IlaithIZ) PO+ (5.9
=0 =0

Multiplying this equation by (1+s)7T2 and integrating it from 0 to ¢, using Proposition 5.7, we obtain
(5.28). O
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Similar to the procedures to estimate w and its x-derivatives, we perform the procedures
0 . .
/ 910k (w-equation) - 319F (w + 2w,) dx for 0 < j + 2k < 4
—0o0

and -

/ D1 0F (w-equation) - 319K 2w, dx for 0 < j 4 2k < 4.
These lead to the following proposition. Its proof is omitted.
Proposition 5.9 Under the assumption (5.1), it holds for the global solutions w, 0 < j+2k < 4, that

L+ > HH (|07 ofw ()| 2 + 1107 OLwe(1)]1%)

t
b [ s (00r () + 0k0kun(9)]?) ds < O(Ny) (5.30)
0

t
(1+ )22 (||0F 0w (4)|1* + 10F 05 wa (1) 1 71 +/ (1+8)°4742)|0F 00wy (5)|* ds < O(Ny), (5.31)
0
provided that § + 5 is small enough. Here,

Ny = (0 +30) + (0 + 07)d7.

5.4 Decay estimates for z;, z; and zy

Proposition 5.10 Under the assumption (5.1), it holds for the global solutions z that for k =0,1,2,

(L + )% (1072172 + 0 2(D]) +/O (1+ )% (107 22 (s) 70 + 108 2e(s)]%) ds < O(N1), (5.32)

t
L+ )2 (107 22 (O 17 + 1107 2 (1)]12) +/O (1+ )" 4|07 24 (s) 1> ds < O(NL), (5.33)
for 0 <t <T, provided that § + 57 is small enough.

Proof: By performming the procedure
/ OF (z-equation) - F (2 + 22;) dx and / OF (z-equation) - OF2z; dx

for £k = 0,1, 2 and integrating by part, we get

oo

d 1
& (10tP + Glots1p +

— 00

g2 o
P (W)(0F2,)* dx + ZH@fzmHQJr/ OF 2y - OF 2 dz)

52
lofal? + Lokl + [ o W) do

00 3
= / (Z O o - OF (2 + 2zt)> dz + Jo + J, (5.34)
—° \m=0
and

d o g2
(10l + [ ) 0] di+ S0k ) + 0F

— 00
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foe) 3
:/ (Z OF frnw - 352zt> da + J, (5.35)

m=0

where

Jo = / W0z~ O (W)z2) - (0F2)] d

Jp = /_OO [0 (0 (W)(0F 22)%) — 205 (p'(W)zs) - (0 201)] d. (5.36)

By using Lemma 5.5, we get

k—1 k
[ Jol < O(8)[10F 221>+ O(6) Y (1 + 1)+ 9j2, > < O(6) Y (1 + )| gjw]?
=0 =0

|J1‘ = / ’pl(W)t(athm)Z -2 [p'(W)afzz - 6f(p/(W)z$)] ~3fzm’ dx

— _ 2
< OO+ 6)7H0F 21> + O@) (L + )05 2ol + 6~ L+ 1) | (W) 20 — 07 (0 (W) )|

<O+ 1) H0F 2> + O)(1 4+ t)]|0F T 2| + O(6 Z (1 +t)~ 1726420 9L |2
=0
k+1
<O(6) Y (14~ 22 dpw|”

=0

/ OF (fr+ fo + f3) - Of 2o da < | 0F zo|* + O1) (110 f2* + 1107 fall* + 1195 f3]1%)

[0kt fat )0 do < (L4 010 s+ O+ )7 (JOEAI? + 10 fol + 0Ll

k+1
< (6 +67) Z(l 1) T2 9l |2 4 O(1) (1 4 €)™ (|08 112 + (|OF fol 2 + 1185 f3]12)
1=0
k 2k—21 4 4
10 AP < 0@ +67) Y 3 (1407 2 0[0L 20 | + Oz
1=0 =0
k 142k—21
OB +0r)> " D (1+) 2229l al |2 + O(62) (1 + )~/ 2
1=0 =1
k 2k—21
||8kf2||2 <0 §+5T Z Z 1+t —1— 2k+2l+z||alazzt||2+0(52)Hr2+2k”
1=0 =0
k k+12k—21—1 _ _
5+5T Z 1+t —-1- 2k+2l||al ||2+Z Z 1+ 272k+2l+z”8§3;2$”2+O(52)(1+t)73/2,2k
=0 =1 =0
k+1 k+12k—20—1

SO(5+5T)Z( +t) 3— 2k+2l||alZH2+Z Z +t —2— 2k+2l+7”8187w”2—i—O((SZ)(l—I-t) 3/2—2k
= =1 =0
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k 2k—21 k 2k—21
10F 317 < O +67) Y Y (L4+0) 20002, > <0G +67) Y Y (L+) 7 24900 wl |,
1=0 =0 1=0 =0

Putting all these together, (5.34) becomes

d 1 o0 g2 o0
o (10l + gkl + [~ povy@ba)an s ikl + [ ok, -obuwis)
— 00

— 00

e? oo
+ (L= 08+ ér))lloF 2| + ZH@meH2 +/ (P (W) = 0(6)) (8 20)* dw

k k 2k—21
O +07) | S 1+ )7 2 olw|? + A+ )0 ol + 3 Y (1 + )7 22 9l giw|?
1=0 1=0 i=1
k k
+ 3 (L1902 2| 4+ 00 + 7)Y (1 +£) 322 ol |2+ O(82) (1 + 1) "2,
=0 =1
(5.37)
And (5.35) becomes
Lotz + [ o (W) @20 i+ S0 2e?) + 08 ]?
dt t ~t _Oop t ~x 4 t Rrx '+ 2t
k41 k 2k—2l 4 4
SO +6r) | D 1+ ofwl + 30 (144) 72 900w
1=0 1=0 =1
k
+ (1+ t)_2|8é8§k_21+1w||21
1=0
k
5+(5T Z 1+t —4— 2k+2l||al HQ—FO((SQ)( )—5/2—2]{3. (538)
1=1

We notice that from Theorem

t
/ (1 + s)**right-hand-side of (5.37) ds = O(Ny)
0

t
/ (1 + 5)***right-hand-side of (5.38) ds = O(Ny)
0

Using these, we proceed the following procedures:

e For k=0, fot(5.37)k:0 ds leads to (5.39) below;

e For k=0, fot(l + 5)(5.38)k—o ds leads to (5.40);

For k =1, fo 2k (1 + 8)(5.37) =1 ds leads to (5.41);

For k =1, fot(l + 5)2F+1(5.37)p=1 ds leads to (5.42);

For k = 2, fo 2k (1 + 8)(5.37) =2 ds leads to (5.43);

For k = 2, fot(l + 5)2F+1(5.37) p—2 ds leads to (5.44).
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127 + Nz ()] +/Ot(zx(8)||?ql +lze(s)*) ds = O(Ny) (5.39)
L+ ) Ulza Ol + l2®11) + /Ot(l +5)llz(s)[* ds = O(N1) (5.40)
(148 (lze@®lF2 + llzee(OI) + /Ot(l + )% (2t (8) |71 + 26 (5)[1%) ds = O(IV1) (5.41)
(1 + (eI + N2 (OI) + /Ot(l +5)° [z (s)[|* ds = O(Ny) (5.42)

(1 + 0" (lzee @l Fr + lzee(®]?) +/0 (L4 8)* (lzta ()1 Fr + llzeee(5)]%) ds = O(IV1) (5.43)

(14 ) (l2sea ()7 + l22ee (0)1I) +/O (1+5)°[lztee(s)]|* ds = O(N). (5.44)

This completes the proof. O

In general, we have the following proposition. Its proof is the same as Proposition 5.10. We shall
not repeat it.

Proposition 5.11 Under the assumption (5.1), it holds for the global solutions z that for 0 < j+2k <
4

7

t
(1+6)2H7 ([l0F0L=(t) 172 + Hafaizt(t)H?)Jr/ (1+8) 24 (107 020 ()7 + 1105 052¢(5)||*) ds < O(N1),
0

t
(140225 (|05 0Lza (1) 7 + 1107 Oz (1)) +/ (14 )70y 0424 (5)|1* ds < O(Nv),
0

for 0 <t <T, provided that § + 57 is small enough.
Proof of Theorem 5.1: Recall

2 5-2k ‘
=3y [1+tl+2’““||a’“a@ Gl (1+s>i+2’f||afa;w<s>|2ds}

k=0 i=0 0

e+ [(1+t>2k|afz<t>2+ / <1+s>2k—1afz<s>||2ds} (5.45)

k=1
and Ny = O(6 + 09)? + (§ + 67)d%. Combining all estimates in this section, we get
N2 =0(N;) <O(5 4 8) + (6 + N)N?

When 6 + dp is small enough, we can get N < O(4 + dy).
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