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Abstract

Wavelet methods with polynomial filters are usually favored in applica-
tions for their availability of fast wavelet transforms and compactly supported
property. However, wavelet methods with rational filters have more degree
of freedom to probably achieve smaller condition numbers, more regularity
and better efficiency. Such methods can be attractive if they also possess fast
transformation algorithms and have fast decay property as if the corresponding
wavelets are of compact supports. In the first part of this paper, we propose
a new wavelet method with rational filter which does have these properties.
We call it the difference wavelet method. It is a generalization of Butterworth
wavelets. The analysis part is simply averaging and finite differencing. The
corresponding wavelet coefficients measure the finite differences of the averages
of an input data sequence. Its synthesis part involves rational filters, which
can be performed with linear computational complexity by the cyclic reduc-
tion method. Their Riesz basis property, biorthogonality, decay and regularity
properties are investigated.

In the second part of this paper, we perform comparison studies of the dif-
ference wavelet method (Diff) with three other popular wavelet methods: the
Cohen-Daubechies-Feauveau biorthogonal wavelet method (CDF), the Daubechies
orthogonal wavelet method (Daub) and the Chui-Wang semi-orthogonal wavelet
method (CW). Natural criteria in designing good wavelet methods for repre-
senting functions and operators are fast, stable and efficient. Therefore, the
items of our first comparison include (i) operation counts for performing trans-
formations, (ii) condition numbers of the wavelet transformations, (iii) com-
pression ratios, by some numerical experiments, for representing (smooth or
non-smooth) data sequences and matrices (smooth or non-smooth kernels).
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The results show that (i) Diff, Daub and CDF have about the same operation
counts for performing wavelet transform, and CW has more; (ii) Diff has about
the same condition numbers as those of CDF and CW; (iii) Diff has better com-
pression ratio for both (smooth or non-smooth) data sequences and matrices
(smooth or non-smooth kernels).

The items of our second comparison include regularity, approximation power
(the constant appears in the approximation estimate), approximation errors
for non-smooth functions (where Gibbs phenomena appear) and the “essential
supports.” The results show that Diff has better regularity and better approx-
imation ability with only slightly bigger essential supports. It is evidently that
the better efficiency of Diff for smooth functions is due to its better regular-
ity. It is surprising that, even for non-smooth functions, Diff is comparable
to, sometimes even superior to, other methods, despite of its infinite-support
property.

This paper is organized as follows. Sec. 1 is the preliminary. Sec. 2 provides
the theory of the difference wavelet method. Sec. 3 contains the comparison
studies. Experts are suggested to read Sec. 3 directly.

1 Preliminary

A wavelet expansion method decomposes data (or functions) into fluctuations at
various resolutions. It depends on four sets of filter coefficients: {hg}rez, {9k }rez,
{hiYeez and {Gixteez. The first two are called the analysis filters, the latter two
the synthesis filters. A data sequence ¢; = {c;;}icz at resolution level j can be
decomposed, through the analysis filters, into the following two sets of data sequences
at level j — 1:

{ the low-pass data: ¢;_1,; = \/52:,c hic;2i—k, (1.1)
the high-pass data: d; 1; = V2., gkCjoit1 k- )
Here, v/2 is a normalized scale factor [12]. By applying the above transform: cj
(¢j—1,dj_1) recursively for j = J,J —1,---,1, one can decompose a given data se-
quence c; at the finest resolution J into (co, do, dy, - - -, d;_1), the averages at coarsest
resolution and the fluctuations at various resolutions. The mapping 7, : c¢; —
(co,do,dr,---,dy 1) is called a discrete wavelet transformation.

The data sequence c; can be reconstructed from (c; 1, d; 1) through the synthesis
filters {hk}kEZ and {gk}kez by:

Cji = \@Z [ili—%cj—l,k + gi—ok—1dj-1k| - (1.2)
k
By applying this inverse transform recursively for j = 1,---, J—1, ¢y can be recovered
from (co, do,---,dj-1).



Let us define the z—transform of {hy }rez by h(z) = Y, hez*, and still call it a
filter. It can be a polynomial (i.e. a filter with finite length), or a rational function
(infinite length), or in general, a Laurent series.

In order to have ¢; be reconstructed from (1.2), the filter bank (i.e. the collection
of analysis and synthesis filters) need to satisfy the following perfect reconstruction
condition [9, 16]:

hz)h(z) +9(2)9(2) = 1, (1.3)

A formal calculation gives

h(z)h(z) + h(—=2)h(—=2) =1, (1.5)
9(z) = h(=2)P(z%), (1.6)
g(z) = h(=2)/P(z%), (1.7)

for some Laurent series P(z). If we require both analysis and synthesis filters are
polynomials, then P(z) = z™ for some integer m. In this case, we can normalize
P(z) =1 [9]. In general, for stability consideration, we should choose P(z) to be in
the Wiener class, that is, P(z) = >, pgz® with Y, |pk| < oo and P(z) # 0 for all
|z| =1 (see Chui [3]). )

So, a general procedure to construct filter bank is to find h(z) and h(z) to satisfy
(1.5). We may normalize them by

h(1) = h(1) = 1. (1.8)

Then we define g(z) and g(z) by (1.6) and (1.7) with a proper function P(z) chosen
in the Wiener class.

A general principle to design filters in applications is to have the corresponding
wavelet transform to be fast, stable and the corresponding wavelet approximation to
be efficient. The term “fast” means that the wavelet transform 7; and its inverse are
of linear computational complexity. Usually, polynomial filters are favored. However,
a rational filter which can be performed with linear complexity is also acceptable in
many applications. The term “stable” means that the forward and inverse wavelet
transforms are unconditionally stable in #2, independent of the resolution level J, that
is, both || T||,||T; ]| = O(1). The term “efficient” means that only a small amount of
wavelet coefficients d;; plus the averages cy; are sufficient to approximate the original
data accurately.

It is well-known that the stability condition can be characterized by the Riesz
basis property of a corresponding wavelet function 1, see [9, 10]. More precisely,



associated with the analysis filter bank, one can define a refinable function (or called
scaling function) ¢ and a wavelet function ¢ as follows:

$z) = 2 hyp(2x — k), (1.9)
Y(@) = 2> g1 kd(2z — k). (1.10)

The function h(z) is called the mask of the refinable function ¢. Let us define
¥;i(-) = 20/2p(29 - —i). Then the forementioned stability condition is equivalent
to that {¢;,}: jez forms a Riesz basis in L?(R). That is, there exist constants 0 < 7,
I' < oo such that for any sequence {d;;}; ez, we have

Y)Y dial? < D diasallie T ldjal*
ijez ijez ijez

For the synthesis filter bank, one also defines

Ba) = 23 hud(2x— ) (1.11)
k

P(@) = 2> G162z — k). (1.12)
k

Then {lzj,i}i,jeZ forms the dual Riesz basis of {¢;,}ijez in L*(R), i.e. (wj,i,qﬁg,k) =
d;e0i 5. These two wavelets are called biorthogonal wavelets [9]. It was commented
by Cohen-Daubechies-Feauveau [9] and Dahmen [10] that biorthogonal wavelets are
more flexible to use than orthogonal wavelets in practice.

Three popular wavelets are the Daubechies’s orthogonal wavelet (Daub) [11],
Cohen-Daubechies-Feauveau’s biorthogonal wavelet (CDF) [9] and Chui-Wang’s semi-
orthogonal wavelet (CW) [4]. The filter bank of the CDF wavelet is defined as follows:

h(z) = g(—z)zz[r/m(l;Z)T, (1.13)

0 = ot =00 (122 gy

(1.14)
Here, r +7 = 2K, K > 0 is an integer parameter, and

Qx(z) = KZ_I ( K_i o ) <2_Zf_21)n (1.15)

n=0

We call the parameter r the averaging order and 7 the differencing order, or the
number of vanishing moments in other literatures.
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The filter bank of Daubechies’ orthogonal wavelet is defined by

b =i =a- =g = (F5F) @, )

where Q(2)Q(z7') = Qx(z). The filter bank of Chui-Wang’s semi-orthogonal wavelet
is defined by

where Gk (z) := Y, Nox (k)2* and Noy := 1’[*02,{() is the B-spline of order 2K — 1.

It is well-known that the regularity of a wavelet is related to its orders r, 7
and the magnitude of its amplification factor (i.e. Qx(e®) in CDF wavelet and
Gk (€®)/Gk(e¢) in CW wavelet) [12]. The more regularity a wavelet has, the better
approximation ability it can have [12]. We can look for rational filters that have
smaller amplification factors. The gain is that the corresponding wavelet function
is smoother. The prices to pay are that (i) it has infinite support, and (ii) a linear
system needs to be solved to perform wavelet transform. Problem (i) is not severe
if the essential support (e.g. the region where |¢| > ) is still small. Problem (ii)
is also solvable if a fast algorithm for solving this linear system is available. Below,
we propose the difference wavelet method which has a relatively small amplification
factor.

2 Difference Wavelets

2.1 The filter bank of the difference wavelet method

Given a positive integer K, let us define the filter bank of the difference wavelet

method to be
14+ 2\"
] 2.1
(7). (2.)

9(z) = Z—[T](lgz)r, (2.2)

MR

h(z) = 27|




W(z) = z[”?](”z) Pe(2?), (2.3)

2
i(z) = 218 (1 . Z>T/pK(22), (2.4)
Pr(2) = zK<1;Z)2K+(—z)K<1;Z)2K, (2.5)

where r +7 = 2K. Roughly speaking, the difference of this method from the CDF
method is to replace the filter Qx(z) by 1/Pg(2%). We call this method the difference
wavelet method because its high-pass filter is simply a finite difference. In the case of
r =0 and 7 = 2K, h(z) is the Butterworth filter, which was well-known in the field
of signal processing [15]. To justify this method to be valuable, we shall show that

1. the operation count to perform 1/Pg(2?) is almost the same as that of Qx(2);

2. it is stable in L?(R); in fact the condition numbers of the difference wavelet
transforms are comparable to those of the CDF transform;

3. the corresponding ¢ decays exponentially at far field, in fact, the lengths of the
“essential supports” of the difference wavelets are about twice of those of the
CDF wavelets;

4. it is more efficient in the sense that it has better approximation ability and
better compression ratio.

We shall devote to these issues below.

2.2 Fast algorithm for difference wavelet transform

We adopt the cyclic reduction method [14] to perform the filter 1/Pk(2?). Firstly,
we factor Pg(2?) into

(K/2]

1
Pg(2?) = H o (2™ + 1+ ax2”)
k=1 k
[K/2

]
I1 P*=*. (2.6)

Here,
0 < a = 1/ (tan® 6 + 1/ tan®6y,) < 1/2, (2.7)

0, — { (2'“4;(1)” if K is even,
=

kﬂ- . .
e if K is odd,

(2.8)



where k = 1,---,2K foreven K, and k =1,---, K — 1, K +1,---,2K — 1 for odd
K. This factorization can be derived from the fact that z = 7 tan 6, are the roots of

Secondly, for each k = 1,---,[K/2], we perform the filter 1/P*(2%) by solving a
tridiagonal system Av = f, where A = diag(ay, 1, o) with |ag| < 1/2. This system
can be solved by the cyclic reduction method [14]. We briefly describe it below for
reader’s convenience.

A one-step cyclic reduction reduces this system into a system of half size with the
same structure. We apply this reduction recursively until a small system is met or
until A becomes almost diagonal. Then this reduced system can be solved directly.
To describe this reduction procedure, we assume the current linear system is of the
form:

agvi_y +v; + agviy; = ff. (2.9)

Here, £ is the index of the recursion procedure. We eliminate v5,; terms to obtain
2, ¢ 2y, ¢ ¢ ¢
—ag*vg;_y + (1 — 2a¢*)vy; — af’ U2z+2 sz ae(faio1 + fai1)-
We rename the variables:

-1 L

v; = U2w
= T"3a7 (fgZ ae(fsi 1+ fai11))
2
s = (2.10)

Then v{™! satisfies
-1 -1 -1
Qr—1v;,_] +v;  +ap 11)Z+1—fZ

Thus, we arrive a system of half size with the same structure. Notice that, from
(2.10), ay—, converges to zero quadratically as m — oo. This is because |a,| < 1/2
initially. Usually, m = 5 (i.e. five-level reductions) will make a;_,, go down to 10 %,
Once {vf~™} are found, we can reconstruct {v~™*'} from

—m+1 —m
Vg; =Y )
l—m+1 —m+1 i—m
Vgit1 = fol — Gmy1 ( + Uz+1 ) .

We can continue this reconstruction procedure recursively from £ — m + 1 to £ to
obtain v?.

By a direct calculation, the amount of work for performing 1/Pg(2?) is less than
(4A 4+ 3M)[K /2] per each datum. Here, A is the addition operation and M is the
multiplication operator. Thus, the procedure to perform the rational filters i(z) and
g(z) is of linear complexity. In the next section, a comparison study shows that the
operation counts for the difference wavelet method is about the same as those of the

Daubechies’ orthogonal wavelet method and of the CDF method.
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2.3 Stability of the difference wavelet method

For the difference wavelet method, from (2.1), the corresponding scaling function ¢

is the B-spline:

¢(z) = 111, gy (@ = [r/2]).
The corresponding dual scaling function ¢ has the following properties.
Proposition 1 1. <;~5 1S symmetric.

2. The Fourier transform of ¢ satisfies
|6(€) = O (lg]~ T2 . (2.11)
3. ¢ decays at +oo exponentially for 7 > r:

L2
e’ \z\¢($)‘ dzr < o0, Vo' < o, (2.12)

Int K+1
ntan { ——— ||

Proof. 1. The symmetric property of ¢ follows from h(z) = h(—z).
2. Using Fourier transform and (1.11), we have

o6 = [hee*)
=1
 iep (sin€/2\ T 1
- ( £/ ) [ e eemy (213)

So, to prove (2.11) we should show that the infinite product []3°, 1/Px(e~2%€/%)
converges unformly and absolutely on every compact subsets in the complex plane
and has the following asymptotic estimate:

where

o=2

H (o z2§/2¢ = O(|¢|* ) for [¢] > 1. (2.14)

E:l

To see this, first, from the continuity of Px and Pg(1) = 1, there exist constants

&0, C' > 0 such that
1

P (e %) -

1‘ < Cle| (2.15)

for all |£] < &.



Given any compact subset B C C, there exists an integer Ly such that B C
{€ € C | [¢] < 2%0&}. For any £ € B, there exists a positive integer L such that
2L-1¢, < |€] < 2%&. We split the above infinite product []5°, into []5_, - | e
From (2.15), the second term has the estimate:

2 1 2 €]
£ H PK(e_i2§/2l) ‘ : H (1 T )
=L+1

(=L+1
< exp(C&) =C

By the dominant convergence theorem, this infinite product converges absolutely and
uniformly for |£| < 2L0&,.
Next, from (2.5),
Py (e7%) = cos* & + sin?# €. (2.16)

It is easy to see that its minimum is at & = 7/4 with minimal value 2-~1. This
yields maxgcg |1/ Pk (e)| = 25~1. Hence,

L K—1
H < oK=L ~ (%)
=1 B &

Therefore, we obtain HZLI/PK(e_m/Ql) = O(g[*).

3. First, we show that (&, +i&;) is analytic for €] < 0. We claim that ¢(&; +is)
is a meromorphic function with poles at:

1
Py (e—izg/ﬂ)

9t (£7/2 +iln|tanb|),

for{=1,2,---, k=1,---,K for even K and for k =1,---,K — 1 for odd K. To
see this, from (2.13), the poles of ¢ are the roots of [[32, Pk (e~"%¢/%"). From (2.6),
(2.7), the roots of Px(2?) = 0 are z = e % = *itanb, (k = 1,---, K for even K
and k = 1,---, K — 1 for odd K). That is, £ = +m/2 + ¢In[tanf|. The claim

follows immediately. With this, the poles of (/5(5) with the smallest imaginary part

are 2 (/2 £ iIntan (K“)). Therefore, (& + i&,) is analytic for [&] < o,
Next, we show e”1?l¢p € L2(R) for any ¢/ < 0. When z > 0, we move the

integration line in the Fourier inversion formula from the real line to {&; +i0’ | & €
R}:

7 §1+w

(x) 1 +i0')d
Here, we have used 7 > 7, (2.11) and the fact that ¢ is analytic for |¢| < 0. From
¢(- +i0’) € L*(R) for # > r and the Planchel equality, we obtain e”*l¢ € L*(R).
When z < 0, we can move the integration line to {& —io’ | & € R} and prove
similarly. 1



Definition 2.1 1. A function ¢ is said to satisfy the Riesz basis property if ¢ € L*(R)
and there exist constants 0 < A, B < oo such that for any finite sequence {cy} we

have
A el <D ad(-— k) <BY el
k k k

2. Two refinable functions ¢ and ¢ are said to be biorthogonal if both of them satisfy
the Riesz basis property and they are dual to each other, namely, [ ¢(x — i) p(x —
k) dxr = 51"]9.

It is known [20, 9, 6] that a refinable function ¢ with mask h(z) satisfies the Riesz
basis property if and only if ¢ € L? and h(z) satisfies the Cohen criterion [6]. That is,
there exist a compact set K and finite many disjoint closed intervals K;, associated
with an integer n; such that

(1) K contains 0 as an interior point,

(2) K = U;K; and [—-m, 7] = U(2m7 + K;), and 2n;m + K; can intersect to each
other at most at their boundaries,

(3) h(e®/?) 0 for all j > 0 and for all £ € K.

Proposition 2 The refinable functions ¢ and ¢ constructed from the difference wavelet
method are biorthogonal for ¥ > r > 1.

Proof. Since ¢ is a spline for > 1, it is in L?(R). It also satisfies Cohen’s criterion
trivially with K = [—m,7]. For ¢, we notice from (2.16) that 1/P(e) > 0 for
¢ € [—m,7m]. Hence, ¢ also satisfies Cohen’s criterion trivially with K = [—m,7].
From (2.11), we see that ¢ € L%(R) as 7 > 7. The duality of ¢ and ¢ follows from
(1.5) [9]. &

Theorem 2.1 The difference wavelets ¢ and ¥ with # > r > 1 are biorthogonal in
L%(R).

Proof. Our theorem follows from a theorem of Chui [5] which says that ¢ and 0
are biorthogonal if and only if ¢ and ¢ are biorthogonal and g(z) = h(—z)P(2%) and
G(z) = h(—2z)/P(2?) with P being in the Wiener class. We choose P = Px here.
Pk (z) is a Laurent polynomial and, from (2.16), Px(z) # 0 for all |z| = 1. Hence Pk
is in the Wiener class. 1
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3 A Comparison Study

In this section, we compare four wavelet methods: Cohen-Daubechies-Feauveau wavelet
(CDF), Daubechies orthogonal wavelet (Daub), Chui-Wang’s semi-orthogonal wavelet
(CW), and the difference wavelet (Diff). Natural criteria of a good wavelet method
are fast, stable and efficient. Therefore our comparisons include

(1) operation counts,
(2) condition numbers,
(3) compression ratio for data sequence and matrices.

Roughly speaking, the results below show that the difference wavelet method is more
efficient than other method. In addition, we also compare

(4

) regularity,
5) approximation power,
)

(

(6) approximation error for functions with jumps,

(7) length of “essential support,”

to demonstrate that this better efficiency is probably due to its better regularity
with slightly bigger “essential support.” It is surprising that even for non-smooth
functions, Doff has better representation in the sense that it is smoother and less
overshoots and undershoots.

3.1 Operation Counts

In this comparison, we shall show that the operation cost of Diff is about the same
as those of CDF or Daub, even though it is a rational filter. We compute the number
of operations per each datum in a one-level wavelet transform. The operation counts
here include both forward and inverse transforms (i.e. (1.1) and (1.2)). The common
part of the four methods is (”Z) . A factorization of Laurant polynomials does not
change its operation counts. Thus, the differences among these four methods are the
operations for Qx(z), Gk(2)/Gk(7?) and 1/Pg(z). The inversion of 1/Pk(2?) and
1/Gk(2?) are performed by the cyclic reduction method. Table 1 shows that Diff has
about the same number of operations as those of CDF or Daub, while CW has more.

3.2 Condition numbers

We compute the condition number of T : ¢; — (co, do, - -+, ds_1) by matlab to study
the sensitivity of various wavelet transforms. The matrix size is 1024 x 1024. Table
2 shows the following things.
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Dift CDF, Daub CW

1/ Pk () Rk (2) GK(Z)/GK(ZQ)
<(4A+3M)[K/2] | RA+1M)K | (6A+5M)K

Table 1: Comparison of operation counts for performing filters 1/Pg(z) (Diff), Qx(z)
(CDF and Daub) and Gk (2)/Gk(2?) (CW) per each datum. Here, A is the addition
operation and M is the multiplication.

1. It is clear that orthogonal wavelet transform has the smallest condition number,
which is 1.

2. Among the biorthogonal wavelet methods considered here, the difference wavelet
method has the smallest condition numbers for the cases r = 7. In general, the
condition numbers of difference wavelet transforms are reasonable small for ap-
plication.

3. Notice that the condition numbers of CDF are big for the cases r = 7 > 4.
This is because the corresponding ¢’s are not in L?(R), and the corresponding
wavelets does not form a Riesz basis in L?(R).

[+[7] Diff| CDF | CW | Daub |
1195 5.2 2.1 — —
2|4 3.5 2.5 — —
313 3.1 9.1 5.1 1.0
117 10.1 2.4 — —
216 7.0 2.5 - -
3195 9.5 5.9 - —
414 4.5 35.4 10.0 1.0
119 195 2.5 — —
28| 14.0 2.5 — -
3|7 11.0 5.9 — —
416 8.6 14.7 — —
5195 7.0 | 154.9 19.3 1.0

Table 2: Comparison of the condition numbers of various wavelet transforms 77 :
¢y — (c4,dy,...,dy 1). Here, r is the average order, 7 is the difference order and
J = 10. The matrix size is 1024 x 1024. The results are computed by Matlab.

12



3.3 Compression ratio for data sequences

We demonstrate by numerical tests to show that Diff method does have better com-
pression ratio for data sequences (both smooth and nonsmooth) and matrices (smooth
kernel and singular kernel).

We measure the efficiency of a wavelet representation for a data sequence c; by a
quantity Cy defined by

Cy(e, J,r,7) = No(e, J,r,7)/N, (3.1)

where N = 27 is the total number of data. The number N, is defined as follows.
Firstly, we transform the discrete data c; to (cg,do,---,dj—1). Next, we truncate

(co,do, - -+, dy1) by a threshold ¢ to yield (o, dq,--,d;1). The threshold § is cho-

sen so that the inverse transform of (&, dy, ---, d;_1) (denoted by €;) is within €
neighborhood of ¢y in 2, i.e.

1/2
(Z(C‘]’i —_ CJ;L')ZQ_J) S €.

1

Then we define Ny (e, J, 7, 7) to be the number of nonzero elements in (&, dg, - - - ,dy 1).

We perform two tests: one is a smooth data, the other is a nonsmooth data.
Namely, we choose c;; = u(277i), i = 1,---,27, where u(z) = sin4nz + sin 67z for
the first test, and u(x) = x0,1/2)(«) for the second test.

Table 3 and 4 are the value of Cy corresponding to the above two tests, where
N =2 and 6 = 1075. We should compare various methods with fixed K, because
they have about the same amount of operation cost. We observe that the Diff with
r =1 is the best in both tests.

3.4 Compression ratio for matrices

Fast matrix-vector multiplication is important in many applications. Following Beylkin-
Coifman-Rokhlin [2], we use “standard method” for matrix compression. That is,
given a 27 x 27 matrix G, we transform it to 7,GT?. A truncation is applied to every
entries of TyGT" with threshold §. The number N, is the total number of nonzero en-
tries. The error of G (i.e. the inverse transform of the truncated T;GT?") is measured
by a matrix £ norm. The quantity Cs is defined by No/N. Roughly speaking, C, is
the number of operation needed per each datum for a matrix-vector multiplication.
Notice that the compression ratio mentioned in other literatures is N?/N, which is
N/Cy is our language.

We perform three tests. The first one is the heat kernel on periodic domain. The
second one is a singular kernel which is basically the Green’s function of the Laplacian
in 2-d. The third one is the matrix which converts the coefficients of finite Chebyshev
expansion into the coefficients of a finite Legendre expansion.
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[+ 7] Diff| CDF | CW | Daub |
1150105 0.119 — -
2140.203 | 0.330 — -
31310423 | 0.916 | 0.423 | 0.746
1(710.057 | 0.063 — —
21610.061 | 0.111 — —
315]0.113 | 0.213 — -
41410.223 | 0.455 | 0.111 | 0.234
1]190.031 | 0.053 — -
21810.031 | 0.061 — —
31 710.057 | 0.100 — —
416 |0.061 | 0.143 — —
550117 | 0.262 | 0.057 | 0.119

Table 3: Comparison of Cy, where Cy = Ny /N, Ns is the number of nonzero truncated
wavelet coefficients, NV is the total number of data. The test data is csx = u(277k),
where u(z) = sindrx + sin6rx. Here, N = 2'° the threshold § = 107°, r, the
averaging order and 7, the differencing order.

3.4.1 Heat kernel

We evaluate the integral:

u(z, 1) = / Gle,y. 07 )y

where

== 1 27 (z —y — £)]?
G(m,y,t) - Z_ZOO \/mexp <_ At ) ’

that is, the fundamental solution of the heat equation on the periodic domain [0, 1].
This integral appears commonly for solving convection-diffusion equations [8]. In our
test, we choose ¢t = 0.1, and the kernel is obtained by summing the heat kernel over 20
periods. We discretize the above integral by trapezoidal rule on a uniform grid. Table
5 is the quantity Cy and Table 6 is the corresponding L2-errors and the thresholds.
In the comparison, we fix the threshold § used for the Diff. The thresholds used for
other methods are chosen so that the corresponding errors are no less than the errors
of the Diff produced by using the fixed threshold 6. This is to guarantee that the Diff
produces the least error in our test.

The result shows that the difference wavelet method with r = 1 is most efficient
method.
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[+7] Diff[ CDF [ CW | Daub |
1(51]0.031 ] 0.059
2140.031 | 0.061
3131]0.033| 0.061 | 0.266 | 0.059
1171]0.059 | 0.082
216|0.009 | 0.084
315 0.057 | 0.084
414 0.057 | 0.084 | 0.334 | 0.082
1[1910.059 | 0.102
21810.059 | 0.104
31 710.057 | 0.107
41610.061 | 0.107
515 (0.059 | 0.105 | 0.387 | 0.094

Table 4: Comparison of the Cy for non-smooth data: c;r = u(277k) and u(z) =
X[o,1/2), N =216 =10"°.

3.4.2 Singular kernel

Singular kernel is often appeared in boundary integral methods. Here, we consider
the kernel corresponding to the Laplacian in 2-dimension [2]. Namely,

[ In(i—3)* ifi#j
Ay _{ 0 if i = j. (3.2)

Table 7 is the value of Cy and Table 8 is the corresponding errors € and thresholds 6.
The result shows that the difference wavelet method is the most efficient method.

3.4.3 Fast Legendre transform

It is well-known that a fast Legendre transform can be achieved through a fast Cheby-
shev transform followed a compressed matrix which converts the coefficients of a finite
Chebyshev expansion into the coefficients of a finite Legendre expansion of the same
polynomial [1, 2]. The matrix is given by

%Az(j) if0=1<j <N,
Aij = %A(j—i)A(j—l—i) if0<i<j<N,
0 otherwise,

where A(z) = I'(2 +1/2)/T'(z + 1) and I'(z) is the gamma function. Table 9 is the
value of C5 and Table 10 is the corresponding errors and thresholds. The result shows
that the difference wavelet method is again the most efficient method.
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[+7] Diff[ CDF [ CW | Daub |
115]| 1.86 4.59
24| 4.41] 12.22
313 |14.23 | 50.88 | 15.19 | 30.31
17| 0.72 1.95
216 1.50 2.00
315 1.86| 6.38
414 431 19.22 | 248 | 4.98
119] 0.70 1.09
218 0.75 2.13
317 0.72 2.16
416 1.59 5.38
55| 1.86| 14.59 2.5 2.09

Table 5: This table is the values of (5, the number of operations per each datum
in matrix-vector multiplication. The matrix G is a finite approximation of the fun-
damental solution of heat equation over period domain (0,1). The matrix size is
1024 x 1024. The corresponding errors and thresholds are tabulated in Table 6 The
result demonstrates that the Diff method with » = 1 is the most efficient method.

3.5 Regularity

In this subsection, we compare the smoothness of ¢ for various methods. We shall
find 5 such that ¢ € H*(R) for all s < 5. Here, H*(R) denotes for the Sobolev space
of regularity order s.

Firstly, for semi-orthogonal wavelet, ¥ = K and é is the spline 1?01,(1). Hence,
§ = 7 — 1/2. For other methods, basically we compute the spectral radius of the
transition matrix to determine its regularity. First, we use the following lemma [9, 20|
to normalize our comparison.

Lemma 3.1 Suppose h(z) = (%)TFI(Z) with H(—1) # 0 and H(1) = 1. Let ¢ and
d be the scaling functions associated with h(z) and H(z). Then ¢ € H**(R) if and
only if ® € H*(R).

The proof of this lemma follows easily from

. e\ T
b(€) = e~ (—) B(¢),

see [20]. Now, we apply this lemma to our cases:

Ny

hcpr(z) = (1 ; Z>FﬁCDF(z),
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hpig(z) = (%) fﬂDiﬁ(z).

Thus, we only need to compare the regularity of the scaling functions (I)CDF and
(I)lef associated with HCDF and Hlef, respectively. Table 11 gives the regularity
for these functions. It is basically quoted from Cohen-Daubechies [7]. They gave a
sharp estimates on sy by using transition matrix method, where s; is the best Sobolev
exponent of the Sobolev space in which these functions can live. The case of Diff in
the first row is the Butterworth case in their paper. See also Fan and Sun [13].

We can transfer this table to a regularity table for &, see Table 12. We observe
that

1. Diff is more regular than CDF and Daub.

2. With 7 fixed, ¢cw is the B-spline, which is the most regular function with given
7. However, with K fixed, which means it takes about same amount of time to
take wavelet transformation, Diff with » =1 is even more regular than CW.

3.6 Approximation power

Given any function v € L?(R), it can be approximated by the projection

Py = Z(U, ¢J,k)(l~5J,k

k

as J — oo [9]. When v € L?(R) N C™"!(R), this approximation has the following
sharp estimate [17, 18, 19]:

[P — ull> = C32~ a2 + 02 D) as J — oo,
where
1/2
Co=~ (Z|¢> (2k)] ) :
k#0

The smaller Cj is, the better the approximation power is. Following Unser [19], the
constant Cj has the following expression:

( 9x(Y b for CDF
(47 —1)27
1/ PK () -D for difference

for Chui-Wang
for Daub

E
SElS




R 1/2
- (Z B((2k + 1>w>\2> .

kEZ

In Table 13, we compute Cj for various methods. We observe the following things.

1. When r = 7 = K fixed, CW has the best approximation power and Diff is the
second. This is due to that the approximate space V7 of CW is spanned by
splines which is the most regular scaling function with given K.

2. However, if we fix K (this means the amount of works for wavelet transform is
of the same order), then we see Diff has the best approximation power. This
table is consistent to the previous regularity table.

3.7 Approximation error for non-smooth functions

When u is not smooth, the representation P/u = >~ (u, ¢ J,k)gz 7,k exhibits the Gibbs
phenomena. In the test below, we choose the test function to be x[i/43/4 on the
periodic domain [0, 1]. We compare the L' and L? errors and the heights of overshoots
and undershoots. In this comparison, the coefficients (u, ¢ ;) are computed as follows.
For Diff and CDF, ¢ is the splines, we compute (u, @) exactly by using Maple. For
CW, P7u is the orthogonal projection of u onto the space spanned by splines, therefore
we find the coefficients ¢, = (u, ¢;) by solving the linear system

Z(éJ,iQ;J,k)CJ,k = (u, qu,i),

k

where gz; 7 is the splines. For Daub, we do not have an analytic formula for ¢;.
Therefore we compute (u, ¢ k) by direct numerical integration. We first transform the
integral (u, ;) to 27772 [u(277(k +y))#(y) dy. Since u is a characteristic function,
the integral only involves 1ntegrat10n of ¢. A trapezoidal rule is then applied for this
integration using N = 2! grid points. Thus, the numerical error for this integration
is of order O(277/2=13) which is relatively small in comparing with the approximation
errors.

Table 14-15 are the L' and L? norms of the error P/u—u. Here, u = x[1/4,3/4], J =
10 and the numerical errors are computed using 2'% grid points. Table 16 shows the
heights of the corresponding overshoots or undershoots (i.e. maxge(1/4,3/4) Plu(z) -1,
or — mingg(i/43/4) P’u). We do not show the results of CDF for the case (3,3), (4,4)
and (5,5), because the corresponding errors are too large. In the comparison, for
each K = 3,4,5, we choose the best case for each methods. For instance, for Diff,
we choose (r,7) = (3,3), (2,6), (2,8). For CDF, we select (r,7) = (1,5), (2,6), (2,8).
For CW and Daub, we have no other choices but (r,7) = (3,3),(4,4), (5,5). It is
surprising that the two non-compact supported wavelet methods, Diff and CW, have
the least errors of overshoots and undershoots. Indeed, Diff is slightly better than
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CW. It only has 9% overshoots or undershoots, which is about the same as those
using finite Fourier method. Figure 1 are the corresponding graphes of P7u in the
interval [0.24, 0.26]. We observe that Diff does have better representation in the sense
of smoothness and smaller overshoots/undershoots.

3.8 Support

We have shown that &Diff decays exponentially in previous section. Below, the
length of the region where |¢(z)| > 1073. Table 17 is a comparison of this “essential
support.” We observe that the essential support of q3 pify is about twice of the support
of ¢cpp. Figures 2, 3 are the graphs of ¢, ¢ and ¥ of the difference wavelet method
for K = 3 and 4, respectively, with various r. One observes that their “essential
supports” are indeed quite compact.
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Figure 1: The graphes of P/ on the interval [0.24,0.25], where u = x[1/4,;3/4) and
J = 10. The graphs from left to right are the representations by Diff, CDF, CW and
Daub, respectively. For each method, the graph from top to bottom corresponding to
the best case for each K = 3,4,5. More precisely, from top to bottom, (r,7) = (3, 3),
(2,6), (2,8) for the Diff, (r,7) = (1,5), (2,6), (2,8) for CDF, and r = 7 = K for both
CW and Daub.
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QU | 0| O = U | W| =T O O J| 00| O x| O O | W | O =

Diff | CDF| CW | Daub |
1.4e-07 | 4.2e-07
5.2e-07 | 2.0e-06
2.3e-06 | 4.0e-06 | 2.9e-06 | 2.6e-06
1.1e-08 | 1.2e-07
6.4e-07 | 2.9e-06
3.3e-07 | 5.3e-07
1.2e-06 | 2.0e-06 | 1.5e-06 | 2.0e-06
1.1e-08 | 1.9e-07
9.1e-10 | 6.7e-08
2.6e-08 | 8.9e-07
1.5e-06 | 2.0e-06
1.1e-06 | 5.3e-06 | 1.5e-06 | 1.4e-06

1e-06 2e-06
1e-06 1e-06
1e-06 1le-06 5e-06 1le-06
1e-06 1le-06
1le-06 | 1.7e-05
1e-06 1e-06
1e-06 1e-06 | 3.9¢-05 1le-05
1e-06 1e-06
1e-06 1e-06
1e-06 2e-06
1e-06 1le-06

O W N WN WO R WN & W N W N -3

le-06 le-06 | 3e-05 le-05

Table 6: The top subtable is the L?-error e of the truncated matrix G in Table 5.
The bottom one is the threshold § used for truncation.
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|r|7] Diff | CDF | CW | Daub |
1]5] 48.7] 646
2|4] 550 851
3[3]75.9] 1494 141.7 | 865
1]7]503] 682
2[6]49.0] 71.1
3]5]485] 814
4]4] 558 128.1] 136.8| 75.5
119|570 635
28] 545 ] 70.6
371476 754
416] 469 89.4
5[5[49.0] 1214 [ 1342 ] 68.9

Table 7: Compression ratio Cy for the matrix (defined in equation 3.2) , the matrix
size is N = 1024. The result shows that the Diff is the most efficient one.

=~

Figure 2: The graphes of ¢, ¥ and ¢ (left to right) of the difference wavelet, for K = 3
and r = 1,2,3 (top to bottom).
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DY O ~J|CO| O| x| T O J| W = O O O T 00| O x| T O J| W| | Ut =2

Diff | CDF| CW | Daub |
1.1e-06 | 1.3e-06
1.0e-06 | 1.2¢-06
2.1e-06 | 2.5e-06 | 2.2e-06 | 2.3e-06
3.4e-06 | 3.6e-06
2.9¢-06 | 2.9e-06
3.7¢-06 | 3.9e-06
3.6e-06 | 5.8¢-06 | 4.2e-06 | 3.8¢-06
1.5¢-05 | 1.9e-05
5.1e-06 | 5.2¢-06
5.8¢-06 | 6.0e-06
5.1e-06 | 5.7e-06
9.3e-06 | 2.6e-05 | 1.6e-05 | 9.7e-06

le-06 oe-06
le-06 2e-06
le-06 le-06 | 6.4e-05 7e-06
le-06 | 1.9e-05
le-06 7e-06
le-06 4e-06
le-06 le-06 | 0.000256 | 1.9e-05
le-06 | 7.5e-05
le-06 | 2.1e-05
le-06 6e-06
le-06 3e-06

YU R W W N WN O = WIN & WN W N3

le-06 le-06 | 0.001024 | 4.5e-05

Table 8: The matrix error € and the thresholds for the matrix (defined in equation
3.2) in Table 7
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| r| 7| Diff | CDF [ CW | Daub |
1]5[29.3] 39.6
2[4]281] 423
3[3]29.1] 553|694 40.1
1[7][39.1] 37.3
2[6]333] 321
3[5]29.6] 46.6
414]282] 621733 414
1][9]44.0] 314
28357 283
3[7]31.3] 4338
416[29.4] 49.2
5[5]285] 674|823 395

Table 9: Compression ratio C5 for matrix which converts the finite Chebyshev ex-
pansion to finite Legendre expansion. The matrix size is 1024 x 1024. The result
shows that the different wavelet method has the best compression ratio (see the cases

(r,7) = (2,4), (4,4) and (5,5).
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CUOD || OC0| O| = | U DT W| | T O | ~J| 00| O | U O | W x| Ot =

Diff | CDF | CW | Daub |
8.8e-07 | 1.0e-06
1.0e-06 | 1.6e-06
1.6e-06 | 2.2e-06 1.8e-06 | 1.9e-06
5.4e-06 | 5.7e-06
5.0e-06 | 5.9e-06
3.0e-06 | 4.0e-06
3.5e-06 | 7.8e-06 | 4.9e-06 | 3.7e-06
1.8e-05 | 1.8e-05
1.5e-05 | 1.5e-05
7.6e-06 | 8.0e-06
6.5e-06 | 6.6e-06
7.7e-06 | 6.0e-05 | 1.41e-05 | 7.8e-06

le-06 4e-06
le-06 3e-06
le-06 le-06 | 3.2e-05 6e-06
le-06 | 1.6e-05
le-06 | 1.3e-05
le-06 3e-06
le-06 le-06 | 0.000128 | 1.2e-05
le-06 | 6.1e-05
le-06 | 3.9e-05
le-06 8e-06
le-06 3e-06

QU | W N =W N WO WN AW N W N3

le-06 le-06 | 0.000512 | 2.5e-05

Table 10: The top subtable is the errors € and the bottom is the thresholds ¢ corre-
sponding to Table 9.

K 2 [ 3] 4567
so(Diff) | -1.5 | -1.9 [ -2.3| 2.7 | -3.1 | -35
so(CDF) || -2.0 |-32 [-44 | -58|-72|-86
so(Daub) || -1.0 | -1.6 | -2.2 | 2.9 | -3.6 | -4.3

Table 11: Regularity table. []Qx(e7%/2") € H*(R) for all s < so(CDF), and
[11/Px(e"%€/*) € HS(R) for all s < so(Diff), quoted from [7]. Those with less
negative values are of better regularity.
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[+ [7] Diff | CDF | CW | Daub |
15 3.1 1.8 - —
214 2.1 0.8 - —
313 1.1 -0.2 2.5 1.4
17| 47 2.6 - —
216 3.7 1.6 - —
315 2.7 0.6 — —
414 1.7 -0.4 3.5 1.8
119] 6.3 3.2 — —
218 5.3 2.2 — —
3|7 4.3 1.2 — —
416 3.3 0.2 — —
5|5 2.3 -0.8 4.5 2.1

Table 12: Comparison of regularity of ¢. The table is the value of §, where ¢ € H*(R)

for all s < 3.

[+]7] Dif[ CDF| CW]| Daub]|
1]5]1.1e-03 ] 1.1e-02 = =
2[4 6.8¢-03| 6.8e-02 - =
3|3 43002 | 6.2e-01 | 5.8¢-03 | 3.0e-01
176805 2.4e-03 - -
26| 4.3¢-04 | 1.5e-02 - =
3|5 |2.7e-03| 9.8¢-02 - —
4[4[ 1.7e-02 | 1.8¢400 | 9.Te-04 | 5.6e-01
1] 9] 4.2e:06 | 5.3¢-04 _ —
2 [ 8] 2.7¢-05 | 3.3¢-03 — -
3|7 | 1.7e-04 | 2.1e02 — —
46| 1.1e-03| 1.6e-01 - =
5| 5| 6.6e-03 | 1.1e401 | 1.4e-04 | 1.3e+00

Table 13: Comparison of the constant C 510 the estimate of the approximation power.
The result shows that with K fixed, the difference wavelet method has smallest con-
stant Cy, i.e. the best approximation power.
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Table 14: The L' error of u — P’u, where u = X[1/4,3/4] on the periodic domain [0, 1]

and J = 10.

Table 15: The L? error of u — P’u, where u = X[1/4,3/4] on the periodic domain [0, 1]

and J = 10.

Diff

CDF

0.0045

0.0034

0.0046

0.0050

0.0027

0.0053

0.0038

0.0045

0.0047

0.0036

0.0031

0.0052

0.0057

0.0041

0.0045

0.0046

0.0042

0.0031

0.0052

0.0153

G| W N W N W N3

QYO | 00| O | OO | W| x| O =

0.0044

0.0041

0.0033

Dift

CDF

CW

Daub

0.00074

0.00072

0.00077

0.00083

0.00067

0.00068

0.00077

0.00077

0.00073

0.00074

0.00080

0.00068

0.00072

0.00078

0.00075

0.00060

0.00078

0.00074

0.00073

0.00078

0.00070

0.00068

0.00073

0.00190

CU R | WIN W N WN -3

YO | 00| O x| O O | W | O =

0.00071

0.00069

0.00069
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r |7 | Diff| CDF | CW | Daub
1151 019| 0.17 - -
214|010 0.19 - -
313 0.09 — | 0.10 0.13
1171 020| 0.18 - —
26| 0.09| 0.11 — —
315] 010] 0.13 — —
414 0.14 — | 0.10 0.16
119 0.20] 0.19 — —
2181009 0.10 - -
317012 0.11 — —
416|013 | 1.00 — —
515 | 0.12 -1 0.09 0.11

Table 16: This table is the magnitudes of overshoot or undershoot of P”u, where
U = X1/4,3/4] and J = 10.

7| Diff | CDF | Daub |
5] 128 6.2 —
4] 130] 6.6 —
3[13.0] 6.7 43
7] 154 79 -
6[17.0] 8.2 —
5[186] 85 —
4
9
8
7
6
5

18.8 9.6 2.2
19.3 8.5 -
21.1 8.7 —
22.8 9.5 -
23.0 | 11.0 —
248 | 12.7 6.2

S| WIN AW N W N3

Table 17: Comparison of the length of the “essential support” (where |¢(z)| > 10~3)
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Figure 3: The graphes of ¢, ¢ and v (left to right) of the difference wavelet for K = 4
and r = 1,2,3,4 (top to bottom).



