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In this paper, we consider the problem of approximating the location, x0 # C, of
a maximum of a regresion function, %(x), under certain weak assumptions on %.
Here C is a bounded interval in R. A specific algorithm considered in this paper is
as follows. Taking a random sample X1 , ..., Xn from a distribution over C, we have
(Xi , Yi), where Yi is the outcome of noisy measurement of %(Xi). Arrange the Yi's
in nondecreasing order and take the average of the r Xi's which are associated with
the r largest order statistics of Yi . This average, x̂0 , will then be used as an estimate
of x0 . The utility of such an algorithm with fixed r is evaluated in this paper. To
be specific, the convergence rates of x̂0 to x0 are derived. Those rates will depend
on the right tail of the noise distribution and the shape of %( } ) near x0 . � 1996

Academic Press, Inc.

1. Introduction

Let % be a real function defined on a bounded interval C # R, and sup-
pose there is an x0 # C with %(x0)>%(x) for any x{x0 in C. It is further
assumed that %( } ) is continuous. The objective is to determine x0 based on
n samples (X1 , Y1), ..., (Xn , Yn) with Yi=%(Xi)+=i , where n is a predeter-
mined number. Here [=i] are independent and identically distributed (i.i.d.)
random variables with zero expectation.
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c4+
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Z satisfies Condition R with {=1�\. As an example, if %(x) is twice dif-
ferentiable near x0 and %"(x0)<0, then Condition R holds with {=1�2
(\=2).

Throughout this paper, we assume that = satisfies either Condition E(1)
or E(2) described in the following.

Condition E. (1) w=<� and for some k�0, f= and F= satisfy
(&1)k f (k)

= (w=)>0, f ( j)
= (w=)=0 for every 0� j�k&1, and

limt A w=(w=&t) f=(t)�[1&F=(t)]=k+1.

(2) w==� and f= satisfies

f=(x)tABvx&u+v&1 exp(&Bxv) as x � �,

where v>1, u�0, and A, B are positive constants.

Here ``g(x)t(h(x) as x � �'' denotes limx � � g(x)�h(x)=1.

Theorem 1. Suppose Y=Z+=, where Z and = are independent. Let Z
satisfy Condition R. Then

(a) Z[n&l : n]&wZ=Op((log n�n)1�(1+(k+1)�{)) for all l<r under Con-
dition E(1);

(b) Z[n&l : n]&wZ=Op((log n)&((v&1)�v) (log log n){) for all l<r
under Condition E(2).

Since we only consider the case that r is fixed throughout this paper, for
simplicity denote x̂0(r) by x̂0 . Now we describe the asymptotic behavior of
x̂0&x0 which follows from Theorem 1 and Example 1.

Theorem 2. Assume there exist some positive constants c3 and c4 such that
(1) holds. Then x̂0&x0=Op((log n�n)1�(1+(k+1)�{)) or Op((log n)&((v&1)�v)

(log log n){) when = satisfies Condition E(1) or E(2), respectively.

Remark 1. When = is uniformly distributed, Condition E(1) is satisfied
with k=0. Theorem 2 states that x̂0&x0=Op((log n)1�2 n&1�2) when %(x)
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is ``wedge-shaped'' ({=1) around x=x0 . If %(x) is twice differentiable
near x0 and %"(x0)<0, then x̂0&x0=Op((log n)1�3 n&1�3). Mu� ller [15]
proposes an estimate of x0 , xM0 , by estimating %(x0) with the kernel
smoother. If |%(x)&%(x0)|�c |x&x0| \ for some c>0 and \�1 in a
neighborhood of x0 , then x̂M0&x0=Op([(n log n)&2�5]{). Compare the
estimate obtained by the best-r-points-average method with the one in
Mu� ller [15] and the so-called passive stochastic approximation method in
Tsybakov [18], where the convergence rate is about the same as for that
in Mu� ller [15] and Tsybakov [18], it is easy to see that the estimator in
this paper is better when = is a uniform random variable. On the other
hand, when = is a normal random variable (i.e., u=1, v=2 in Condition
E(2)), Theorem 2 states that x̂0&x0=Op([(log n)&1�2]{ (log log n){),
which then implies that this estimator is not as good as those considered
in Mu� ller [15] and Tsybakov [18]. But the estimator based on the best-r-
points-average is much simpler and easily understood so that it can be
implemented in practical applications easily. Furthermore, the result
derived in Mu� ller [15] cannot be improved even when = is known to be
uniformly distributed.

Remark 2. Theorem 2 states that the best-r-points-average method for
locating the peak works better under Condition E(1) than Condition E(2).
By formulating the problem in the framework of the ranking selection
problem as described in Section 4, the rate of x̂0&x0 depends critically on
whether w= is finite or not and the local behavior of F= near w= . In par-
ticular, the best-r-points-average method works best when w=<� or = has
a short-tailed distribution. When the tail of f= is long as discussed in
Remark 1, other estimates, such as that in Mu� ller [15], are perhaps more
suitable.

3. Extreme-Value Distributions

To facilitate the discussions in Section 4, we briefly review the aspects of
the extreme-value distribution theory which can be found in Section 5.1 of
Reiss [16] on the topic of the domain of convergence. They are summarized
in two lemmas and will be used repeatedly in Sections 4 and 5.

Let =1 , ..., =n be independent random variables with common distribution
F=( } ). Let =h : n=max(=1 , ..., =n). Denote the (left continuous) inverse of FY

as F�
Y (u) which is defined as inf[ y: FY ( y)�u]. The distribution F= is said

to be in the domain of (maximum) attraction of a distribution G (written
F= # D(G)) if there are [an] (an>0) and [bn] so that

lim
n � �

F n
= (anx+bn)=G(x)
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at every continuity point of G. It is well known (see, e.g., p. 5.3 of Reiss
[16]) that G must belong to, up to location and scale, one of the three
classes of extreme-value distributions described in the following lemma.

Lemma 1. Suppose there exist an>0, bn # R, n�1, such that

P[(=n : n&bn)�an�x]=F n
=(anx+bn) � G(x),

weakly as n � �, where G is assumed to be nondegenerate. Then, with
suitable numbers A>0 and B, G(Ax+B) belongs to one of the following
three classes:

(a) 8:(x)={exp(&x&:)
0

if x>0
if x�0= for some :>0;

(b) 9:(x)={1
exp(&(&x):)

if x>0
if x�0 = for some :>0;

(c) 4(x)=exp(&e&x), x # R

To prove Theorem 1, we need the bound for the variational distance

en=sup
x # R

|F n
=(an x+bn)&G(x)|,

where F= # D(G), between the exact and limiting distributions. The follow-
ing lemma gives a prescription on the choice of normalizing constants [an]
and [bn].

Lemma 2. Assume that f= is positive on (t, w=), where t<w= .

(a) If w==�, and

lim
t � �

tf=(t)
1&F=(t)

=:, (2)

with some :>0, then there are constants an>0 and bn such that the distribu-
tion of (=n : n&bn)�an converges to 8: . Moreover, the constants can be chosen
as an=F �

= (1&1�n) and bn=0.

(b) If w=<� and limt A w=(w=&t) f=(t)�[1&F=(t)]=:, then there are
constants an>0 and bn such that the distribution of (=n : n&bn)�an converges
to 9: . Moreover, the constants can be chosen as an=w=&F �

= (1&1�n) and
bn=w= .

(c) If �w=
&� (1&F=(t)) dt<� and

lim
t A w=

f=(t)
[1&F=(t)]2 |

w=

t
[1&F=(u)] du=1,
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then there are constants an>0 and bn such that the distribution of
(=n : n&bn)�an converges to 4. Moreover, the constants can be chosen as an=
[nf=(bn)]&1 and bn=F �

= (1&1�n).

(d) en=o(1) if one of (a), (b), and (c) applies.

If, to F=(t), none of (a), (b), and (c) applies, then there are no constants
an>0 and bn such that the distribution of (=n : n&bn)�an would converge.

4. Discussion and Monte Carlo Study

In this section, we give a heuristic argument to illuminate when and why
the best-r-points-average method for locating the maximum works. In
order to get some ideas on the finite sample property of the best-r-points-
average method, we also run a Monte Carlo study as in Mu� ller [15] with
r=1, 5. The results are summarized in Tables II and III which indicate the
advantage of using r>1. We also compare our simulation results with the
one in Mu� ller [15]. Theoretical development in this paper states that
the best-r-points-average method can be useful in locating global maximum
of a regression function with local maximum. A Monte Carlo experiment
is conducted to confirm it.

We now give a heuristic argument to explain why the convergence rates
of the proposed estimate should depend on the behavior of the tail of
1&F=(x) as x increases. This argument is essentially used in Section 5 to
prove Theorem 1. Although Z is assumed to be a continuous random
variable in Section 2, we here consider the case where Z takes values on
discrete levels 0�%n1< } } } <%nK�1, for some integer K�1. Let n=KN,
where N is an integer. For each %nj , we further assume that there are N
samples from Y=%nj+=. In other words, we have i.i.d. random variables
Yj1 , ..., YjN , from the j th population with distribution F=( }&%nj) for
1� j�K. It is then clear that the utility of the best-r-points-average
method with r=1 depends on whether the location parameter, associated
with the population yielding Yn : n , is close to %nK . This problem can then
be viewed as to use the largest order statistics from each population to dis-
criminate among location parameter families F=( }&%) for % # [%n1 , ..., %nK].
Obviously, this problem is related to the ranking selection problem as
introduced by Bechhofer [2].

When Yj1 , ..., YjN follow the distribution F=( }&%nj), its sample mean is
the complete sufficient statistics of %nj when = is normally distributed. In
this case, it seems reasonable to use the sample means from those K pop-
ulations to discriminate the location parameter families F=( }&%). At the
above setting, Mu� ller's curve fitting approach [15] reduces to discriminate
the location parameter families [F=( }&%); %=%n1 , ..., %nK] with sample
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means. When = is uniformly distributed, the largest order statistics from
those K populations can be used to discriminate the location parameter
families F=( }&%) effectively.

It is then expected that the estimate derived by Mu� ller's curve fitting
approach will converge to x0 with a faster rate than the estimate derived
from the best-r-points-average method with r=1 for normal error. Also,
Mu� ller's estimate should have a slower convergence rate than the estimate
obtained by the best-r-points-average method with r=1 for uniform error.
This conjecture is confirmed by Theorem 2 and the discussions at the end
of Section 2.

Next, we will demonstrate that the best-r-points-average method fails
when the right tail of the error distribution is heavy. Let now =1 , =2 , ..., =N

be a random sample of size N from a unit double exponential distribution.
Then =N : N # D(4) with aN=1 and bN=log N by Lemmas 1 and 2. There-
fore, the largest order statistic from the K th population (with location
parameter %nK) is not necessarily greater than the largest order statistic
from the first population (with location parameter %n1) with probability 1,
even when %n1=0 and %nK=1. According to the above discussion, it is
expected that the best-r-points-average method will fail to give a consistent
estimate of x0 when the limit of an is nonzero.

By Lemma 2(a), we have limN � � aN=� for F # D(8:). Hence, we
exclude those F # D(8:) from our study on the utility of the best-r-points-
average method. Also by Lemma 2(b), bN is finite and limN � � aN=0 for
F # D(9:). Therefore, we consider a class of distributions in D(9:) with aN=
O(N&1�(k+1)) as described in Theorem 1(a). When F # D(4), limN � � aN

may take any nonnegative value, as are the cases for double exponential
distribution with aN=1 and normal distribution with aN=(2 log N)&1�2.
Hence, we consider a class of distributions in D(4), as described in
Theorem 1(b), whose tail is ``lighter'' than the double exponential distribu-
tion (with aN=(B&1 log N)(1&v)�v for v>1).

Motivated by the problem of estimating distance to a stellar system from
measurements on the apparent magnitude of a few of the brightest objects
in the system, Rohatgi [17] considers the problem to determine which of
the objects should be observed. She finds that the extreme order statistics
are asymptotically sufficient for estimating distance when the distribution
of the apparent magnitude of star in that galaxy is known up to a location
parameter. Her conclusion is close to the above discussion in spirit.

In order to have some ideas on how well our asymptotic results of the
best-r-points-average method predicted what would transpire for finite
samples, we consider a Monte Carlo study as in Mu� ller [15] with r=1, 5
and sample size n=50. In this study, %(x)=1+3 exp(&(x&0.5)2�0.01)
(symmetric peak at (0.5, 4.0)=(x0 , %(x0))) with 50 points Xi's from the
uniform distribution over [0, 1]. Since the performance of the proposed
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TABLE I

Mu� ller's Adaptive Procedure for Peak Estimation

_2=0.25 _2=0.5 _2=1.0

Average 0.5005 0.5012 0.5012
ASE 1.247&4 1.893&4 2.860&4

estimate x̂0(r) depends on the error distribution, we consider three error
distributions, which are uniform, normal, and double exponential. Note
that Mu� ller [15] only reports results for normal error distribution. For
ease of comparing with Mu� ller's study, we also consider three noise levels
with variances 0.25, 0.5, and 1.0. The number of Monte Carlo runs is 200.

This experiment is repeated for 100 times. Tables II�IV show a typical
result from one of these one hundred experiments. The notations used in
the tables are defined as follows. Let _2, Average, ASE, and Range denote
the variance of noise variable, average estimated location, average squared
error for location, and range of estimated location, respectively. Also,
5.272&4 should be read as 5.272_10&4. We first give Table I which is
taken from Table 1 of Mu� ller [15] which reflects the performance of his
proposed procedure for adaptive peak estimation in that paper.

Tables I, II,.and III indicate that:

v The best-r-points-average method performs better when the error is
uniform from the fact that it has smaller ASE and tighter range than that
when the error is normal. This is consistent with Theorem 2(a) and (b)
qualitatively, since according to Theorem 2, x0&x0=Op((log n)1�3 n&1�3)
and Op((log n)&2 (log log n)2) when the error distribution is uniform and
normal, respectively. Tables II and III also illustrate the advantage of using
r>1.

v The best-r-points-average method with r=1, 5 is not as good as
the adaptive procedure in Mu� ller [15] from an ASE standpoint in this

TABLE II

Uniform Error, U[&_ - 3, _ - 3]

_2=0.25 _2=0.5 _2=1.0

r=1 r=5 r=1 r=5 r=1 r=5

Average 0.4998 0.4982 0.5006 0.4958 0.4988 0.4965

ASE 6.627&4 3.211&4 9.290&4 6.157&4 1.283&3 1.189&3

Range (0.441, 0.586) (0.452, 0.547) (0.428, 0.586) (0.373, 0.556) (0.386, 0.586) (0.373, 0.651)
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TABLE III

Normal Error, N(0, _2)

_2=0.25 _2=0.5 _2=1.0

r=1 r=5 r=1 r=5 r=1 r=5

Average 0.5012 0.5014 0.5017 0.4995 0.5008 0.4966

ASE 7.521&4 5.310&4 1.106&3 1.311&3 2.480&3 2.470&3

Range (0.437, 0.565) (0.414, 0.601) (0.387, 0.575) (0.360, 0.668) (0.270, 0.884) (0.306, 0.669)

particular setting. Also, for r=1, the faster rate of the best-1-average
method as claimed in Section 2 is not realized, based on the comparison of
Tables I and II, perhaps due to the fact that the sample n=50 is not large
enough for reflecting the asymptotic results.

As a consequence, it is recommended to use r>1 and derive better
asymptotic results such as the asymptotic distribution of x̂0&x0 . Research
on the asymptotic distribution of the estimate based on the best-r-points-
average method the practical choice of r is underway and the result will be
reported elsewhere.

As a remark, Chen [6] shows that a modified Kiefer�Wolfowitz proce-
dure in Fabian [7] achieves the optimal rates of convergence. However, it
is known that the finite-sample performance of the Kiefer�Wolfowitzs
procedure depends crucially on the choice of a starting point. The best-r-
points-average method has the potential to be used in determining a
``good'' starting point for the Kiefer�Wolfowitz procedure.

According to the discussion at the beginning of this section, a problem
with the best-r-points-average method is that it is not consistent when the
tail of the error distribution is heavy. Table IV summarizes the Monte Carlo
results at the setting when the error distribution is double exponential.

Table IV supports the discussion on the failure of the best-1-points-
average method as the range of the estimator is much wider than the other

TABLE IV

Double Exponential Error, (_�- 2) DE(1), with Peak (0.5, 4.0)

_2=0.25 _2=0.5 _2=1.0

r=1 r=5 r=1 r=5 r=1 r=5

Average 0.4968 0.4980 0.4909 0.5008 0.5076 0.5040

ASE 1.202&3 6.616&4 5.261&3 1.522&3 1.088&2 4.124&3

Range (0.399, 0.728) (0.381, 0.590) (0.012, 0.803) (0.384, 0.637) (0.171, 0.947) (0.333, 0.675)
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TABLE V

Double Exponential Error with Peak (0.7, 4.0)

_2=0.25 _2=0.5 _2=1.0

r=1 r=5 r=1 r=5 r=1 r=5

Average 0.6968 0.6969 0.6926 0.6886 0.6708 0.6665

ASE 2.680&3 6.525&4 4.118&3 1.828&3 1.689&2 4.958&3

Range (0.097, 0.793) (0.565, 0.760) (0.097, 0.799) (0.508, 0.788) (0.024, 0.976) (0.333, 0.770)

cases and either the left or the right end point of the interval for the range
is close to one of the boundary points of the design interval from where the
sample is taken.

But, based on a similar discussion above about the range of the
estimator, it indicates that the best-5-points-average method might work.
It is actually an artifact due to the facts that the peak is at 0.5 and the
design points are uniformly distributed over [0, 1]. This explanation is
supported by the following simulation study. In this study, we consider
the case that %(x)=1+3 exp(&(x&0.7)2�0.01) with the peak at (0.7, 4.0)
and the rest of settings remain the same. The results are summarized in
Table V.

Table V supports the preceding explanation for results summarized as in
Table IV. As the average of the estimators is shifting away from 0.7, which
is the value of the maximizer of this example, when the variance is getting
larger. Now, Tables IV and V clearly indicate that the best-r-points-
average method is not consistent for the double exponential error. It sup-
ports the discussion on the failure of the best-r-points-average method
when the tail of the error distribution is heavy.

As discussed in Section 1, some commonly used sequential approaches
for estimating x0 may fail to approach the global maximum if the regres-
sion function has multiple stationary points. We now assess the per-
formance of the best-r-points-average method when the regression
function has two well-separated stationary points. Here we consider
%(x)=3.2 exp(&(x&0.4)2�0.01)+4 exp(&(x&0.6)2�0.01) with the peak
(0.5769, 3.9365) and a local maximum (0.4053, 3.3811). The error distribu-
tion is uniform with variance 0.25. Based on 200 Monte Carlo runs with
n=50 and r=1, there are 9 runs falling in (0.3900, 0.4380) and the rest are
between 0.5036 and 0.6453. When n=100, the number reduces to only 3
out of 200 runs are within 0.02 distance of the local maximizer 0.4053. This
indicates that the best-r-points-average method can pick up the global
maximum when the signal to noise ratio is large enough.
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5. Proof of Theorem 1

Let [Kn] denote a sequence of positive integers such that Kn � � and
Kn�n � � and Kn�n � 0. For brevity we omit the subscript of Kn later on.
Given K+1 knots :Z=t0<t1< } } } <tK&1<tK=wZ , let I=[:Z , wZ] be
partitioned into subintervals

IKj=[tk&1 , tk) for 1� j<K, IKK=[tK&1 , tK].

Set IKj=[i: 1�i�n and Zi # IKj] and denote the cardinality of IKj as
Nj (K). Assume that n�K (#N) is an integer. Consider a particular choice
of knots [tn1 , ..., tn, K&1] such that Nj (K)#N for 1� j�K. For i # IKj ,
denote those Zi's by Zk1 , ..., ZkN . We also denote those associated Yi's and
=i's by Yj1 , ..., YjN and =j1 , ..., =jN , respectively. Arrange the Yjl (=jl , respec-
tively) in nondecreasing order as the order statistics Yl :N, j (=l : N, j , respec-
tively) for 1�l�N.

Suppose that the following statement holds for r<J.

lim
n

P( inf
K&r<l�K

YN : N, l� sup
1� j�K&J

YN : N, j)=1. (3)

By (3) and the definition of YN : N, j , we have wZ&Z[n&r+1 : n]�(J&r)�Kn .
In other words, Z[n&r+1 : n]&wZ=Op((J&r) K&1

N ).
Recall that Y=Z+=. It follows easily that for 1�j�K,

=N : N, j+tnj>YN : N, j�=N : N, j+tn, j&1 . (4)

By (4) and the Bonferroni inequality,

P( inf
K&r<l�K

YN : N, l� sup
1� j�K&J

YN : N, j)

�1& :
K

l=K&r+1

:
K&J

j=1

P(=N : N, l&=N : N, j�tnj&tn, l&1). (5)

Note that the Zi's are independent of the =i's. This implies that
[=jl]1�l�N; 1� j�K are independent since the new label jl attached to the ='s
are determined by Zi . Hence, the sample maxima =N : N, j for 1� j�K are
i.i.d. random variables. Denote by dnlj=tn, l&1&tnj>0. Write

P(=N : N, l&d=N : N, j�&dnlj)=|
w=

:=

[F=(t&dnlj)]N N[F=(t)]N&1 f=(t) dt, (6)

where N[F=(t)]N&1 f=(t) is the density function of =N : N, j . Unless the dis-
tribution of =N : N, j (suitably normalized) can be approximated by a non-
degenerate distribution, the derivation of (6) would be quite difficult. From
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now on, we assume that F= belongs to the domain of attraction of an
extreme-value distribution. Then the limiting distribution of extreme order
statistics must be one of the three forms of limiting extreme-value distribu-
tion. Refer to Lemmas 1 and 2 for the details.

Assume that F n
=(ant+bn) � G(t), where G(t) is one of the extreme-value

distribution functions described in Lemma 1. The right-hand side of (6) will
be evaluated via the following:

|
b0

a0

[F=(t&dnlj)]N N[F=(t)]N&1 f=(t) dt

=|
(b0&bN&dnlj)�aN

(a0&bN&dnlj)�aN

[F=(aNu+bN)]N

_N[F=(aNu+bN+dnlj)]
N&1 f=(aNu+bN+dnlj) aN du

�eN+NaN |
(b0&bN&dnlj)�aN

(a0&bN&dnlj)�aN

G(u)[F=(aNu+bN+dnlj)]N&1

_f=(aNu+bN+dnlj) du

=eN+NaN&1 |
(b0&bN&1)�aN&1

(a0&bN&1)�aN&1

G \aN&1t+bN&1&bN&dnlj

aN +
_[F=(aN&1t+bN&1)]N&1 f=(aN&1 t+bN&1) dt

�eN+NaN&1 |
(b0&bN&1)�aN&1

(a0&bN&1)�aN&1

G \aN&1t+bN&1&bN&dnlj

aN +
_G(t) f=(aN&1 t+bN&1) dt

+eN&1NaN&1 |
(b0&bN&1)�aN&1

(a0&bN&1)�aN&1

G \aN&1 t+bN&1&bN&dnlj

aN +
_f=(aN&1 t+bN&1) dt

=(I)+(II)+(III). (7)

Recall that tnj is the jK&1 quantile of FZ( } ). A bound of tnj&F �
Z ( jK&1

n )
can be obtained from the following lemma on sample quantiles, which can
be found as Proposition 2 in Lo [13].

Lemma 3. Let F(z) be a continuous distribution on the real line and let
[ pn] be a positive monotone increasing sequence between 0 and 1, let !Pn

denote the pnth quantile of the distribution F, and let !� pn=F �
n ( pn) be the
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sample quantile. Here Fn is the usual empirical distribution function of F.
Then, for (log n)(n(1& pn))&1=O(1),

P( |!� pn&!pn|>3 - 2 (log n)1�2 (1& pn)1�2 n&1�2)

�4 exp(&2 log n)=O(n&2).

5.1. A Family of Distributions in the Domain of Attraction of 9:(x)

In this section we consider the case that = satisfies Condition E(1), which
would imply that = is a random variable with w=<� and the density func-
tion, f= , in a neighborhood of w= behaves like c(w=&x)k for some constant
c and nonnegative integer k. This particular setting is used to illustrate how
the behavior of f= near w= affects the behavior of Z[n&l+1 : n]&w= . Before
we prove Theorem 1(a), we need a preliminary result on an and bn .

Lemma 4. F= # 9k+1(x) with an=cn&1�(k+1) and bn=w= , where c=
[(&1)k (k+1)!�f (k)

= (w=)]1�(k+1).

Proof. According to Condition E(1) and Lemma 2(b), F= # 9k+1(x),
an=w=&F �

= (1&1�n), and bn=w= . Note that F=(w=)&F=(F �
= (1&1�n))

=1�n. Set cn=F �
= (1&1�n). Hence,

n&1=|
w=

cn _f=(t)&
f (k)

= (w=)
k !

(t&w=)
k& dt+

f (k)
= (w=)

k ! |
w=

cn

(t&w=)
k dt,

n&1=O \ f (k)
= (w=)

(k+1)!
(cn&w=)

k+1+ .

This proves the result for an . K

Proof of Theorem 1(a). According to the discussion at the beginning of
Section 5, it remains to study P(=N : N, l� &dnlj). It will be evaluated by
dividing the interval of integration (:= , w=) in (6), into two intervals (:= , a0)
and [a0 , w=) with a0=F �

= ( 1
2). Using (7) with b0=w= , aN=cN&1�(k+1),

bN=w= , and G( } )=9k+1( } ), we have

|
w=

a0

[F=(t&dnlj)]N N[F=(t)]N&1 f=(t) dt

�eN+
ceN&1N k�(k+1)

2 |
0

((a0&w=)�c) N1�(k+1)
9k+1

\\ N
N&1+

1�(k+1)u

u&
N 1�(k+1)dnlj

c +
_f=(c(N&1)&1�(k+1) u+w=) du
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+
cNk�(k+1)

2 |
0

((a0&w=)�c) N1�(k+1)
9k+1

\\ N
N&1+

1�(k+1)

u&
N 1�(k+1)dnlj

c + 9k+1(u)

_f=(c(N&1)&1�(k+1) u+w=) du. (8)

We will study the third term and the second term at the right-hand side
of (8), respectively. Note that 9k+1( } ) is a nondecreasing function. We
then have

|
0

((a0&w=)�c) N 1�(k+1)
9k+1 \\ N

N&1+
1�(k+1)

u&
N 1�(k+1)dnlj

c +
_9k+1(u) f=(c(N&1)&1�(k+1) u+w=) du

=|
0

((a0&w=)�c) N1�(k+1)
exp \(&1)k {_\ N

N&1+
1�(k+1)

u

&
N 1�(k+1)dnlj

c &
k+1

+uk+1=+
_f=(c(N&1)&1�(k+1) u+w=) du

�exp \&(&1)k f (k)
= (w=)

(k+1)!
Nd k+1

nlj + (9)

and

eN&1 |
0

((a0&w=)�c) N1�(k+1)
9k+1 \\ N

N&1+
1�(k+1)

u&
N 1�(k+1)dnlj

c +
_f= \c(N&1)&1�(k+1) u+

1
2+ du

�eN&1 exp \&
(&1)k f (k)

= (w=)
(k+1)!

Nd k+1
nlj + . (10)

Since eN&1=o(1) by Lemma 2(d), the right-hand side of (10) is of smaller
order than the right-hand side of (9).

By (8), (9), and (10), it is clear that P(=N : N, l&=N : N, j�&dnlj) tends to
zero if Nd k+1

nlj tends to infinity. Recall that (&1)k f (k)
= (w=)>0. Observe that

|
a0

:=

[F=(t&dnlj)]N N[F=(t)]N&1 f=(t) dt�N[F=(a0)]2N.
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Hence, for r<J, we have

P( inf
K&r<l�K

YN : N, K� sup
1� j�K&J

YN : N, j)

�1+eN& :
K

l=K&r+1

:
K&J

j=1

N[F=(w=)]2N

&
c
2

:
K

l=K&r+1

:
K&J

j=1

exp \&
(&1)k f (k)

= (w=)
(k+1)!

Nd k+1
nlj +

+r(K&J) O(N&1).

Finally, we evaluate the magnitude of dnlj . Recall that dnlj=tn, l&1&tnj

and that tnj is the jK&1 quantile of FZ( } ). Note that (log n)(n(1&jK&1
n ))&1

=O(1) for 1� j�K when log n�N � 0. It follows from Lemma 3 that

P( sup
1� j�K

|tnj&F �
Z ( jK&1)|>3 - 2(log n)1�2 n&1�2)

�4K exp(&2 log n)=O(Kn&2)=O(n&#)

for some #>1. By the Borel�Cantelli lemma, we have

tnj&F �
Z ( jK&1

n )=O((log n)1�2 n&1�2) a.s. (11)

For the ease of presentation, we first consider the case {=1. It follows
from (11) and Condition R that F �

Z ( jK&1)�[ jK&1] is bounded away from
zero and infinity when j is large. Hence, we have

:
K

l=K&r+1

:
K&J

j=1

exp \&
(&1)k f (k)

= (w=)
(k+1)!

Nd k+1
nlj +

�rK exp \&M1

(&1)k f (k)
= (w=)

(k+1)!
N[(J&r) K&1]k+1+

for some positive constant M1 . Set K=O((n�log n)1�(k+2)). Note that

:
K

l=K&r+1

:
K&J

j=1

N[F=(a0)]2N�rn[F=(a0)]2N � 0.

It follows easily that limn rNk�(k+1)K exp(&M((&1)k f (k)
= (w=)�

(k+1!) N[(J&r) K&1]k+1)=0 when J � �. Since r(K&J) O(N&1)=
O(n&k�(k+2)(log n)&1�2(k+2))=o(1) and eN=o(1) by Lemma 2(d), the
above discussions conclude that Z[n : n]&wZ=Op((log n�n)1�(k+2)) for all
l<r under Condition R with {=1.
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For general {, F �
Z (1& jK&1)=wZ&O(( jK&1)1�{) when j is small and

Condition R holds, which implies dn,K&r+1,K&J=O([J 1�{&(r&1)1�{] K&1�{).
It follows that

Nk�(k+1) :
K

l=K&r+1

:
K&J

j=1

exp \&(&1)k f (k)
= (w=)

(k+1)!
Nd k+1

nlj +
�rNk�(k+1)K exp \&M2

(&1)k f (k)
= (w=)

(k+1)!
N[(J 1�{&r1�{) K&1�{]k+1+

for some positive constant M2 . Set Kn=O((n�log n)1�[1+(k+1)�{]). It
follows easily that limn rN k�(k+1)K exp(&M2(&1)k f (k)

= (w=)�(k+1)!)
N[(J 1�{&r1�{) K&1�{]k+1)=0 when J � �. Since r(K&J) O(N&1)=
O((log n)&2{�(k+1+{) n&(k+1&{)�(k+1+{))=o(1), the above discussions con-
clude that Z[n&l+1 : n]&wZ=Op((log n�n)1�[1+(k+1)�{]) for all l�r under
Condition R. K

5.2. A Family of Distributions in the Domain of Attraction of 4(x)

In this section, we consider the case that = satisfies Condition E(2).
Before we prove Theorem 1(b), we need the following lemma.

Lemma 5. (a) 1&F=(x)tAx&u exp(&Bxv) as x � �.

(b) F= # D(4) with an=(nf (bn))&1
t(Bv)&1 b1&v

n as n � � and bn=
(B&1 log n)1�v&u log(B&1 log n)�v2B1�v(log n)(v&1)�v.

Proof. When u=0, (a) follows easily. When u>0 for t>0,

1
tv |

�

t
x&u+v&1 exp(&Bxv) dx

>
1
u

t&u exp(&Btv)&
Bv
u |

�

t
x&u+v&1 exp(&Bxv) dx,

whence

At&u exp(&Btv)=|
�

t \1+
u

Bv
x&(v&1)+ A

Bv
x&u+v&1 exp(&Bxv) dx

>1&F=(t)>ABv \Bv
u

+
1
tv+

&1 1
u

t&u exp(&Btv).

The conclusion of (a) follows again for u>0.
By Lemma 2(c), Condition E(2), and (a), F= # D(4) by simple algebra. We

now find the acceptable choices of norming constants. Since 1&F=(x)tAx&u
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exp(&Bxv), taking the logarithm of both sides of Ab&u
n exp(&Bbv

n)=n&1

gives

&log A+u log bn+Bbv
n=log n. (12)

Hence bn � � and bnt(B&1 log n)1�v by dividing both sides of (12) by bv
n .

Since an=(nf (bn))&1 we see that an acceptable choice for an is (Bv)&1

(B&1 log n)(1&v)�v.
Next, try an expansion of bn by writing bn=(B&1 log n)1�v+rn , where rn

is a remainder which is o((log n)1�v). Substitute this bn into (12) and we find

o(1)&
u
v

log(B&1 log n)+(log n) {_1+
rn

(B&1 log n)1�v&
v

&1==0.

Hence we conclude that

bn=(B&1 log n)1�v&
u log(B&1 log n)

v2B1�v(log n)(v&1)�v . K

Proof of Theorem 1(b). Recall that

P(=N : N, l&=N : N, j�&dnj)=|
�

&�
[F=(t&dnlj)]N N[F=(t)]N&1 f=(t) dt,

where N[F=(t)]N&1 f=(t) is the density function of =N : N, j . The proof argu-
ment is motivated by the following heuristic. Since a&1

N (=N : N, j&bN) � 4 in
distribution by Lemma 2, it is then expected that P(=N : , l&=N : N, j�
&dnlj) � 0 when dnlja&1

N � �. To avoid notational complexity, we only
consider r=1. For fixed r, the result can be derived accordingly.

The above-mentioned probability will be evaluated by dividing
(&�, �) into three intervals (&�, a0), [a0 , b0), and [b0 , �) with a0=0
and b0=bN+cNaN , where cN=[4(v&1)�v] log log N. Observe that

|
�

b0

[F=(t&dnKj)]N N[F=(t)]N&1 f=(t) dt

�N |
�

b0

[F=(t)]2N&1 f=(t) dt�
1
2

[1&F 2N
= (b0)]

and

|
a0

&�
[F=(t&dnKj)]N N[F=(t)]N&1 f=(t) dt

�[F 2N&1
= (0)] |

a0

&�
f=(t) dt�N[F=(0)]&2N. (13)
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Since 1&F=(t)tAt&u exp(&Btv) and b0 � �, we have

F=(b0)�1&2Ab&u
N e&Bbv

0

�1&
2A

(B&1 log N)u�v exp(&Bbv
N) exp(&BvcNaNbv&1

N �2)

�1&
1
N

A
(log N)(u+2v&2)�v

and

1&F 2N
= (b0)�\1&

A
N(log N)(u+2v&2)�v+

2N

�2A(log N)&(u+2v&2)�v.

Hence

|
�

b0

[F=(t&dnKj)]N N[F=(t)]N&1 f=(t) dt�2A(log N)&(u+2v&2)�v. (14)

Note that (II) in (7) can be written as

NaN&1 |
(b0&bN&1)�aN&1

(a0&bN&1)�aN&1

4 \aN&1 t+bN&1&bN&dnKj

aN +
_4(t) f=(aN&1 t+bN&1) dt

N |
b0

0
4 \t&bN&dnKj

aN + 4 \t&bN&1

aN&1 + f=(t) dt

=N |
b0

0 _4 \t&bN

aN +&
exp(aN

&1dnKj)

4 \t&bN&1

aN&1 + f=(t) dt. (15)

Observe that 4(0)=exp(&1),

4 \b0&bN

aN +=4(cN)=exp(&e&cN) (16)

4 \cbN&bN

aN +�24(v(c&1) log N)

=2 exp(&Nv(1&c)) for 0<c<1, (17)

4 \b0*&bN

aN +=4(log 4)=exp(&0.25),
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It follows from (5), (6), (13)�(15), and (18)�(21) that

P(YN : N, K� sup
1� j�K&J

YN : N, j)

�1&_ K
(log N)(u+2v&2)�v+N[F=(0)]2N+O(eN)&

& :
K&J

j=1
_exp(&exp(a&1

N dnKj&cN))

+2v(1&c)(log N) \1
e+

exp(aN
&1dnKj)

+N[exp(&N v(1&c))]exp(aN
&1dnKj)& .

Again, when Condition R holds with {=1, we have

(log N) :
K&J

j=1

e&exp(aN
&1dnKj)

�K(log N) exp _&exp \Bv \log N
B +

(v&1)�v

JK&1+& ,

by the same argument used in Section 5.1. Set K=Bv(B&1 log n)(v&1)�v

(log log n)&1. Hence, eN=o(1) by Lemma 2(d). It follows easily
that K(log N)&(u+2v&2)�v=o(1), K log N �K&J

j=1 exp(&exp(a&1
N dnKj))=o(1),

N[F=(0)]2N=o(1),

:
K&J

j=1

e&exp(aN
&1dnKj&cN)

�K exp \&exp \\log N
B +

(v&1)�v J log log n
(B&1 log n)(v&1)�v&log log n++

�K exp(&(log n)J�2&1)=o(1)

and

N :
K&J

j=1

[exp(&N v(1&c))]exp(aN
&1dnKj)

�n[exp(&Nv(1&c))]exp(aN
&1dnKj)=o(1).

The above discussions conclude that Z[n : n]&wZ=Op((log n)&(v&1)�v

log log n) under Condition R with {=1.
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