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Abstract:  Eigenvalue equations for solving full-vector modes of optical 
waveguides are formulated using Yee-mesh-based finite difference 
algorithms and incorporated with perfectly matched layer absorbing 
boundary conditions. The established method is thus able to calculate the 
complex propagation constants and the confinement losses of leaky 
waveguide modes. Proper matching of dielectric interface conditions 
through the Taylor series expansion of the fields is adopted in the 
formulation to achieve high numerical accuracy. The method is applied to 
the study of the holey fiber with triangular lattice, the two-core holey fiber, 
and the air-guiding photonic crystal fiber. 
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1. Introduction 

The finite difference (FD) method has been popularly used for solving full-vector modes of 
optical waveguides. The method has the advantage of simple formulation and numerical 
implementation. It can be formulated either through the wave equations [1] or the Helmholtz 
equation [2]. Recently, formulations based on the Yee’s mesh, as in the finite-difference time-
domain (FDTD) method [3], and derived directly from Maxwell’s equations have been 
proposed [4–6]. Such schemes are attractive in that the obtained mode fields can easily be 
incorporated into the FDTD computation. Although most of conventional optical waveguides 
are designed to propagate well-confined guided modes with ideal real-valued propagation 
constants, calculation of leaky properties of waveguide modes having complex propagation 
constants has become more important due to recent intensive study on the confinement losses 
of photonic crystal fibers (PCFs) [7, 8]. We have recently considered the Yee-mesh-based FD 
algorithm for formulating the eigenvalue problem for waveguide mode solutions and 
incorporate into it perfectly matched layer (PML) absorbing boundary conditions [9] so that 
leaky waveguide modes can be analyzed [10]. Guo et al. reported a similar formulation  using 
anisotropic PMLs [11]. We however employed an alternative formulation for the PML by 
mapping Maxwell’s equations into an anisotropic complex stretched coordinate [12–14]. To 
obtain high-accuracy results, proper treatment of the fields near the dielectric interface is 
essential [15–18]. For example, proper matching of interface conditions through the Taylor 
series expansion of the fields could achieve excellent accuracy [16]. Similar interface 
matching procedure can be performed in the Yee-mesh-based algorithm [4, 19]. In [11] a 
dielectric constant averaging technique using Ampere’s law across the curved material 
interface was proposed to increase numerical convergence and accuracy. In this paper we will 
apply the proper interface matching procedure to our formulation and several different PCF 
structures will be analyzed. 
     After presenting the formulation of the Yee-mesh-based FD method with PML absorbing 
boundary conditions and examining its numerical accuracy in Section 2, several 
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microstructured fibers or PCFs including the holey fiber (HF) with triangular lattice, the two-
core HF, and the air-guiding PCF will be analyzed using the established method in Section 3. 
The conclusion is drawn in Section 4. 

2. Formulation 

Figure 1 shows the cross-section of an arbitrary waveguide problem with the computing 
window surrounded by PML regions I, II, and III, each having thickness of d, with x and y 
being the transverse directions and z being the direction of propagation. Regions I and II have 
the normal vectors parallel to the x-axis and y-axis, respectively, and regions III are the four 
corner regions. In the PML region, using the stretched coordinate transform [12–14], 
Maxwell's equations can be written as 
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Fig. 1. The cross-section of an arbitrary waveguide problem with the PMLs placed at the edges 
of the computing domain. 

where ω is the angular frequency, µ0 and ε0 are the permittivity and permeability of free space, 
respectively, and εr is the relative permittivity of the medium considered. Using the modified 
differential operator ∇′ 
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                                                (2) 

and the two-dimensional (2-D) Yee’s mesh shown in Fig. 2 under the exp[–jβ z] field 
dependence assumption with β  being the modal propagation constant, we have the Maxwell’s 
curl equations in terms of the six components of the electric and magnetic fields for the whole 
problem 
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Fig. 2. Yee’s 2-D mesh for the FDFD method. 
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where εx, εy, and εz are the ε
r
 values at the corresponding grid points of Ex, Ey, and Ez, 

respectively. The values of sx and sy in Eqs. (3) are summarized in Table 1 with the parameter 
s defined as 

2
0 0

1 1e ms j j
n

σ σ
ωε ωµ

= − = −                                                    (4) 

where σe and σm are the electric and magnetic conductivities of the PML, respectively, and n 
is the refractive index of the adjacent computing domain. In Eq. (4), we can see the impedance 
matching condition of the PML medium is 
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which means that the wave impedance of a PML medium exactly equals to that of the adjacent 
medium in the computing window regardless of the angle of propagation. Assume that the 
electric conductivity of the PML medium has an m-power profile as 
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where ρ is the distance from the beginning of the PML. At the interface of the PML and the 
computing window, the theoretical reflection coefficient for the normal incident wave is [13] 
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Table 1. The values of sx and sy for the PML region I, II, and III. 
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and the maximum conductivity σmax can then be determined as 
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where c is the speed of light in free space. For the case of m = 2, s in Eq. (4) becomes 
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By applying the central difference scheme for the differential operators in Eqs. (3), the time-
harmonic Maxwell curl equations in Eqs. (1) can be converted into the matrix form 
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where  
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∆x and ∆y are grid sizes, I is an identity matrix, and εεεεx, εεεεy, and ε ε ε εz are diagonal matrices 
representing relative permittivities εx, εy, and εz, respectively, at the corresponding grid points. 
Ax, Ay, Bx, By, Cx, Cy, Dx, and Dy are square matrices determined by the central difference 
scheme and the boundary conditions. Please note that the subscript (i, j) in the left hand side 
of each equation of Eqs. (11) denotes the mesh number in the 2-D computing domain while 
those in the right hand side represent the corresponding grid (point) numbers as shown in Fig. 
2. If no PML region is applied as the boundary conditions at the edges of the computing 
window, we can have Ax = Bx, Ay = By, Cx = Dx, and Cy = Dy, and Eqs. (10) will appear with 
the same form as in [5]. 
     After some mathematical work, an eigenvalue matrix equation in terms of the transverse 
magnetic fields can be obtained as 
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The eigenvalue equation (12) is solved by using the shift inverse power method. 
     As for the dielectric interface in a mesh as shown in Fig. 2, an improved scheme is 
proposed by using interpolation and extrapolation to approximate the fields on both sides of 
the dielectric interface [4, 19]. By properly matching the boundary conditions (BCs) at the 
dielectric interface, a modified FD formulation can be obtained. Figure 3 shows an example 
with a dielectric interface lying between two sampled grid points with EL and ER representing 
the electric fields on the left-hand and right-hand sides of the interface, respectively, and n 
being the normal unit vector which points outward from medium 1 to medium 2. 
     The first-order derivative of Ey at point (i+1/2, j+1/2) with respect to x becomes 
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where rx∆x is the distance from the intersection of the dielectric interface along the x-axis to 
the point (i+1/2, j+1/2) and Ey,L is the y component of EL. Considering the continuity BCs at 
the dielectric interface, we can have 
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where nx and ny are the x and y components, respectively, of the normal unit vector n, and Ey,R 
and Ex,L can be approximated by interpolation and extrapolation as 
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Similarly, for ∂Hz/∂x at point (i+1, j+1/2), we have 
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Fig. 3. The situation of a dielectric interface lying between two sampled points. 



Applying the continuity BCs for the magnetic field, we can obtain 
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Following the similar procedure, we can also obtain the derivatives of the electric and 
magnetic fields with respect to y for the case with a dielectric interface lying in a mesh. 

3. Numerical results 

3.1 Channel waveguide 

We first consider a square channel waveguide discussed by Hadley [18] with the cross-section 
shown as the inset in Fig. 4. For the symmetric geometry of the waveguide, we only need to 
consider a quarter of the waveguide with the following parameters: waveguide width d = 1 
µm, the indices ng = 2.83 and nν = 1, and wavelength at 1.5 µm. For the purpose of comparing 
with the result of [18], instead of PMLs, we use the same BCs for the edges of the computing 
domain as in [18], i.e., perfect magnetic conductors (PMCs) placed on the top and bottom and 
perfect electric conductors (PECs) on the left and right sides of the computing domain. The 
modal index for the TE-like fundamental mode calculated by Hadley [18] was 
2.65679692×10-8, which was obtained by dealing with the points near the dielectric interface 
and corners using a basis set series solutions of the Helmholtz equation in the cylindrical 
coordinate. 
     Applying the present method, the fundamental TE-like mode can be successfully obtained. 
As for the dielectric interface in the waveguide, in addition to the proper BC matching scheme 
discussed above and the simple stair-case approximation, an index averaging (IA) scheme 
which has been shown to be useful and efficient in increasing the numerical accuracy [5] is 
also adopted. In the IA scheme the value of the relative permittivity ε at each grid point is 
determined by an averaging formula. For example, in Fig. 2., εz(i, j) is defined as  

)1(),( 21 ffjiz −⋅+⋅= εεε                        (19) 

where ε1 and ε2 are the relative permittivities of media 1 and 2, respectively, in the mesh and f 
is the filling fraction of medium 1 in the mesh. The relative errors in the modal index of our 
calculations to the above value reported by Hadley [18] versus the grid size with the three 
different interface treatments are shown in Fig. 4. It is seen that using the IA scheme and the 
proper BC matching scheme can achieve very high accuracy and the truncation errors are of 
higher order than that in the stair-case approximation. 
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Fig. 4. Relative errors in the modal index of the fundamental TE-like mode for the square 
channel waveguide using the present method with three different schemes in dealing with the 
dielectric interface. 
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Fig. 5. Relative errors in the modal index of the fundamental mode and the corresponding 
computation time for the strongly guiding optical fiber using the present method with the 
proper BC matching scheme and the stair-case approximation. 

3.2 Optical fiber 

We then consider a strongly guiding optical fiber with core radius being 3.0 µm, core index 
being 1.45, and air cladding. For the symmetry of the structure, we can only consider a quarter 
of the fiber. The size of the computing window is 6.0 µm × 6.0 µm, and the zero-value BC is 
applied at the edges. Figure 5 shows the calculated relative errors in the fundamental modal 
index with respect to the analytical solution neff = 1.438604 and the corresponding 
computation time based on a Pentium IV 3.0-GHz personal computer using different numbers 
of the grid points along the x-axis. The lines with circular dots are the results using the proper 
BC matching scheme. One can see that the relative errors rapidly decrease to the order of 10-6 
as the number of grid points is larger than 40. On the contrary, the results adopting stair-case 
approximation, which is the lines with square dots, possess slower convergent property. By 
comparing the computation time, we observe that the results obtained using the proper BC 
matching scheme need more grid points to approximate the modal field, and thus denser 
characteristic matrix in the formulation and longer computation time are required than when 
stair-case approximation is used. 
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Fig. 6. The computing window with PMLs for the holey fiber with three-ring air holes. 



3.3 Holey fibers with triangular lattice 

We now consider the loss properties of a HF with triangular lattice having three-ring air holes 
in the cladding region, which corresponds to 36 air holes. The cross-section is illustrated in 
Fig. 6 with the size of the computing window being Wx × Wy and PMLs with thickness d being 
placed on the top and the right side of the window. In the following calculation we adopt the 
parameters used in [20]: a = 2.3 µm;  Wx = 8.0 µm; Wy = 7.3 µm; d = 2 µm; R = 10-8; silica 
index n = 1.45. (Silica material is assumed in all the PCFs analyzed in this paper.) In [20] 
Saitoh and Koshiba proposed a finite-element imaginary-distance beam propagation method 
(FE-ID-BPM) for studying PCFs. Our calculated effective indices and losses for the x-
polarized fundamental guided modes of the three-ring HF with r/a = 0.25, 0.3, and 0.35 for λ 
= 0.1 to 2.0 µm are illustrated in Fig. 7(a) and (b), respectively, by the solid lines. The 
effective index in this case decreases with the increase of the wavelength or the hole size. 
From the magnitude of the loss, we can see that larger air holes can provide better 
confinement resulting in smaller loss. Our results agree very well with those from Saitoh and 
Koshiba [20] shown in Fig. 7(a) and (b) by the circular dots. We have also analyzed the one-
ring HF (with 6 air holes) and the two-ring HF (with 18 air holes) and the same good 
agreement with [20] is achieved. 
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Fig. 7. (a) The effective indices and (b) the losses of the x-polarized fundamental guided modes 
in the three-ring holey fiber with a = 2.3 µm. 
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Fig. 8. Modal birefringence of the one-ring HF using the present method with the proper BC 
matching scheme and the stair-case approximation. 



We like to remark here that for obtaining the results of Fig. 7, calculation with the stair-
case approximation is good enough. However, when analysis of modal birefringence defined 
as the difference between the x-polarized and y-polarized modal effective indices of the 
fundamental modes, the more rigorous proper BC matching scheme has to be employed in 
order to obtain better numerical convergence, For example, Koshiba and Saitoh have 
numerically examined the fundamental mode degeneracy of the one-ring HF using their FEM 
method [21]. We study the same structure (a = 6.75 µm and r = 2.5 µm) and the modal 
birefringence as a function of the number of grid points along the x-axis is shown in Fig. 8. It 
is seen that using the proper BC matching scheme, the numerical convergence appears to be 
much better than only using the stair-case approximation. We also list in Table 2 the 
calculated modal indices with variant numbers of grid points along the x-axis using the PMLs 
and the proper BC matching scheme. Our results are seen quite close to the reference result 
neff,ref = 1.445395345-3.15×10-8j [8] which was obtained by using the multipole method. 
 

Table 2. The calculated modal index as a function of the number of grid points along the x-axis 
and the reference result is neff,ref = 1.445395345-3.15×10-8j [8]. 

 

N Re (neff) Im (neff) N Re (neff) Im (neff) 
30 1.445426911 3.1638×10-8 160 1.445396654 3.1172×10-8 
40 1.445439613 3.2423×10-8 180 1.445397244 3.1553×10-8 
50 1.445411762 3.1418×10-8 200 1.445396895 3.1353×10-8 
60 1.445408294 3.1449×10-8 220 1.445396464 3.1415×10-8 
80 1.445406154 3.1219×10-8 240 1.445396579 3.1420×10-8 
100 1.445401616 3.1678×10-8 260 1.445396210 3.1382×10-8 
120 1.445397861 3.1326×10-8 280 1.445395737 3.1405×10-8 
140 1.445398714 3.1505×10-8 300 1.445396122 3.1398×10-8 

 

3.4 Two-core holey fibers 
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Fig. 9. The computing window with PMLs for the two-core holey fiber. 

We then consider a kind of two-core HFs having three-ring air holes surrounding the two 
cores with the computing window illustrated in Fig. 9. The PMLs with d = 2 µm and R = 10-8 
are placed on the top and the right side of the computing window to gain the loss information 
of the two-core HF. Figure 10(a) and (b) shows the effective indices and the losses of the x-
polarized even mode for the two-core PCF with the hole radius r being 0.25a, 0.3a, and 0.35a 
calculated at different wavelengths. It demonstrates that the effective indices and the losses 
can be successfully obtained by using the present method with PMLs. From Fig. 10(b) one 
can see that smaller air holes cause weaker confinement of light, resulting in larger loss than 
larger air holes would do. Also, Fig. 10 shows that at longer wavelengths, smaller effective-
index values and larger losses in guided modes are obtained. These general trends in the fiber 



characteristics are similar to those given in Fig. 7 for the one-core HF. By comparing Fig. 
10(b) with Fig. 7(b), we observe that the confinement losses of the two-core HF are a little 
smaller than those of the one-core HF. 
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Fig. 10. (a) The effective indices and (b) the losses of the even modes in the two-core holey 
fiber with r/a = 0.25, 0.30, and 0.35. 

     The x-polarized odd mode has similar properties in the effective index and the loss, as 
shown in Fig. 11(a) and (b), except that the losses of the odd modes are slightly smaller than 
those of the even mode. 
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Fig. 11. (a) The effective indices and (b) the losses of the odd modes in the two-core holey 
fiber with r/a = 0.25, 0.30, and 0.35. 

3.5 Air-guiding photonic crystal fFiber 

PCFs with air cores have been attractive structures with many promising applications [22]. 
Consider the air-guiding PCF or hollow PCF with the cladding region formed by six rings of 
air holes with pitch a being 2 µm and air filling fraction f in a unit cell being 0.7, as shown in 
Fig. 12. Using our FD method with PMLs having d = 2 µm and R = 10-8 as indicated in Fig. 
12, we can find the guided modes within the photonic band gap (PBG) or near the edges of the 
PBG. The computing window size is 17 µm × 15.2 µm, and for a 170 × 152 grid division, the 
computation time is 267 seconds for one wavelength using a Pentium IV 3.0-GHz personal 
computer. The effective indices of the fundamental x-polarized guided modes for this hollow 
PCF are plotted in Fig. 13(a) with the dashed lines representing the PBG boundaries. It can be 
observed that there are two modal dispersion curves with flat and steep slopes, respectively, 
which correspond to the fundamental core modes and surface modes [23] of the PCF. Figure 
14 shows the field distributions of the guided modes at points A, B, C, and D along the modal 
dispersion curves as indicated in Fig. 13(a). At points B and C, which are located on the flat 
curve representing the fundamental core modes, one can see that stronger field (colored white) 



is located in the air core with weaker field (colored black) in the silica around the air core. The 
other kind of guided modes is the surface modes, labeled A and D, with most of the energy 
concentrated in the silica region around the air core. Figure 13(b) illustrates the losses of these 
two kinds of modes within the frequency range of the PBG. Outside the PBG or near the 
edges of the PBG, the core modes have more field penetrating in the cladding, resulting in 
larger losses  than those of the core modes lying in the central part of the PBG. As for the 
surface modes, the losses remain almost the same  magnitude and larger than those of the core 
modes at most frequencies. 
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Fig. 12. The computing window with PMLs for a hollow PCF with six rings of air holes in the 
cladding. 

     Ideally, the hollow PCFs should be lossless due to the much smaller absorption and 
Rayleigh scattering of the air. However, recent research found that some losses in the hollow 
PCF may result from the coupling between the core modes, the surface modes, and the leaky 
cladding modes [23]. Although most of the core mode field is  concentrated in the air core as 
shown in Fig. 14, the overlap of field distributions of core modes and surface modes in the 
silica region around the air core makes the low-loss core modes coupled to the surface modes 
having larger losses. Compared with the core modes, the surface modes have more overlap 
field with the leaky cladding modes in the cladding region, and thus easily couple to these 
modes, yielding the high loss in the hollow PCF. It has been reported that careful design of the 
air-core size can help produce a single-mode hollow PCF free of surface modes [24]. 
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Fig. 13. (a) The effective indices of the surface modes and fundamental core modes of the 
hollow PCF of Fig. 11 with air filling fraction f = 0.7. (b)  Losses of the core modes and the 
surface modes. 
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Fig. 14. The field distributions of the surface modes and fundamental core modes at points A, 
B, C, and D indicated in Fig. 13(a). 

4. Conclusion 

We have formulated eigenvalue equations for solving full-vector modes of optical waveguides 
using Yee-mesh-based finite difference algorithms with PML absorbing boundary conditions. 
We have made use of the formulation for the PML in which Maxwell’s equations are mapped 
into an anisotropic complex stretched coordinate [12–14]. Proper matching of dielectric 
interface conditions through the Taylor series expansion of the fields is adopted in the 
formulation to obtain better numerical accuracy [4, 19]. The established method is found to be 
able to achieve high accuracy through the analysis of a square channel waveguide with 
reported accurate modal index [18]. The method is shown to be capable of providing the 
complex propagation constants and the confinement losses of leaky waveguide modes. The 
method has been successfully applied to the analysis of the holey fiber with triangular lattice, 
the two-core holey fiber, and the air-guiding photonic crystal fiber. The efficient calculation 
of the propagation loss characteristics and mode field profiles of the core modes and surface 
modes in the air-guiding PCF is demonstrated. 
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