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一、中英文摘要 

這是同一研究主題第 5 年的精簡報告。 

關鍵詞：分生過程、布朗運動，Levy 過程，豪氏維度。 

This is a brief report of the fifth year of a same research subject. 
Keywords: branching processes,Brownian motions, Levy processes,  Hausdorff 

dimensions. 
 

二、本年進度 

In this year, I mainly investigate the sample paths of Levy processes and Levy-driven 
Ornstein--Uhlenbeck processes, I study the fractal property of the processes.  
 

三、成果自評 

We obtain the level set dimension of some multiparameter Levy processes, and the 
result is appeared in Probability Theory and Related Fields. 
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出席國際會議心得報告 

（附發表之論文） 

 
  我於 2007 年 8月 12 日至 19 日赴 Denmark Copenhagen University 數學 

 

研究所，出席由該所主辦之第 5 屆李維過程國際研討會。此會議是該研究所之 

 

歐盟共同研究計劃下的研討會，除英國學者外，尚有美國、法國、日本、大陸 

 

學者與會。 

 

我在會議中報告了有關 Multiparameter Levy Processes Level Set 

 

 Hausdorff Dimension 的研究成果。會中會後並 

 

與相關學者就隨機碎形多所討論。 
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Abstract Let X1, . . . , XN denote N independent, symmetric Lévy processes
on Rd. The corresponding additive Lévy process is defined as the following
N-parameter random field on Rd:

X(t) := X1(t1) + · · · + XN(tN) (t ∈ RN+). (0.1)

Khoshnevisan and Xiao (Ann Probab 30(1):62–100, 2002) have found a neces-
sary and sufficient condition for the zero-set X−1({0}) of X to be non-trivial with
positive probability. They also provide bounds for the Hausdorff dimension of
X−1({0}) which hold with positive probability in the case that X−1({0}) can be
non-void.
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Here we prove that the Hausdorff dimension of X−1({0}) is a constant almost
surely on the event {X−1({0}) �= ∅}. Moreover, we derive a formula for the said
constant. This portion of our work extends the well known formulas of Horo-
witz (Israel J Math 6:176–182, 1968) and Hawkes (J Lond Math Soc 8:517–525,
1974) both of which hold for one-parameter Lévy processes.

More generally, we prove that for every nonrandom Borel set F in (0,∞)N ,
the Hausdorff dimension of X−1({0}) ∩ F is a constant almost surely on the
event {X−1({0}) ∩ F �= ∅}. This constant is computed explicitly in many cases.

Keywords Additive Lévy processes · Level sets · Hausdorff dimension

Mathematics Subject Classification (2000) 60G70 · 60F15

1 Introduction

Let X1, . . . , XN denote N independent symmetric Lévy processes on Rd, all
starting from 0. We construct the N-parameter random field X := {X(t)}t∈RN+
on Rd as follows:

X(t) := X1(t1) + · · · + XN(tN), (1.1)

where t := (t1, . . . , tN) ranges over RN+ . Thus, X is called a “symmetric additive
Lévy process,” and has found a number of applications in the study of classical
Lévy processes [20–23]. Occasionally we follow the notation of these references
and denote the random field X also by X1 ⊕ · · · ⊕ XN .

Consider the level set at x,

X−1({x}) :=
{
t ∈ (0,∞)N : X(t) = x

}
for x ∈ Rd. (1.2)

By defining X−1({x}) in this way we have deliberately ruled out the points
t ∈ ∂RN+ with X(t) = x, where ∂RN+ := {t ∈ [0,∞)N : ti = 0 for some 1 ≤ j ≤ N}
denotes the boundary of RN+ , since the problems for the latter can be reduced
to the level sets of additive Lévy processes with fewer parameters.

Khoshnevisan and Xiao [22] assert that, under a mild technical condition,
X−1({0}) �= ∅ with positive probability if and only if a certain function � is
locally integrable. Moreover, the function � is easy to describe: It is the density
function of X(|t1|, . . . , |tN |) at x = 0.

As a by-product of their arguments, Khoshnevisan and Xiao [22] produce
bounds on the Hausdorff dimension of X−1({0}) as well. In fact, they exhibit two
numbers γ ≤ γ , both computable in terms of the Lévy exponents of X1, . . . , XN ,
such that

γ ≤ dimH X−1({0}) ≤ γ̄ with positive probability. (1.3)
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Originally, the present paper was motivated by our desire to have better
information on the Hausdorff dimension of X−1({0}) in the truly multiparame-
ter setting N ≥ 2. Recall that when N = 1, X is a Lévy process in the classical
sense, and in addition,

either P
{
X−1({0}) = ∅

}
= 1 or P

{
X−1({0}) is uncountable

}
= 1. (1.4)

This is a consequence of the general theory of Markov processes; see Prop-
osition 3.5 and Theorem 3.8 of Blumenthal and Getoor [6, pp. 213 and 214].
Moreover, it is known exactly when X−1({0}) is uncountable and, in general,
X−1({0}) differs from the range of a subordinator in at most countably-many
places. Consequently, a nice formula for dimH X−1({0}) can be derived from the
result of Horowitz [12] on the Hausdorff dimension of the range of a subordi-
nator. For a modern elegant treatment see Theorem 15 of Bertoin [4, p. 94]. See
also Hawkes [11] where dimH X−1({0}) is described solely in terms of the Lévy
exponent of X.

We were puzzled by why the extension of the said refinements to N ≥ 2 are
so much more difficult to obtain. For example, the issue of when {0} is regular
for itself—i.e., (1.4)—becomes much more delicate once N ≥ 2. (We hope to
deal with this matter elsewhere.) Thus, it is not obvious—nor does it appear to
be true—that dimH X−1({0}) is a.s. a constant.

In the present paper we prove that, under a mild technical condition, the
Hausdorff dimension of X−1({0}) is a simple function of ω. In fact, it is a con-
stant a.s. on the set where X−1({0}) is non-trivial.

We are even able to find a nice formula for the Hausdorff dimension of the
zero set X−1({0}), a.s. on the event that it is nonempty. See Theorem 1.1 below.
It can be shown that when N = 1 our formula agrees with the one-parame-
ter findings of Horowitz [12] and Hawkes [11]. Moreover, suppose X−1({0})
were replaced by the closure of X−1({0}) in (0,∞)N , then our derivations show
that the same formula holds almost surely on the event that the said closure is
nonempty.

The remainder of the Introduction is dedicated to developing the requisite
background needed to describe our dimension formula precisely.

Let �1, . . . , �N denote the respective Lévy exponents of X1, . . . , XN . That is,
for all 1 ≤ j ≤ N, ξ ∈ Rd, and u ≥ 0,

E
[
eiξ ·Xj(u)

]
= exp

(−u�j(ξ)
)

. (1.5)

We recall that the functions �1, . . . , �N are real, non-negative, and symmetric.
We say that X is absolutely continuous if

∫

Rd

exp

⎛
⎝−u

∑
1≤j≤N

�j(ξ)

⎞
⎠ dξ < ∞ for all u > 0. (1.6)



D. Khoshnevisan et al.

Define for all t ∈ RN ,

�(t) := 1
(2π)d

∫

Rd

exp

⎛
⎝−

∑
1≤j≤N

|tj|�j(ξ)

⎞
⎠ dξ . (1.7)

This defines � on RN\{0}; � is uniformly continuous and bounded away from
{0}, and �(0) = ∞. As a consequence of the results of Khoshnevisan and Xiao
[22] we have

P
{
X−1({0}) �= ∅

}
> 0 ⇐⇒ P

{
X−1({0}) ∩ (0,∞)N �= ∅

}
> 0

⇐⇒ � ∈ L1
loc(R

N),
(1.8)

where Ā denotes the closure of A and � ∈ L1
loc(R

N) means � ∈ L1([−T, T]N)

for every T > 0. Define ‖x‖ to be the Euclidean �2 norm of x. Then the following
is our main result:

Theorem 1.1 If X1, . . . , XN are symmetric absolutely continuous Lévy processes
in Rd, then almost surely on {X−1({0}) �= ∅},

dimH X−1({0}) = sup

⎧⎪⎨
⎪⎩

q > 0 :
∫

[0,1]N

�(t)
‖t‖q dt < ∞

⎫⎪⎬
⎪⎭

. (1.9)

Suppose, in addition, that there is a constant K > 0 such that

�(t) ≤ �(K‖t‖, . . . , K‖t‖) for all t ∈ (0, 1]N . (1.10)

Then,

dimH X−1({0}) = N − lim sup
t→0

log �(t)
log(1/‖t‖) . (1.11)

When N = 1, (1.10) holds automatically, and so (1.9) and (1.11) coincide
[11,12]. We will show in Example 3.6 that when N > 1, formula (1.11) does not
hold in general; an extra condition such as (1.10) is necessary.

Compared to the one-parameter case, the proof of Theorem 1.1 is consider-
ably more complicated when N > 1. This is mainly due to the fact that classical
covering arguments produce only (1.3) in general. Thus, we are led to a different
route: We introduce a rich family of random sets with nice intersection proper-
ties, and strive to find exactly which of these random sets can intersect X−1({0}).
There is a sense of symmetry about our arguments, since everything is described
in terms of additive Lévy processes; the said random sets are constructed by
means of introducing auxiliary additive Lévy processes. This argument allows
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us to establish a formula for the Hausdorff dimension of X−1({0})∩F for every
nonrandom Borel set F ⊂ (0,∞)N . See Theorem 3.2 and the examples in Sect. 3.

The idea of introducing random sets to help compute dimension seems to
be due to Taylor [32, Theorem 4]. Since its original discovery, this method
has been used by many others; in diverse ways, and to good effect [2,3,5,8–
10,14,16–20,24–30].

We conclude Sect. 1 by introducing some notation that is used throughout
and consistently.

• For every integer m ≥ 1, and for all x ∈ Rm,

‖x‖ :=
(

x2
1 + · · · + x2

m

)1/2
, |x| := max

1≤j≤m
|xj|, and

[x] := |x1| + · · · + |xm|. (1.12)

They respectively denote the �2, �∞, and �1 norms of x.
• Multidimensional “time” variables are typeset in bold letters in order to

help the reader in his/her perusal.
• For all integers m ≥ 1 and s, t ∈ Rm+ , we write

s ≺ t iff t � s iff si ≤ ti for all 1 ≤ i ≤ m. (1.13)

• Let m ≥ 1 be a fixed integer and q ≥ 0 a fixed real number. Suppose
f : Rm → R+ is Borel measurable, and µ is a Borel probability measure on
Rm. Then,

I(q)

f (µ) :=
∫∫

f (x − y)

‖x − y‖q µ(dx) µ(dy). (1.14)

When f ≡ 1 and q > 0, this is the q-dimensional Bessel–Riesz energy of µ,
which will be denoted by I(q)(µ).

• For any Borel set G ⊂ Rm, let P(G) denote the collection of all Borel
probability measures on G. The q-dimensional Bessel–Riesz capacity of G
is defined by

Cq(G) :=
[

inf
µ∈P(G)

I(q)(µ)

]−1

. (1.15)

• If f : RN\{0} → R+, then we define the upper index and lower index of f (at
0 ∈ RN) respectively as

ind(f ) := lim sup
‖x‖→0

log f (x)

log(1/‖x‖) , ind(f ) := lim inf‖x‖→0

log f (x)

log(1/‖x‖) . (1.16)



D. Khoshnevisan et al.

Consequently, Theorem 1.1 asserts that if (1.10) holds then a.s. on the event
that X−1({0}) �= ∅,

dimH X−1({0}) = N − ind(�). (1.17)

2 Background on additive Lévy processes

2.1 Absolute continuity

We follow Khoshnevisan and Xiao [22] and call the following function � the
Lévy exponent of X. It is defined as follows. For ξ ∈ Rd,

�(ξ) := (�1(ξ), . . . , �N(ξ)) . (2.1)

In this way, we can write

E
[
eiξ ·X(t)

]
= e−t·�(ξ) for ξ ∈ Rd and t ∈ RN+ . (2.2)

Also, we declare X to be absolutely continuous if the function ξ �→ exp{−t·�(ξ)}
is in L1(Rd) for all t ∈ (0,∞)N .

If any one of the Xj’s is absolutely continuous, then so is X. A similar remark
continues to apply if Xj is replaced by an additive process based on a proper,
nonempty subset of {X1, . . . , XN}. However, it is possible to construct counter-
examples and deduce that the converse to these assertions are in general false.

Here and throughout, we assume, without fail, that

X is absolutely continuous. (2.3)

It is possible to check that this is equivalent to the absolute-continuity condition
(1.6) mentioned in Sect. 1.

We may apply the inversion theorem and deduce that X(t) has a density
function pt(•) for all t ∈ (0,∞)N . Moreover, for all x ∈ Rd and t ∈ (0,∞)N ,

pt(x) = 1
(2π)d

∫

Rd

cos(ξ · x) e−t·�(ξ) dξ . (2.4)

Let RN�= be the set of all t ∈ RN such that (|t1|, . . . , |tN |) ∈ (0,∞)N . We abuse
the notation slightly and also use pt(x) to denote the density function of
X(|t1|, . . . , |tN |) for all t ∈ RN�=. Evidently, p is continuous on RN�= × Rd and

for all t ∈ RN�=,

sup
x∈Rd

pt(x) = pt(0) = �(t). (2.5)

See (1.7) for the definition of �.
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Throughout, we consider the probabilities:

�r(x ; t) := 1
(2r)d

P
{∣∣X(|t1|, . . . , |tN |) − x

∣∣ ≤ r
}

,

�r(t) := �r(0 ; t),
(2.6)

valid for all r > 0, x ∈ Rd, and t = (t1, . . . , tN) ∈ RN . Evidently, for all t ∈ RN�=,

lim
r→0+

�r(t) = �(t),

sup
x∈Rd

�r(x ; t) ≤ �(t).
(2.7)

The first statement follows from the continuity of x �→ pt(x), and the second
from (2.5). Similarly, we have

lim
r→0+

�r(x ; t) = pt(x), (2.8)

valid for all t ∈ RN�=.

2.2 Weak unimodality

We follow Khoshnevisan and Xiao [22] and say that a Borel probability measure
µ on Rk is weakly unimodal (with constant κ) if for all r > 0,

sup
x∈Rk

µ
(
B(x ; r)

) ≤ κ µ
(
B(0 ; r)

)
, (2.9)

where B(x ; r) := {y ∈ Rk : |x − y| ≤ r
}
. Evidently, we can choose κ to be its

optimal value,

κ := sup
r>0

sup
x∈Rk

µ
(
B(x ; r)

)

µ
(
B(0 ; r)

) < ∞, (2.10)

where 0/0 := 1.
Since X is a symmetric additive Lévy process, Corollary 3.1 of Khoshnevisan

and Xiao [21] implies that the distribution of X(t) is weakly unimodal with
constant 16d for all t ∈ (0,∞)N . Equivalently, the growth of the function �r of
(2.6) is controlled as follows:

sup
x∈Rd

�r(x ; t) ≤ 16d�r(t) for all t ∈ RN . (2.11)
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This and Lemma 2.8(i) of Khoshnevisan and Xiao [22] together imply the
following “doubling property”:

�2r(t) ≤ 32d�r(t) for all t ∈ RN . (2.12)

Another important consequence of weak unimodality is that t �→ �r(t) is
“quasi-monotone.” This means that if s ≺ t and both are in (0,∞)N , then

�r(t) ≤ 16d�r(s) for all r > 0. (2.13)

See Lemma 2.8(ii) of Khoshnevisan and Xiao [22].

3 Some key results and examples

Khoshnevisan and Xiao [22, Theorem 2.9], have proven that

� ∈ L1
loc(R

N) iff P
{
X−1({0}) �= ∅

}
> 0. (3.1)

They proved also that the same is true for X−1({0}) ∩ (0,∞)N . This was men-
tioned earlier in Sect. 1 of the present paper; see (1.8). In addition, Khoshnevisan
and Xiao [22] have computed bounds for the Hausdorff dimension of X−1({0})
in the case that � is locally integrable. The said bounds are in terms of γ and γ̄ ,
where

γ := sup

⎧⎪⎨
⎪⎩

q > 0 :
∫

[0,1]N

�(t)
‖t‖q dt < ∞

⎫⎪⎬
⎪⎭

,

γ̄ := inf

{
q > 0 : lim inf‖t‖→0

�(t)
‖t‖q−N > 0

}
.

(3.2)

First, we offer the following.

Lemma 3.1 It is always the case that

0 ≤ γ ≤ γ̄ ≤ N − d
2

. (3.3)

If, in addition, (1.10) holds, then also,

γ = inf

{
q > 0 : lim sup

‖t‖→0

�(t)
‖t‖q−N > 0

}
. (3.4)

Thus, in light of (1.16), we arrive at the following consequence:

γ̄ = N − ind(�) whereas γ = N − ind(�) if (1.10) holds. (3.5)
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Proof of Lemma 3.1 By definition, 0 ≤ γ . Also, if q > γ̄ then there exists a
positive and finite A such that �(t) ≥ A ‖t‖q−N for all t ∈ [0, 1]N . Consequently,∫
[0,1]N �(t)‖t‖−q dt ≥ A

∫
[0,1]N ‖t‖−N dt = ∞. It follows that q ≥ γ . Let q ↓ γ̄

to deduce that γ̄ ≥ γ .
In order to prove that γ̄ ≤ N − (d/2), we first recall that �j(ξ) = O(‖ξ‖2)

as ‖ξ‖ → ∞ [7, eq. (3.4.14), p. 67]. Therefore, there exists a positive and finite
constant A such that |s · �(ξ)| ≤ A ‖s‖ (1 + ‖ξ‖2) for all ξ ∈ Rd and s ∈ RN .
Consequently, for all s ∈ RN ,

�(s) ≥
∫

Rd

e−A ‖s‖ (1+‖ξ‖2) dξ = A′e−A ‖s‖

‖s‖d/2
, (3.6)

where A′ depends only on d and A. This yields γ̄ ≤ N − (d/2) readily.
It remains to verify (3.4) under condition (1.10). From now on, it is convenient

to define temporarily,

θ := inf

{
q > 0 : lim sup

‖t‖→0

�(t)
‖t‖q−N > 0

}
. (3.7)

If 0 < q < θ , then �(t) = o(‖t‖q−N), and for all ε > 0 and for all sufficiently
large n,

∫

{2−n−1<‖t‖≤2−n}

�(t)
‖t‖q−ε

dt = O(2−nε) as n → ∞. (3.8)

Consequently, the left-most terms form a summable sequence indexed by n. In
other words, for all ε > 0, t �→ ‖t‖ε−q�(t) is integrable on neighborhoods of
the origin in RN . We have proved that q ≤ γ + ε. Let ε ↓ 0 and q ↑ θ to find
that θ ≤ γ . [This does not require (1.10).]

If 0 < q < γ and (1.10) holds, then

∞ >

∫

{‖t‖≤1}

�(t)
‖t‖q dt =

∑
1≤n<∞

∫

{2−n−1<‖t‖≤2−n}

�(t)
‖t‖q dt. (3.9)

Thus,

lim
n→∞

∫

{2−n−1<‖t‖≤2−n}

�(t)
‖t‖q dt = 0. (3.10)

But the preceding integral is at least 2nq�(2−n, . . . , 2−n) times the volume of
{t ∈ RN+ : 2−n−1 < ‖t‖ ≤ 2−n}. This follows from the coordinate-wise monoto-
nicity of �, and proves that
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�(2−n, . . . , 2−n) = o
(

2−n(q−N)
)

as n → ∞. (3.11)

From this we conclude also that for the constant K > 0 in (1.10),

�(K2−n, . . . , K2−n) = o
(

2−n(q−N)
)

as n → ∞. (3.12)

We appeal to (1.10) to deduce that

�(K2−n, . . . , K2−n)

2−(n−1)(q−N)
≥ A sup

2−n−1<‖t‖≤2−n

�(t)
‖t‖q−N , (3.13)

where A is positive and finite, and depends only on N. This and (3.12) prove
that q < θ , whence it follows that γ ≤ θ . The converse bounds has already been
proved. ��

We are ready to present the main theorem of this section. This theorem is
new even when X is an ordinary Lévy process [i.e., X := X and N = 1].

Theorem 3.2 Let X denote an N-parameter symmetric, absolutely continuous
additive Lévy process on Rd. Choose and fix a compact set F ⊂ (0,∞)N. Then,
almost surely on {X−1({0}) ∩ F �= ∅},

dimH

(
X−1({0}) ∩ F

)

= sup
{

0 < q < N : I(q)

� (µ) < ∞ for some µ ∈ P(F)
}

. (3.14)

Remark 3.3 The proof of Theorem 3.2 implies that the Hausdorff dimension of
X−1({0}) ∩ F has the same formula, almost surely on {X−1({0}) ∩ F �= ∅}.

In order to have a complete picture it remains to know when X−1({0}) ∩ F
is nonempty with positive probability. This issue is addressed by Corollary 2.13
of Khoshnevisan and Xiao [22] as follows:

P
{
X−1({0}) ∩ F �= ∅

}
> 0 ⇐⇒ P

{
X−1({0}) ∩ F �= ∅

}
> 0

⇐⇒ there exists µ ∈ P(F) such that I(0)
� (µ) < ∞.

(3.15)

(The weak unimodality assumption of Khoshnevisan and Xiao [22], Corollary
2.13 is redundant in the present setting; see Corollary 3.1 of Khoshnevisan
and Xiao [21].) It follows from (3.15) that X−1({0}) ∩ F = ∅ a.s. whenever
dimH F < ind(�).

The following is an immediate consequence of Theorem 3.2, used in conjunc-
tion with Frostman’s theorem [15], Theorem 2.2.1, p. 521. Note that, here and
in the sequel, dimH E < 0 means E = ∅.
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Corollary 3.4 If the conditions of Theorem 3.2 are met, then for all nonrandom
compact sets F ⊂ (0,∞)N,

dimH F − ind(�) ≤ dimH

(
X−1({0}) ∩ F

)
≤ dimH F − ind(�), (3.16)

almost surely on {X−1({0}) ∩ F �= ∅}.
Khoshnevisan and Xiao [22, Theorem 2.10], have proved the following under

the assumption that X is absolutely continuous and symmetric:

(1) For all C > c > 0,

P
{
γ ≤ dimH

(
X−1({0}) ∩ [c, C]N

)
≤ γ̄
}

> 0. (3.17)

(2) If there is a K > 0 such that �(t) ≤ �(K‖t‖, . . . , K‖t‖), then

P
{

dimH

(
X−1({0}) ∩ [c, C]N

)
= γ
}

> 0. (3.18)

Thus, Corollary 3.4 improves (3.17) and (3.18) in several ways.
We end this section with some examples showing applications of Theorems

1.1 and 3.2

Example 3.5 Let X1, . . . , XN be N independent, identically distributed sym-
metric Lévy processes with stable components [31]. More precisely, let X1(t) =
(X1,1(t), . . . , X1,d(t)) for all t ≥ 0, where the processes X1,1, . . . , X1,d are assumed
to be independent, symmetric stable processes in R with respective indices
α1, . . . , αd ∈ (0, 2]. Let X be the associated additive Lévy process in Rd. Then X
is anisotropic in the space-variable unless α1 = · · · = αd.

It can be verified that X satisfies the conditions of Theorem 3.2 and for all
t ∈ (0, 1]N ,

�(t) =
∫

Rd

exp

⎛
⎝−

∑
1≤j≤N

tj
∑

1≤k≤d

|ξk|αk

⎞
⎠ dξ

� ‖t‖−
∑

1≤k≤d(1/αk).

(3.19)

In the above and sequel, “f (t) � g(t) for all t ∈ T” means that f (t)/g(t) is
bounded from below and above by constants that do not depend on t ∈ T. It
follows from Corollary 3.4 that for every compact set F ⊂ (0,∞)N ,

dimH

(
X−1({0}) ∩ F

)
= dimH F −

d∑
k=1

1
αk

, (3.20)

almost surely on {X−1({0}) ∩ F �= ∅}.
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The same reasoning implies that if X is an additive α-stable process in Rd

[i.e., if X1, . . . , XN are symmetric α-stable Lévy processes in Rd], then for every
compact set F ⊂ (0,∞)N ,

dimH

(
X−1({0}) ∩ F

)
= dimH F − d

α
, (3.21)

almost surely on {X−1({0}) ∩ F �= ∅}.
Next we consider additive Lévy processes which are anisotropic in the time-

variable.

Example 3.6 Suppose X1, . . . , XN are N independent symmetric stable Lévy
processes in Rd with indices α1, . . . , αN ∈ (0, 2], respectively. Let X be the addi-
tive Lévy process in Rd defined by X(t) = X1(t1) + · · · + XN(tN). Because, for
every 1 ≤ j ≤ N and fixed ti (i �= j), the process R+ � tj �→ X(t) is [up to an
independent random variable] an αj-stable Lévy process in Rd, X = {X(t)}t∈RN+
is anisotropic in the time-variable.

The following result is concerned with the Hausdorff dimension of the zero
set X−1({0}). For convenience, we assume

2 ≥ α1 ≥ · · · ≥ αN > 0. (3.22)

Define

k(α) := min

⎧⎨
⎩� = 1, . . . , N :

∑
1≤j≤�

αj > d

⎫⎬
⎭ , (3.23)

where min ∅ := ∞. In particular, k(α) = ∞ if and only if
∑

1≤j≤N αj ≤ d.

Theorem 3.7 Let X = {X(t)}t∈RN+ be the additive Lévy process defined above.

Then, P{X−1({0}) �= ∅} > 0 if and only if k(α) is finite. Moreover, if k(α) < ∞,
then almost surely on {X−1({0}) �= ∅},

dimH X−1({0}) = N − k(α) +
∑

1≤j≤k(α) αj − d

αk(α)

. (3.24)

First, we derive a few technical lemmas. The first is a pointwise estimate for �.

Lemma 3.8 Under the preceding conditions, for all t ∈ (0, 1]N,

�(t) � 1∑
1≤j≤N |tj|d/αj

. (3.25)

Proof For any fixed t ∈ (0, 1]N we let i ∈ {1, . . . , N} satisfy |ti|1/αi = max1≤j≤N

|tj|1/αj . Because �(t) ≤ ∫Rd exp(−|ti| · ‖ξ‖αi) dξ , it follows that



Hausdorff dimension of the contours of symmetric additive Lévy processes

�(t) ≤ A

|ti|d/αi
≤ A′
∑

1≤j≤N |tj|d/αj
, (3.26)

where A and A′ < ∞ do not depend on t ∈ (0, 1]N .
For the other bound we use (3.22) to deduce the following:

�(t) = 1
(2π)d

∫

Rd

exp

⎛
⎝−

∑
1≤j≤N

(
|tj|1/αj‖ξ‖

)αj

⎞
⎠ dξ

≥ 1
(2π)d

∫

Rd

exp

⎛
⎝−

∑
1≤j≤N

(
|ti|1/αi‖ξ‖

)αj

⎞
⎠ dξ

≥ 1
(2π)d

∫

{‖ξ‖≥|ti|−1/αi }
exp
(−N |ti|α1/αi‖ξ‖α1

)
dξ . (3.27)

A change of variables then shows that

�(t) ≥ A′′
∑

1≤j≤N |tj|d/αj
, (3.28)

where A′′ > 0 does not depend on t ∈ (0, 1]N . The lemma follows from (3.26)
and (3.28). ��

Our second technical lemma follows directly from Lemma 10 of Ayache and
Xiao [1] and its proof.

Lemma 3.9 Let a, b, c ≥ 0 be fixed. Define for all u, v > 0,

Ja,b,c(u, v) :=
1∫

0

dt

(u + ta)b(v + t)c
. (3.29)

Define for all u, v > 0,

J̄a,b,c(u, v) :=

⎧⎪⎪⎨
⎪⎪⎩

u−b+(1/a)v−c, if ab > 1,

v−c log
(

1 + vu−1/a
)

, if ab = 1,

1 + v−ab−c+1, if ab < 1 and ab + c �= 1.

(3.30)

Then, as long as u ≤ va, we have Ja,b,c(u, v) � J̄a,b,c(u, v).

Proof of Theorem 3.7 It can be verified that the additive process X satisfies the
symmetry and absolute continuity conditions of Theorem 1.1



D. Khoshnevisan et al.

According to Lemma 3.8, we have that for all q ≥ 0,

∫

[0,1]N

�(t)
‖t‖q dt �

∫

[0,1]N

1(∑
1≤j≤N t

d/αj
j

)
|t|q

dt

=
∫

[0,1]N−1

J(d/α1),1,q

⎛
⎝ ∑

2≤j≤N

t
d/αj
j ,

∑
2≤j≤N

tj

⎞
⎠ dt. (3.31)

This means that the left-most term converges if and only if the right-most one
does. We apply induction on N, several times in conjunction with Lemma 3.9, to
find that

∫
[0,1]N �(t) dt = ∞ if and only if k(α) = ∞. Therefore, in accord with

Khoshnevisan and Xiao [22], k(α) < ∞ if and only if P{X−1({0}) �= ∅} > 0.
This proves the first part of Theorem 3.7.

It remains to prove that γ equals to the right-hand side of (3.24). This is
proved by appealing, once again, to (3.31), Lemma 3.9, and induction [on N].
The details are tedious but otherwise elementary. So we omit them. ��

4 Proof of Theorem 3.2

Our proof of Theorem 3.2 is technical and long. We will carry it out in several
parts.

Throughout the remainder of this section we enlarge the probability space
enough that we can introduce symmetric, α-stable Lévy processes {Sj}∞j=1—all

taking values in RN—such that S1, S2, . . . are i.i.d., and totally independent of
X1, . . . , XN . We choose and fix an integer M ≥ 1, and define S to be the addi-
tive stable process S1 ⊕ · · · ⊕ SM. That is, S(t) = S1(t1) + · · · + SM(tM) for all
t = (t1, . . . , tM) ∈ RM+ . The parameters 0 < α < 2 and M ≥ 1 will be deter-
mined at the end of the proof of Theorem 3.2. For the sake of concreteness we
normalize each Sj as follows:

E
[
eiξ ·Sj(u)

]
= exp

(−u‖ξ‖α
)

for ξ ∈ RN and u ≥ 0. (4.1)

Let G be a nonrandom measurable subset of RN . According to Theorem
4.1.1 of Khoshnevisan [15, p. 423], P{G ∩ S(RM+ ) �= ∅} > 0 if and only if
CN−αM(G) > 0. Owing to the independence of S and X we can apply the pre-
ceding with G := X−1({0}) ∩ F to find that P{X−1({0}) ∩ F ∩ S(RM+ ) �= ∅} > 0
iff CN−αM(X−1({0}) ∩ F) > 0 with positive probability. The Frostman theo-
rem of potential theory Khoshnevisan [15, Theorem 2.2.1, p. 521], asserts that
the Hausdorff dimension of X−1({0}) ∩ F is the critical β ∈ (0, N) such that
Cβ(X−1({0})∩F) > 0. Because α and M can be chosen as we like, the computa-
tion of dimH(X−1({0})∩F) is thus reduced to deciding when, and exactly when,
X−1({0}) ∩ S(RM+ ) ∩ F is nonempty with positive probability. The main contri-
bution of this paper is a precise analytic condition on F that is equivalent to the
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positivity of P{X−1({0})∩F ∩S(RM+ ) �= ∅}. See Propositions 4.7 and 4.8 below.
Once we have this, the formula for the Hausdorff dimension of X−1({0}) ∩ F
follows from the preceding arguments that involve the Frostman theorem.

For all Borel probability measures µ on RN+ , and for every ε > 0, define

Jε(µ) := 1
(2ε)d+N

∫

RM+

⎛
⎜⎜⎝
∫

RN+

1{|X(s)|≤ε, |S(t)−s|≤ε} µ(ds)

⎞
⎟⎟⎠ e−[t] dt. (4.2)

It might help to recall that [t] denotes the �1-norm of t.

4.1 Some moment estimates

For all x ∈ Rd, we let Px denote the law of x + X. Similarly, for all y ∈ RN , we
define Qy to be the law of y+S. These are actually measures on canonical “path
spaces” defined in the usual way; see Khoshnevisan and Xiao [22, Sect. 5.2],
for details. Without loss of much generality, we can think of the underlying
probability measure P as P0 × Q0.

On our enlarged probability space, we view Px × Qy as the joint law of
(x + X, y + S). Define Lk to be the Lebesgue measure on Rk for all integers
k ≥ 1. Then we can construct σ -finite measures,

PLd(•) :=
∫

Rd

Px(•) dx and QLN (•) :=
∫

RN

Qy(•) dy, (4.3)

together with corresponding expectation operators,

EP[f ] :=
∫

Rd

f dPLd and EQ[f ] :=
∫

RN

f dQLN . (4.4)

We are particularly interested in the σ -finite measure PLd ×QLN and its corre-
sponding expectation operator EP×Q.

It is an elementary computation that for all s ∈ RN+ and t ∈ RM+ , the distribu-
tion of (X(s), S(t)) under PLd × QLN is Ld × LN . In particular,

(
PLd × QLN

) {|X(s)| ≤ ε, |S(t) − s| ≤ ε} = (2ε)d+N . (4.5)

Thus, we are led to the following formula: For all Borel probability measures µ

on RN+ and every ε > 0,

EP×Q [Jε(µ)] = 1. (4.6)

Next we bound the second moment of Jε(µ).
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Proposition 4.1 If N > αM then there exists a finite and positive constant A—
depending only on (α, d, N, M)—such that for all Borel probability measures µ

on RN+ and all ε > 0,

EP×Q

[
(Jε(µ))2

]
≤ A
∫∫

�(s′ − s) µ(ds′) µ(ds)
max
(|s′ − s|N−αM, εN−αM

) . (4.7)

Proof Combine Lemma 5.6 of Khoshnevisan and Xiao [22] with (2.11) of the
present paper to find that for all s, s′ ∈ RN+ and ε > 0,

PLd

{|X(s)| ≤ ε, |X(s′)| ≤ ε
} ≤ (64ε)dP

{|X(s) − X(s′)| ≤ ε
}

= 128dε2d�ε(s′ − s). (4.8)

The last line follows from symmetry; i.e., from the fact that X(s)−X(s′) has the
same distribution as X(r), where the jth coordinate of r is |sj − s′j|. Thanks to
(2.7) we obtain the following:

PLd

{|X(s)| ≤ ε, |X(s′)| ≤ ε
} ≤ 128d ε2d �(s − s′). (4.9)

We follow the implicit portion of the proof of the preceding to find that for
all x, y ∈ RN , t, t′ ∈ RM+ and ε > 0,

QLN
{|S(t) − x| ≤ ε, |S(t′) − y| ≤ ε

}

= E

⎡
⎢⎣
∫

RN

1{|z+S(t)−x|≤ε, |z+S(t′)−y|≤ε} dz

⎤
⎥⎦ . (4.10)

We change the variables to find that

QLN
{|S(t) − x| ≤ ε, |S(t′) − y| ≤ ε

}

=
∫

|z|≤ε

P
{|z + S(t′) − S(t) − (y − x)| ≤ ε

}
dz

≤ (2ε)NP
{|S(t′) − S(t) − (y − x)| ≤ 2ε

}
. (4.11)

Thus,

EP×Q

[
(Jε(µ))2

]
≤ 32d

(2ε)N

∫

RN+

∫

RN+

�(s − s′)Fε(s − s′) µ(ds) µ(ds′), (4.12)
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where

Fε(x) :=
∫

RM+

∫

RM+

P
{|S(t′) − S(t) − x| ≤ 2ε

}
e−[t]−[t′] dtdt′, (4.13)

for all x ∈ RN and ε > 0. Because [t]+ [t′] = [t− t′] + 2[t ∧ t′] for all t, t′ ∈ RM+ ,

Fε(x) =
∫

|z−x|≤2ε

∫

RM+

∫

RM+

ft−t′(z)e−[t−t′]−2[t∧t′] dt dt′ dz,
(4.14)

where f is the generalized “transition function,”

fu(z) := P {S(|u1|, . . . , |uN |) ∈ dz}
dz

for u ∈ RM and z ∈ RN . (4.15)

A computation based on symmetry yields

∫

RM+

∫

RM+

ft−t′(z)e−[t−t′]−2[t∧t′] dt dt′ =
∫

RM+

fu(z)e−[u] du := υ(z). (4.16)

In order to see the first equality, we write the double integral as a sum of
integrals over the 2M regions:

Dπ =
{
(t, t′) ∈ RM+ × RM+ : ti ≤ t′i if i ∈ π and ti > t′i if i /∈ π

}
, (4.17)

where π ranges over all subset sets of {1, 2, . . . , M} including the empty set. It
can been verified that the integral over Dπ equals 2−M

∫
RM+ fu(z)e−[u] du. Hence

(4.16) follows.
The function υ(z) in (4.16) is the one-potential density of S [15, pp. 397, 406].

We cite two facts about υ:

1. υ(z) > 0 for all z ∈ RN , and is continuous away from 0 ∈ RN . This is a
consequence of eq. (3) of (loc. cit., p. 406) and Bochner’s subordination
(loc. cit., p. 378).

2. If N > αM, then for all R > 0 there exists a finite constants A′ > A > 0
such that

A
|z|N−αM ≤ υ(z) ≤ A′

|z|N−αM whenever |z| ≤ R. (4.18)

Moreover, A′ can be chosen to be independent of R > 0. This follows from
(1), together used with Proposition 4.1.1 of (loc. cit., p. 420).
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It follows from (4.14), (4.16) and (4.18) that for all x ∈ RN and ε > 0,

Fε(x) ≤ A′
∫

z∈RN :|z−x|≤2ε

dz
|z|N−αM ≤ A′′(2ε)N min

(
1

|x|N−αM ,
1

εN−αM

)
. (4.19)

Here, A′′ is positive and finite, and depends only on (N, M, α). The proposition
is a ready consequence of this and symmetry; see (4.12). ��

We mention the following variant of Proposition 4.1. It is proved by the same
argument, without using (4.9).

Proposition 4.2 If N > αM then there exists a finite and positive constant A—
depending only on (α, d, N, M)—such that for all Borel probability measures µ

on RN+ and all ε > 0,

EP×Q

[
(Jε(µ))2

]
≤ A
∫∫

�ε(s′ − s)
max
(|s′ − s|N−αM, εN−αM

) µ(ds′) µ(ds). (4.20)

Next we define two multi-parameter filtrations [15, p. 233]. First, define Xj
to be the filtration of the Lévy process Xj, augmented in the usual way. Also,
define Sk to be the corresponding filtration for Sk. Then, we consider

X (s) :=
∨

1≤j≤N

Xj(sj) and S (t) :=
∨

1≤k≤M

Sk(tk), (4.21)

as s and t range, respectively, over RN+ and RM+ . It follows from Theorem 2.1.1
of Khoshnevisan [15, p. 233], that X is an N-parameter commuting filtration.
Similarly, S is an M-parameter commuting filtration. Theorem 2.1.1 of the
same reference (p. 233) can be invoked, yet again, to help deduce that F is an
(N + M)-parameter commuting filtration, where

F (s ⊗ t) := X (s) ∨ S (t) for s ∈ RN+ and t ∈ RM+ . (4.22)

We need only the following consequence of commutation; it is known as
Cairoli’s strong (2, 2)-inequality [15, Theorem 2.3.2, p. 235]: For all f ∈ L2(P),

E

⎡
⎣ sup

s∈QN+ , t∈QM+

∣∣E [f |F (s ⊗ t)
]∣∣2
⎤
⎦ ≤ 4N+ME

[
f 2
]

. (4.23)

(Qk+ denotes the collection of all x ∈ Rk+ such that xj is rational for all 1 ≤ j ≤ k.)
Moreover, and this is significant, the same is true if we replace E by EP×Q; i.e.,
for all f ∈ L2(PLd × QLN ),
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EP×Q

⎡
⎣ sup

s∈QN+ , t∈QM+

∣∣∣E [f |F (s ⊗ t)
] ∣∣∣

2

⎤
⎦ ≤ 4N+MEP×Q

[
f 2
]

. (4.24)

A proof is hashed out very briefly in Khoshnevisan and Xiao [22, p. 90].

Proposition 4.3 Suppose R > 0 is fixed. Choose and fix s ∈ [0, R]N and t ∈ RM+ .
Then, there exists a positive finite constant A = A(α, d, N, M, R) such that for all
Borel probability measures µ that are supported on [0, R]N,

EP×Q [Jε(µ) | F (s ⊗ t)]

≥ A e−[t]
∫

s′�s

�ε(s′ − s)
max
(|s′ − s|N−αM, εN−αM

) µ(ds′), (4.25)

(PLd × QLN )-almost everywhere on {|X(s)| ≤ ε/2, |S(t) − s| ≤ ε/2}.
Proof Define

χ := (PLd × QLN
) (|X(s′)| ≤ ε, |S(t′) − s′| ≤ ε

∣∣∣F (s ⊗ t)
)

. (4.26)

Owing to the Markov random-field property of Khoshnevisan and Xiao [22,
Proposition 5.8], whenever s′ � s and t′ � t, we have

χ = (PLd × QLN
) (|X(s′)| ≤ ε, |S(t′) − s′| ≤ ε

∣∣∣X(s), S(t)
)

= PLd

(
|X(s′)| ≤ ε

∣∣∣X(s)
)
· QLN

(
|S(t′) − s′| ≤ ε

∣∣∣S(t)
)

. (4.27)

We apply Lemma 5.5 of Xiao [22] to each term above to find that (PLd ×QLN )-
almost everywhere,

χ = P
{|X(s′) − X(s) + z| ≤ ε

} ⌋
z=X(s)

×P
{|S(t′) − S(t) − s′ + w| ≤ ε

} ⌋
w=S(t)

. (4.28)

Because s′ � s and t′ � t, the distributions of X(s′)−X(s) and S(t′)−S(t) are the
same as those of X(s′−s) and S(t′−t), respectively. Therefore, (PLd ×QLN )-a.e.
on {|X(s)| ≤ ε/2, |S(t) − s| ≤ ε/2},

χ ≥ P
{|X(s′) − X(s)| ≤ ε/2

} · P
{|S(t′ − t) − (s′ − s)| ≤ ε/2

}

≥ 1
32d+N

Pε(s′ − s ; t′ − t), (4.29)

where

Pε(s′−s; t′−t) :=P
{|X(s′)−X(s)|≤ε

} · P
{|S(t′−t)−(s′−s)|≤ε

}
. (4.30)



D. Khoshnevisan et al.

For the last inequality in (4.29), we have applied (2.12) to both processes X and
S. This implies that

EP×Q [Jε(µ) | F (s ⊗ t)]

≥ 1
32d+N(2ε)d+N

∫

t′∈RM+ :
t′�t

⎛
⎝
∫

s′�s

Pε(s′ − s ; t′ − t) µ(ds′)

⎞
⎠ e−[t′] dt′, (4.31)

(PLd × QLN )-almost everywhere on {|X(s)| ≤ ε/2, |S(t) − s| ≤ ε/2}.
Recall from (4.16) the one-potential density υ of S. According to the

Fubini–Tonelli theorem, for all x ∈ RN ,
∫

t′∈RM+ :
t′�t

P
{|S(t′ − t) − x| ≤ ε

}
e−[t′] dt′

≥ e−[t]
∫

RM+

P {|S(u) − x| ≤ ε} e−[u] du = e−[t]
∫

z∈RN :|z−x|≤ε

υ(z) dx. (4.32)

Thanks to (1) and (2) [confer with the paragraph following (4.16)], we can find
a finite constant a > 0—not depending on (ε, t)—such that as long as |x| ≤ R,

∫

t′∈RM+ :
t′�t

P
{|S(t′ − t) − x| ≤ ε

}
e−[t′] dt′

≥ ae−[t](2ε)N min

(
1

|x|N−αM ,
1

εN−αM

)
. (4.33)

[Compare with (4.19).] The proposition follows from (4.31) and (4.33) after a
few lines of direct computation. ��

We can use the earlier results of Khoshnevisan and Xiao [22] to extend Prop-
osition 4.3 further, which will be useful for proving Proposition 4.8. In light of
the existing proof of Proposition 4.3, the said extension does not require any
new ideas. Therefore, we will not offer a proof. However, we need to introduce
a fair amount of notation in order to state the extension in its proper form.

Any subset π of {1, . . . , N} induces a partial order on RN+ as follows: For all
s, t ∈ RN+ ,

s ≺π t means that

{
si ≤ ti for all i ∈ π , and
si > ti for all i �∈ π .

(4.34)

We identify each and every π ⊆ {1, . . . , N} with the partial order ≺π .
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For every π ⊆ {1, . . . , N}, 1 ≤ j ≤ N, and u ≥ 0, define

X π
j (u) :=

⎧⎨
⎩

σ
({

Xj(v)
}

0≤v≤u

)
if j ∈ π ,

σ
({

Xj(v)
}

v≥u

)
if j �∈ π .

(4.35)

As is customary, σ(· · · ) denotes the σ -algebra generated by the parenthesized
quantities. For all π ⊆ {1, . . . , N} and t ∈ RN+ define

X π (t) :=
∨

1≤j≤N

X π
j (tj). (4.36)

It is not hard to check that X π is an N-parameter filtration in the partial order
≺π . That is, X π (s) ⊆ X π (t) whenever s ≺π t.

For all π ⊆ {1, . . . , N}, s ∈ RN+ , and t ∈ RM+ , define

Fπ (s ⊗ t) := X π (s) ∨ S (t). (4.37)

By Lemma 5.7 in Khoshnevisan and Xiao [22], Fπ is an (N + M)-parameter
commuting filtration. It follows that, for all f ∈ L2(P) and π ⊆ {1, . . . , N},

E

⎡
⎣ sup

s∈QN+ , t∈QM+

∣∣E [f ∣∣Fπ (s ⊗ t)
]∣∣2
⎤
⎦ ≤ 4N+ME

[
f 2
]

. (4.38)

Also, for all f ∈ L2(PLd × QLN ) and π ⊆ {1, . . . , N},

EP×Q

⎡
⎣ sup

s∈QN+ , t∈QM+

∣∣∣E [f ∣∣Fπ (s ⊗ t)
] ∣∣∣

2

⎤
⎦ ≤ 4N+MEP×Q

[
f 2
]

. (4.39)

Note that when π = {1, . . . , N}, (4.38) and (4.39) are the same as (4.23) and
(4.24), respectively. However, the more general forms above have more con-
tent, as can be seen by considering other partial orders π than {1, . . . , N} [or ∅].

We are ready to present the asserted refinement of Proposition 4.3.

Proposition 4.4 Suppose R > 0 is fixed. Choose and fix s ∈ [0, R]N and t ∈ RM+ .
Then, there exists a positive finite constant A = A(α, d, N, M, R) such that for
all Borel probability measures µ that are supported on [0, R]N, and for all π ⊆
{1, . . . , N},

EP×Q
[

Jε(µ) | Fπ (s ⊗ t)
]

≥ Ae−[t]
∫

s′�π s

�ε(s′ − s)
max
(|s′ − s|N−αM, {εN−αM

) µ(ds′), (4.40)

(PLd × QLN )-almost everywhere on {|X(s)| ≤ ε/2, |S(t) − s| ≤ ε/2}.
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4.2 More moment estimates

Consider a compact set B ⊂ (0,∞)M with nonempty interior. For any Borel
probability measure µ on RN+ and a real number ε > 0, we define a random
measure on RN+ by

JB, µ
ε (C) := 1

(2ε)d+N

∫

B

⎛
⎝
∫

C

1{|X(s)|≤ε, |S(t)−s|≤ε} µ(ds)

⎞
⎠ dt, (4.41)

where C ⊆ RN+ denotes an arbitrary Borel set.
The following is the analogue of (4.6) under the probability measure P.

Lemma 4.5 Choose and fix a compact set B ⊂ (0,∞)M with nonempty interior
and a real number R > 1. Then, there exists a positive and finite number A such
that for all Borel probability measures µ on T := [R−1, R]N,

lim inf
ε→0+

E
[
JB, µ
ε (T)

]
> A. (4.42)

Proof Thanks to the inversion formula, the density function of X(s) is continu-
ous for every s ∈ (0,∞)N . Also, the density of S(t) is uniformly continuous for
each t ∈ (0,∞)M. By Fatou’s lemma,

lim inf
ε→0+

E
[
JB, µ
ε (T)

]
≥
∫

B

⎛
⎝
∫

T

�(s)ft(s) µ(ds)

⎞
⎠ dt

≥ LN(B) inf
s∈T

�(s) · inf
s∈T

inf
t∈B

ft(s). (4.43)

Recall that ft(s) is the density function of S(t). It remains to prove that the two
infima are strictly positive. The first fact follows from the monotonicity bound,

inf
s∈T

�(s) = �

(
1
R

, . . . ,
1
R

)
=
∫

Rd

exp

⎛
⎝− 1

R

∑
1≤j≤N

�j(ξ)

⎞
⎠ dξ , (4.44)

and this is positive. The second fact follows from Bochner’s subordination [15,
p. 378], and the fact that the cube T is a positive distance away from the axes
of RN+ . ��

The analogue of Proposition 4.1 follows next.

Proposition 4.6 Choose and fix R > 1 and a compact set B ⊂ (0,∞)M with
nonempty interior. Let K : RN+ × RN+ → R+ be a measurable function. If
N > αM, then there exists a finite and positive constant A—depending only
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on (α, d, N, M, B, R)—such that for all Borel probability measures µ on T =
[R−1, R]N and all ε > 0,

E

⎡
⎣
∫

T

∫

T

K(s, s′) JB, µ
ε (ds)JB, µ

ε (ds′)

⎤
⎦

≤ A
∫

T

∫

T

�(s − s′)K(s, s′)
|s − s′|N−αM µ(ds) µ(ds′). (4.45)

In particular, we have

sup
ε>0

E
[(

JB, µ
ε (T)

)2
]
≤ A I(N−αM)

� (µ). (4.46)

Proof We use an argument that is similar to that of Khoshnevisan and Xiao
[22, Lemma 3.4]. For all s, s′ ∈ RN+ define s ∧ s′ to be the N-vector whose jth
coordinate is min(sj, s′j). We write

Z1 := X(s ∧ s′), Z2 := X(s′) − X(s ∧ s′), (4.47)

and

Z3 := X(s) − X(s ∧ s′). (4.48)

Then, it is easy to check that (Z1, Z2, Z3) are independent. Therefrom we find
that P{|X(s′)| ≤ ε, |X(s)| ≤ ε} is equal to

P {|Z1 + Z2| ≤ ε, |Z1 + Z3| ≤ ε}
=
∫

Rd

P {|z + Z2| ≤ ε, |z + Z3| ≤ ε}ps∧s′(z) dz

≤ �(s′ ∧ s)
∫

Rd

P {|z + Z2| ≤ ε, |z + Z3| ≤ ε} dz. (4.49)

See also (2.7). After we apply the Fubini–Tonelli theorem and then change
variables [w := z + Z2], we find that P{|X(s′)| ≤ ε, |X(s)| ≤ ε} is at most

�(s′ ∧ s)
∫

{|w|≤ε}
P {|w + Z3 − Z2| ≤ ε} dw

≤ (2ε)d�(s′ ∧ s)P {|Z3 − Z2| ≤ 2ε}
≤ 32d(2ε)2d�(s′ ∧ s)�(s′ − s). (4.50)
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The last inequality is a consequence of (2.11), because Z3 − Z2 = X(s′) − X(s)
has the same distribution as X(r), where the jth coordinate of r is rj := |s′j − sj|.
In other words, for all ε > 0 and s, s′ ∈ [1/R, R]N ,

P
{|X(s′)| ≤ ε, |X(s)| ≤ ε

}

(2ε)2d
≤ A1 �(s′ − s), (4.51)

where A1 := 32d �(1/R, . . . , 1/R).
Now consider t, t′ ∈ B and s, s′ ∈ [1/R, R]N . For all ε > 0,

P
{|S(t′) − s′| ≤ ε, |S(t) − s| ≤ ε

}

= P
{|W1 + W2 − s′| ≤ ε, |W1 + W3 − s| ≤ ε

}
, (4.52)

where W1 := S(t′ ∧ t), W2 := S(t′)−W1, and W3 := S(t)−W1. A little thought
shows that (W1, W2, W3) are independent. Moreover, the density function of W1
is ft′∧t . Therefore,

P
{|S(t′) − s′| ≤ ε, |S(t) − s| ≤ ε

}

=
∫

RN

P
{|z + W2 − s′| ≤ ε, |z + W3 − s| ≤ ε

}
ft′∧t(z) dz. (4.53)

Because the density function ft′∧t is maximized at the origin,

P
{|S(t′) − s′| ≤ ε, |S(t) − s| ≤ ε

}

≤ ft′∧t(0)

∫

RN

P
{|z + W2 − s′| ≤ ε, |z + W3 − s| ≤ ε

}
dz. (4.54)

Next we argue—as we did earlier in order to derive (4.49) and (4.50)—to
deduce that

P
{|S(t′) − s′| ≤ ε, |S(t) − s| ≤ ε

}

≤ ft′∧t(0)

∫

{|x|≤ε}
P
{|x + W2 − W3 − (s′ − s)| ≤ ε

}
dx

≤ (2ε)Nft′∧t(0) P
{|W2 − W3 − (s′ − s)| ≤ 2ε

}

= (2ε)Nft′∧t(0) P
{|S(t′) − S(t) − (s′ − s)| ≤ 2ε

}

= (2ε)Nft′∧t(0)

∫

{|z−(s′−s)|≤2ε}
ft′−t(z) dz. (4.55)

[It might help to confer with (4.15) at this point.]
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Now,

ft′∧t(0) = 1
(2π)N

∫

RN

e−[t′∧t]·‖ξ‖α

dξ = A
[t′ ∧ t]M/α

, (4.56)

where A := (2π)−N
∫

RN exp(−‖x‖α) dx is positive and finite. Since t, t′ ∈ B and
B is strictly away from the axes of RM+ . Therefore, there exists a finite constant
A1—depending only on the distance between B and the axes of RM+ —such that

∫

B

∫

B

P
{|S(t′) − s′| ≤ ε, |S(t) − s| ≤ ε

}
dt′ dt

≤ A1(2ε)N
∫

{|z−(s′−s)|≤2ε}

∫

B

∫

B

ft′−t(z) dt′ dt dz

≤ A2(2ε)N
∫

{|z−(s′−s)|≤2ε}

⎛
⎝
∫

B

ft(z) dt

⎞
⎠dz, (4.57)

where A2 is another finite constant that depends only on: (a) the distance
between B and the axes of RM+ ; and (b) the distance between B and infin-
ity; i.e., sup{|x| : x ∈ B}. We can find a constant A3—with the same depen-
dencies as A2—such that exp(−[t]) ≥ A−1

3 for all t ∈ B. This proves that∫
B ft(z) dt ≤ A3υ(z) for all z ∈ RN . It follows that

∫

B

∫

B

P
{|S(t′) − s′| ≤ ε, |S(t) − s| ≤ ε

}
dt′ dt

≤ A2A3(2ε)N
∫

{|z−(s′−s)|≤2ε}

dz
|z|N−αM . (4.58)

See (4.18). From this and (4.19) we deduce that

∫

B

∫

B

P
{|S(t′) − s′| ≤ ε, |S(t) − s| ≤ ε

}
dt′ dt

≤ A′′A2A3(2ε)2N min

(
1

|s′ − s|N−αM ,
1

εN−αM

)
. (4.59)

This and (4.51) together imply that

E

⎡
⎣
∫

T

∫

T

K(s, s′) JB, µ
ε (ds)JB, µ

ε (ds′)

⎤
⎦
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≤ A′′′
∫

T

∫

T

�(s − s′)K(s, s′)
max
(|s′ − s|N−αM, εN−αM

) µ(ds) µ(ds′), (4.60)

where A′′′ depends only on (α, d, N, M, R, B). This proposition follows. ��

4.3 Proof of Theorem 3.2

Our proof of Theorem 3.2 rests on two further results. Both are contributions
to the potential theory of random fields, and determine when a given time set
F ⊂ RN+ is “polar” simultaneously for the range of S and for the level-sets of
X.

Proposition 4.7 Choose and fix a compact set F ⊂ (0,∞)N. If N > αM and
I(N−αM)
� (µ) is finite for some µ ∈ P(F), then X−1({0}) ∩ F ∩ S(RM+ ) �= ∅ with

positive probability.

Proof Since F ⊂ (0,∞)N is compact, there exists R > 1 such that F ⊆ T =
[R−1, R]N . Suppose I(N−αM)

� (µ) < ∞ for some Borel probability measure µ

on F. Then there exists a continuous function ρ : RN → [1,∞) such that
lims→s0 ρ(s) = ∞ for every s0 ∈ RN with at least one coordinate equals 0 and

∫∫
�(s − s′)ρ(s − s′)

|s − s′|N−αM µ(ds) µ(ds′) < ∞. (4.61)

See Khoshnevisan and Xiao [22, p. 73], for a construction of ρ.
For a fixed compact set B ⊂ (0,∞)M with nonempty interior, consider the

random measures {JB, µ
ε }ε>0 defined by (4.41). If JB, µ

ε (T) > 0 then certainly
X−1(Uε) ∩ F ∩ S(B) �= ∅, where Uε := {x ∈ Rd : |x| ≤ ε}.

It follows from Lemma 4.5, Proposition 4.6 and a second moment argument
[13, pp. 204–206], that there exists a subsequence {JB, µ

εn }which converges weakly
to a random measure ν such that

P {ν(T) > 0} ≥ a2
1

a2
> 0, (4.62)

where

a1 := inf
0<ε<1

E
[
JB, µ
ε (T)

]
> 0 and a2 := sup

ε>0
E
[(

JB, µ
ε (T)

)2
]

< ∞. (4.63)

Moreover,

E
[∫∫

ρ(s − s′) ν(ds) ν(ds′)
]

≤ A
∫∫

�(s − s′)ρ(s − s′)
|s − s′|N−αM µ(ds) µ(ds′). (4.64)



Hausdorff dimension of the contours of symmetric additive Lévy processes

This and (4.61) together imply that almost surely

ν{s ∈ T : sj = a for some j } = 0 for all a ∈ R+. (4.65)

Therefore, we have shown that

inf
µ∈P(F)

I(N−αM)
� (µ) < ∞ �⇒ P

{
X−1({0}) ∩ F ∩ S(B) �= ∅

}
> 0

�⇒ P
{
X−1({0}) ∩ F ∩ S(RM+ ) �= ∅

}
> 0. (4.66)

Now we need to make use of some earlier results of Khoshnevisan and Xiao
[22,20] and Khoshnevisan et al. [23] to remove the closure signs in (4.66). First,
since the density function of S(t) (t ∈ (0,∞)M) is strictly positive everywhere,
a slight modification of the proof of Lemma 4.1 in Khoshnevisan and Xiao [20],
Eqs. 4.9–4.11 implies that for every Borel set F̃ ⊆ RN ,

F̃ ∩ S(RM+ ) = ∅ a.s. ⇐⇒ LN(F̃ � S(RM+ )
) = 0 a.s. (4.67)

On the other hand, Proposition 5.7 and the proof of Lemma 5.5 in Khoshnevisan
et al. [23] show that LN

(
F̃ �S(RM+ )

) = 0 a.s. is equivalent to CN−αM(F̃) = 0,
where Cβ denotes the β-dimensional Bessel–Riesz capacity.

By applying the preceding facts to F̃ = X−1({0}) ∩ F, we conclude that
(4.66) implies that CN−αM(X−1({0})∩F) > 0 with positive probability. This and
Theorem 4.4 of Khoshnevisan and Xiao [20] together yield,

P
{
X−1({0}) ∩ F ∩ S(RM+ ) �= ∅

}
> 0. (4.68)

We have proved the following:

inf
µ∈P(F)

I(N−αM)
� (µ) < ∞ ⇒ P

{
X−1({0}) ∩ F ∩ S(RM+ ) �= ∅

}
> 0. (4.69)

It remains to prove that (4.69) still holds when X−1({0}) is replaced by
X−1({0}). This can be done by proving that the random measure ν is supported
on X−1({0})∩F∩S(RM+ ). For this purpose, it is sufficient to prove that for every
δ > 0, ν(D(δ)) = 0 a.s., where D(δ) := {s ∈ T : |X(s)| > δ}. However, because
of (4.65), the proof of the last statement is the same as that in Khoshnevisan
and Xiao [22, p. 76]. The proof of Proposition 4.7 is finished. ��
Proposition 4.8 Choose and fix a compact set F ⊂ (0,∞)N. If N > αM and
I(N−αM)
� (µ) is infinite for all µ ∈ P(F), then X−1({x}) ∩ F ∩ S(RM+ ) = ∅ almost

surely, for all x ∈ Rd.
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Remark 4.9 It follows from this proposition and Theorem 4.4 of Khoshnevi-
san and Xiao [20] (or Theorem 4.1.1 of Khoshnevisan [15, p. 423]) that, under
the above conditions, CN−αM

(
X−1({x}) ∩ F

) = 0 a.s., for every x ∈ Rd. Hence

dimH

(
X−1({x}) ∩ F

) ≤ N − αM a.s. This is the argument for proving the upper
bound in Theorem 3.2.

Proof By compactness, F ⊆ [1/R, R]N for some R > 1 large enough. We fix
this R throughout the proof. Also throughout, we assume that for all µ ∈ P(F),

I(N−αM)
� (µ) = ∞. (4.70)

Let us assume that the collection of all (x, y) ∈ Rd × RN for which the
following holds has positive (Ld × LN)-measure:

P
{
X−1({x}) ∩ F ∩

(
y ⊕ S

(
[0, R]M

))
�= ∅

}
> 0, (4.71)

where y ⊕ E := {y + z : z ∈ E} for all singletons y and all sets E. The major
portion of this proof is concerned with proving that (4.71) contradicts the earlier
assumption (4.70).

Note that (4.71) is equivalent to the statement that for all (x, y) in a set of
positive (Ld × LN) measure,

(
P−x × Qy

) {
X−1({0}) ∩ F ∩ S

(
[0, R]M

)
�= ∅

}
> 0. (4.72)

For all s ∈ [0, R]N , t ∈ RM+ , and ε > 0 consider the event,

G(ε ; s, t) :=
{
|X(s)| ≤ ε

2
, |S(t) − s| ≤ ε

2

}
. (4.73)

According to Proposition 4.4, for all s ∈ [0, R]N , t ∈ RM+ , ε > 0, and µ ∈ P(F),

∑
π⊆{1,...,N}

EP×Q
[

Jε(µ) | Fπ (s ⊗ t)
]

≥ Ae−[t]

(2ε)d

∫
P
{|X(s′) − X(s)| ≤ ε

}

max
(|s′ − s|N−αM, εN−αM

) µ(ds′) · 1G(ε ;s,t)

= Ae−[t]
∫

�ε(s′ − s)
max
(|s′ − s|N−αM, εN−αM

) µ(ds′) · 1G(ε ;s,t), (4.74)

(PLd × QLN )-almost everywhere. (This uses only the fact that given s′, s ∈ RN+
we can find π ⊆ {1, . . . , N} such that s′ �π s.)

Fix ε > 0. It is possible to see that on the same underlying probability
space we can find extended random variables σ (ε) ∈ (QN+ ∩ F) ∪ {∞} and
τ (ε) ∈ (QM+ ∩ [0, R]M) ∪ {∞}, where QN+ ∩ F and QM+ ∩ [0, R]M denote respec-
tively dense subsets of F and [0, R]M, that have the following properties:
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(�1) σ (ε) = ∞ if and only if τ (ε) = ∞. These conditions occur, in turn, if and
only if

⋃

s∈QN+∩F
t∈QM+ ∩[0,R]N

G(ε ; s, t) = ∅; (4.75)

(�1) On {σ (ε) �= ∞},

|X(σ (ε))| ≤ ε

2
and |S(τ (ε)) − σ (ε)| ≤ ε

2
. (4.76)

We can collect countably-many (PLd × QLN )-null sets, lump them together,
and then apply (�1) and (�2) together with (4.74) to find that

∑
π⊆{1,...,N}

sup
s∈QN+
t∈QM+

EP×Q
[

Jε(µ) | Fπ (s ⊗ t)
]

≥ Ae−[τ(ε)]
∫

�ε(s′ − σ (ε))

max
(|s′ − σ (ε)|N−αM, εN−αM

) µ(ds′) · 1{σ (ε) �=∞}

≥ Ae−MR
∫

�ε(s′ − σ (ε))

max
(|s′ − σ (ε)|N−αM, εN−αM

) µ(ds′) · 1{σ (ε) �=∞} (4.77)

(PLd × QLN )-almost everywhere. This holds for all µ ∈ P(F). Now we make
the special choice of µ, and replace it with µε,k, which we define shortly.

First of all, we note that for all ε > 0 and k > 1,

0 < PLd {|X(0)| ≤ k} = (2k)d < ∞. (4.78)

At the same time, thanks to (4.72), there exists k0 > 1 large enough so that for
all k > k0,

(
PLd × QLN

) {σ (ε) �= ∞, |X(0)| ≤ k}
≥ (PLd × QLN

) {
X−1({0}) ∩ F ∩ S

(
[0, R]M

)
�= ∅, |X(0)| ≤ k

}

> 0. (4.79)

The preceding two displays together prove that for all ε > 0 and k > k0,
µε,k ∈ P(F), where

µε,k(�) :=
(
PLd × QLN

) {σ (ε) ∈ �, σ (ε) �= ∞, |X(0)| ≤ k}(
PLd × QLN

) {σ (ε) �= ∞, |X(0)| ≤ k} , (4.80)
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for all Borel sets � ⊆ RN+ . Apply (4.77) with µ replaced by µε,k, for k > k0 and
ε > 0 fixed, to find that

�2 ≥ A′
(∫

�ε(s′ − σ (ε))

max
(|s′ − s|N−αM, εN−αM

) µε,k(ds′)
)2

× 1{σ (ε) �=∞, |X(0)|≤k} (4.81)

(PLd × QLN )-almost everywhere, where

� :=
∑

π⊆{1,...,N}
sup

s∈QN+
t∈QM+

EP×Q
[

Jε(µε,k)
∣∣ Fπ (s ⊗ t)

]
. (4.82)

For any sequence {aπ , π ⊆ {1, . . . , N}} of real numbers,

( ∑
π⊆{1,...,N}

aπ

)2

≤ 2N
∑

π⊆{1,...,N}
a2
π . (4.83)

Therefore,

EP×Q

[
�2
]
≤ 2N

∑
π⊆{1,...,N}

EP×Q

×
[(

sup
s∈QN+ t∈QM+

EP×Q
[

Jε(µε,k)
∣∣ Fπ (s ⊗ t)

] )2]
. (4.84)

We first apply the Cauchy–Schwarz inequality to the σ -finite measure PLd ×
QLN , and then use (4.24) to obtain the following:

EP×Q

[
�2
]
≤ 2N

∑
π⊆{1,...,N}

EP×Q

×
[

sup
s∈QN+
t∈QM+

EP×Q

[(
Jε(µε,k)

)2 ∣∣∣ Fπ (s ⊗ t)
] ]

≤ 8N+MEP×Q

[(
Jε(µε,k)

)2] . (4.85)

Consequently, Proposition 4.2 implies the existence of a constant A—not
depending on (k, ε) nor on µε,k—such that

EP×Q

[
�2
]
≤ A W(ε, k), (4.86)
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where

W(ε, k) :=
∫∫

�ε(s′ − s)
max
(|s′ − s|N−αM, εN−αM

) µε,k(ds′) µε,k(ds). (4.87)

This estimates the left-hand side of (4.81).
As for the right-hand side, let us write

Aε,k := {σ (ε) �= ∞, |X(0)| ≤ k} , (4.88)

for the sake of brevity. Then, we have

EP×Q

⎡
⎣
(∫

�ε(s′ − σ (ε))

max
(|s′ − s|N−αM, }N−αM

) µε,k(ds′)
)2

; Aε,k

⎤
⎦

=
∫ (∫

�ε(s′ − s)
max
(|s′ − s|N−αM, εN−αM

) µε,k(ds′)
)2

µε,k(ds)

× (PLd × QLN
) (

Aε,k
)

≥ (W(ε, k))2 × (PLd × QLN
) (

Aε,k
)

, (4.89)

thanks to the Cauchy–Schwarz inequality. Thus, (4.81), (4.86), and (4.89)
together imply that

(
PLd × QLN

) {σ (ε) �= ∞, |X(0)| ≤ k} ≤ A′

W(ε, k)
, (4.90)

where A′ does not depend on (k, ε), nor on the particular choice of µε,k. Now,
{µε,k}ε>0,k>k0 is a collection of probability measures on F. According to Pro-
horov’s theorem we can extract a weakly convergent subsequence and a weak
limit µ0 ∈ P(F), as k → ∞ and ε → 0+. Without loss of too much generality
we denote the implied subsequences by k and ε as well. [No great harm will
come from this, but it is notationally simpler.] We can combine Fatou’s lemma,
(2.7), (4.70) and (4.90) in order to deduce that

lim
k→∞
ε→0

(
PLd × QLN

) {σ (ε) �= ∞, |X(0)| ≤ k} = 0. (4.91)

Thanks to the monotone convergence theorem [applied to the σ -finite measure
PLd × QLN ] the left-hand side is precisely

∫

Rd

∫

RN+

(
P−x × Qy

) {
X−1({0}) ∩ F ∩ S

([0, R]M) �= ∅

}
dx dy, (4.92)
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which, we just proved, is zero. This implies also that

∫

Rd

∫

RN+

(
P−x × Qy

) {
X−1({0}) ∩ F ∩ S

(
[0, R]M

)
�= ∅

}
dx dy = 0. (4.93)

This contradicts (4.71). That is, we have proved that the condition (4.70) implies
that (4.71) fails to hold. It is the case that if (4.71) fails for some y ∈ RN (with
x held fixed) then it fails for all y ∈ RN [23, Proposition 6.2]. This yields the
following: For all y ∈ RN ,

∫

Rd

(
P−x × Qy

) {
X−1({0}) ∩ F ∩ S

(
[0, R]M

)
�= ∅

}
dx = 0. (4.94)

Let R ↑ ∞ to find, via the monotone convergence theorem, that for all y ∈ RN ,

∫

Rd

(
P−x × Qy

) {
X−1({0}) ∩ F ∩ S

(
RM+
)
�= ∅

}
dx = 0. (4.95)

Recall that F is a compact subset of [1/R, R]N . Fix and choose an arbitrary
y ∈ (0, 1/R)N , and note that

(
P0 × Qy

) {
X−1({0}) ∩ S(RM+ ) ∩ (F � y) �= ∅

}

= P
{∃r ∈ F � y : r ∈ S(RM+ ) � y, 0 ∈ 〈X(r)〉} , (4.96)

where A − y := {a − y : a ∈ A} for all sets A and points y, and

〈X(r)〉 =
⎧⎨
⎩
∑

1≤j≤N

Xj(rjθ) : θ ∈ {+,−}
⎫⎬
⎭ . (4.97)

For example, when N = 1, X is an ordinary Lévy process, and 〈X(r)〉 has at most
two elements: X(r) and X(r−) (they could be equal). Or, when N = 2, then
the set 〈X(r)〉 contains up to four elements: X1(r1) + X2(r2), X1(r1−) + X2(r2),
X1(r1) + X2(r2−), and X1(r1−) + X2(r2−). [Some of them are equal a.s.] In
general, 〈X(r)〉 contains up to 2N elements.

Note that s � y for all s ∈ F. This is so only because F ⊆ [1/R, R]N and
y ∈ (0, 1/R)N . Therefore, we can apply the Markov property of Xj at yj to find
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that for all x ∈ Rd,

(
P0 × Qy

) {
X−1({x}) ∩ S(RM+ ) ∩ (F � y) �= ∅

}

= P
{∃s ∈ F : s ∈ S(RM+ ), x ∈ 〈X(s − y)

〉}

=
∫

Rd

P
{∃s ∈ F : s ∈ S(RM+ ), x + z ∈ 〈X(s)〉

}
py(z) dz

=
∫

Rd

P
{
X−1({x + z}) ∩ S(RM+ ) ∩ F �= ∅

}
py(z) dz

=
∫

Rd

(P−w × Q0)
{
X−1({0}) ∩ S(RM+ ) ∩ F �= ∅

}
py(w − x) dw. (4.98)

(It might help to recall that py is the density function of X(y).) We have used
the fact that with probability one, Xj(yj) = Xj(yj−) for all 1 ≤ j ≤ N, for any
fixed y ∈ (0, 1/R)N . The preceding, together with (4.95), proves the following:
(4.70) implies that for all y ∈ (0, 1/R)N and x ∈ Rd,

(
P0 × Qy

) {
X−1({x}) ∩ S(RM+ ) ∩ (F � y) �= ∅

}
= 0. (4.99)

Note that the “energy form” µ �→ I(q)
� (µ) is translation invariant. That is,

I(q)

� (µ) = I(q)

� (µ ◦ τa) for all a ∈ RN , where (µ ◦ τa)(A) := µ(A � a). Therefore,
for all fixed y ∈ (0, 1/R)N , (4.70) is equivalent to the following:

I(N−αM)
� (µ) = ∞ for all µ ∈ P(F ⊕ y), (4.100)

where A ⊕ y := {a + y : a ∈ A} for all sets A and points y. Equation (4.99) is
therefore implying that for all y ∈ (0, 1/R)N and x ∈ Rd,

(
P0 × Qy

) {
X−1({x}) ∩ S(RM+ ) ∩ F �= ∅

}
= 0. (4.101)

Khoshnevisan et al. [23, Proposition 6.2], implies then that the preceding holds
for all y ∈ RM+ . Apply this with y ≡ 0 to finish. ��

We are ready to prove Theorem 3.2.

Proof of Theorem 3.2 We can assume without loss in generality that

P
{
X−1({0}) ∩ F �= ∅

}
> 0. (4.102)

For there is nothing to prove otherwise. We recall that (4.102) is equivalent to
the analytic condition that there exists µ ∈ P(F) such that the “energy integral”∫∫

�(s′ − s) µ(ds) µ(ds′) is finite [22].



D. Khoshnevisan et al.

Let S1, S2, . . . be i.i.d. copies of S, and define

K :=
⋃

1≤j<∞
Sj(RM+ ). (4.103)

On one hand, according to the Borel–Cantelli lemma, the following is valid for
every nonrandom Borel set G ⊂ RN :

P{K ∩ G �= ∅} =
{

1 if P{S(RM+ ) ∩ G �= ∅} > 0,
0 if P{S(RM+ ) ∩ G �= ∅} = 0.

(4.104)

On the other hand, whenever G �= ∅,

P
{
S(RM+ ) ∩ G �= ∅

}
> 0 iff CN−αM(G) < ∞, (4.105)

where Cq denotes the q-dimensional Bessel–Riesz capacity of (1.15) [15, The-
orem 4.1.1, p. 423]. Therefore,

P
(
X−1({0}) ∩ F ∩ K �= ∅

∣∣∣ X−1({0}) ∩ F �= ∅

)

= P
(
�

∣∣∣ X−1({0}) ∩ F �= ∅

)
, (4.106)

where � denotes the event that there exists some σ ∈ P(X−1({0})∩F) such that

∫∫
σ(dx) σ (dy)

‖x − y‖N−αM < ∞. (4.107)

It follows from Propositions 4.7 and 4.8 that a.s. on the event {X−1({0})∩F �= ∅},

CN−αM

(
X−1({0}) ∩ F

)
> 0 iff inf

µ∈P(F)
I(N−αM)
� (µ) < ∞. (4.108)

This is a statement only about the random field X, and does not concern S.
Therefore, the preceding holds for all integers M ≥ 1, and all reals 0 < α < 2.
By adjusting the parameters α and M, we can ensure that q := N − αM is any
pre-described number in (0, N). Therefore, outside a single null set

Cq

(
X−1({0}) ∩ F

)
> 0 iff inf

µ∈P(F)
I(q)
� (µ) < ∞, (4.109)

for all rational numbers q ∈ (0, N), a.s. on {X−1({0})∩F �= ∅}. By monotonicity,
the preceding holds for all q ∈ (0, N), off a single null set. Frostman’s theorem
[15, Theorem 2.2.1, p. 521], then completes our proof. ��
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5 Proof of Theorem 1.1

Before commencing with our proof, we first develop a real-variable, technical
lemma. We will say that � ⊂ Rn is a cube if and only if there exist a ≺ b, both
in Rn, such that

� := [a1, b1] × · · · × [an, bn]. (5.1)

Lemma 5.1 Let f : Rn �→ [0,∞] be continuous and finite on Rn\{0}, and assume
that f is “quasi-monotone” in the following sense: There exists 0 < θ ≤ 1 such
that f (x) ≥ θ f (y) whenever 0 ≺ x ≺ y. Suppose, in addition, that f (x) depends
on x = (x1, . . . , xn) only through |x1|, . . . , |xn|. Then, for all cubes � ⊂ (0,∞)n,

Ln(�) inf
y∈�

∫

�

f (x − y) dx ≥
(

θ

2

)n ∫

�

∫

�

f (x − z) dx dz. (5.2)

Remark 5.2 Lemma 5.1 is a result about symmetrization because it is equivalent
to the assertion that if U and V are i.i.d., both distributed uniformly on �, then

inf
y∈�

E
[
f (U − y)

] ≥
(

θ

2

)n

E
[
f (U − V)

]
. (5.3)

Our proof will make it plain that the inequality is sharp in the sense that

sup
y∈�

E
[
f (U − y)

] ≤ 2nE
[
f (U − V)

]
. (5.4)

This portion does not require f to be quasi-monotone.

Proof First we suppose that n = 1, and � = [a, b], where 0 < a < b. For all
a ≤ y ≤ b,

b∫

a

f (x − y) dx =
y−a∫

0

f (z) dz +
b−y∫

0

f (z) dz. (5.5)

[This is so because f (x − y) = f (|x − y|).] Now we use the quasi-monotonicity
of f to find that

b−y∫

0

f (z) dz ≥ θ

b−y∫

0

f (z + y − a) dz = θ

b−a∫

y−a

f (z) dz. (5.6)
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According to (5.5) then, for all a ≤ y ≤ b,

b∫

a

f (x − y) dx ≥ θ

b−a∫

0

f (z) dz. (5.7)

But an argument based on symmetry shows readily that

b∫

a

b∫

a

f (x − z) dx dz ≤ 2(b − a)

b−a∫

0

f (z) dz ≤ 2(b − a)

θ

b∫

a

f (x − y) dx, (5.8)

for all a ≤ y ≤ b. Thus, the lemma follows in the case that n = 1. The remainder
follows by induction on n, using the self-evident fact that a cube in Rn has the
form � × [a, b] where � is a cube in Rn−1. ��

Proof of Theorem 1.1 We only need to prove (1.9), since (1.11) follows from it
and Lemma 3.1.

As before, we introduce S to be an M-parameter additive stable process in
RN , where N > αM. Later, we will choose α and M such that N − αM ↘ γ .

Choose and fix R > 1. According to Proposition 4.4, there exists a finite
constant A > 0 such that for all s ∈ [0, R]N , t ∈ [0, R]M, ε > 0, and every cube
� ⊂ [0, R]N ,

∑
π⊆{1,...,N}

EP×Q
[

Jε(µ� )
∣∣ Fπ (s ⊗ t)

]

≥ A
∫

�ε(s′ − s)
max
(|s′ − s|N−αM, εN−αM

) µ�(ds′) · 1G(ε ;s,t), (5.9)

(PLd × QLN )-almost everywhere. (Recall that G(ε ; s, t) is defined in (4.73).)
Here, µ� denotes the restriction of the Lebesgue measure LN to �, normalized
to have mass one. See also (4.74).

Define for all x ∈ RN ,

f (x) := �ε(x)

max
(|x|N−αM, εN−αM

) . (5.10)

Evidently, f (x) depends on x ∈ RN only through |x1|, . . . , |xN |. Because
N > αM, (2.13) implies that f is quasi-monotone with θ = 16−d. Thus, Lemma
5.1 can be used to deduce that there exists A′ such that

∑
π⊆{1,...,N}

EP×Q
[

Jε(µ� )
∣∣ Fπ (s ⊗ t)

] ≥ A′I� (ε) · 1G(ε ;s,t), (5.11)
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(PLd × QLN )-almost everywhere, where

I� (ε) :=
∫∫

�ε(s′ − s′′)
max
(|s′ − s′′|N−αM, εN−αM

) µ�(ds′) µ�(ds′′). (5.12)

We emphasize that A′ does not depend on ε > 0, s ∈ [0, R]N , or t ∈ [0, R]M.
The regularity of the paths of X and S implies that

sup
s∈[0,R]N∩QN

t∈[0,R]M∩QM

1G(ε ;s,t) ≥ 1{
X−1({0})∩�∩S([0,R]M) �=∅

}. (5.13)

Therefore,

∑
π⊆{1,...,N}

sup
s∈[0,R]N∩QN

t∈[0,R]M∩QM

EP×Q
[

Jε(µ� )
∣∣ Fπ (s ⊗ t)

]

≥ A′I� (ε) · 1{
X−1({0})∩�∩S([0,R]M) �=∅

}, (5.14)

(PLd × QLN )-almost everywhere.
We square both sides of (5.14), and then integrate [dPLd × dQLN ]. By way

of (4.83), we arrive at the following:

∑
π⊆{1,...,N}

EP×Q

⎡
⎢⎢⎣ sup

s∈[0,R]N∩QN

t∈[0,R]M∩QM

∣∣EP×Q
[

Jε(µ� )
∣∣ Fπ (s ⊗ t)

]∣∣2
⎤
⎥⎥⎦

≥ A′′ [I� (ε)
]2 · (PLd × QLN

) {
X−1({0}) ∩ � ∩ S([0, R]M) �= ∅

}
, (5.15)

where A′′ does not depend on ε > 0. Thanks to (4.39) and Proposition 4.2, the
left-hand side is at most

4N+M
∑

π⊆{1,...,N}
EP×Q

[∣∣Jε(µ� )
∣∣2] ≤ A′′′I� (ε), (5.16)

where A′′′ does not depend on ε > 0. This proves then that

(
PLd × QLN

) {
X−1({0}) ∩ � ∩ S([0, R]M) �= ∅

}
≤ A∗

I� (ε)
, (5.17)

where A∗ does not depend on ε > 0. According to Fatou’s lemma,

lim inf
ε→0+

I� (ε) ≥ 1(LN(�)
)2 I(N−αM)

� (µ�), (5.18)
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which is manifestly infinite if N −αM > γ ; see (3.2). Thus, we have proved that
if N − αM > γ , then

∫

Rd

∫

RN+

(
P−x × Qy

) {
X−1({0}) ∩ � ∩ S([0, R]M) �= ∅

}
dx dy (5.19)

is zero. Now we argue precisely as we did in the proof of Theorem 3.2, and find
that if � is a cube in [1/R, R]N , then for all y ∈ (0, 1/R)N ,

(
P0 × Qy

) {
X−1({0}) ∩ � ∩ S(RM+ ) �= ∅

}
= 0, (5.20)

as long as N − αM > γ . See the derivation of (4.101) from (4.92). Hence we
have CN−αM

(
X−1({0})∩�

) = 0 almost surely [P]. Since N−αM can be arbitrary
close to γ , this proves that a.s. [P],

dimH

(
X−1({0}) ∩ �

)
≤ γ . (5.21)

Because the preceding is valid a.s. for all R > 1 and all cubes � ⊆ [1/R, R]N ,
we find that

dimH X−1({0}) ≤ γ a.s. (5.22)

On the other hand, according to Theorem 3.2, if R > 1 and � is any cube in
[1/R, R]N , then a.s. on {X−1({0}) ∩ � �= ∅},

dimH

(
X−1({0}) ∩ �

)
≥ sup

{
0 < q < N : I(q)

� (µ�) < ∞
}

, (5.23)

and we have seen already that the right-hand side coincides with γ . Let �

increase and exhaust RN+ to complete the proof. ��
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