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Enhancing Image Watermarking Methods
With/Without Reference Images by Optimization

on Second-Order Statistics
Jengnan Tzeng, Wen-Liang Hwang, and I-Liang Chern

Abstract—The watermarking method has emerged as an im-
portant tool for content tracing, authentication, and data hiding in
multimedia applications. We propose a watermarking strategy in
which the watermark of a host is selected from the robust features
of the estimated forged images of the host. The forged images are
obtained from Monte Carlo simulations of potential pirate attacks
on the host image. The solution of applying an optimization tech-
nique to the second-order statistics of the features of the forged im-
ages gives two orthogonal spaces. One of them characterizes most
of the variations in the modifications of the host. Our watermark
is embedded in the other space that most potential pirate attacks
do not touch. Thus, the embedded watermark is robust. Our wa-
termarking method uses the same framework for watermark de-
tection with a reference and blind detection. We demonstrate the
performance of our method under various levels of attacks.

Index Terms—Authentication, copyright protection, watermark.

I. INTRODUCTION

D IGITAL signatures embedded in contents, called “water-
marks,” are important for copyright protection, copyright

control, and information hiding in multimedia applications [1],
[10], [15], [22]. From the perspective of watermark detection,
the media content where a watermark is embedded is noise.
However, as pointed out in [8], the media content should not be
viewed purely as noise since this view does not take advantage
of the fact that the content is known completely to the watermark
embedders. Thus, one should embed a watermark according to
the available information of the content. This view of water-
mark embedment has a similar approach in signal selection for
optimum coherent detection [20] where optimum signals to be
embedded in a noisy channel whose properties are known to the
sender, are selected. From this point of view, we demonstrate
that there is a reasonable method for choosing an optimum wa-
termark sequence according to the robust features of the content
and the statistics of possible attacks. We propose a subspace wa-
termarking method, where an optimum subspace of an image,
from which a watermark sequence is selected for the image, is
derived for detection according to the covariance of a Monte
Carlo simulation of pirate attacks on the image.
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Usually, watermarking methods are classified into two types:
visible and invisible. We will focus our discussion on invis-
ible watermarks. One can refer to [3] for a discussion of vis-
ible watermarks. Watermarkrobustnessparticularly refers to the
ability to detect an embedded watermark in an image even when
the image is modified by means of image operations. In [7],
[18], and [19], there are many interesting discussions of wa-
termark tampering methods. Despite much previous research,
watermark robustness is still a worthwhile topic with plenty of
unknown issues. Another important watermarking property, ac-
cording to Craveret al. [9], is ambiguityregarding the retrieval
of a watermark which is unambiguously identified by the owner.
It has been shown that for a large class of watermarking methods
that require the use of a reference image to identify owner-
ship, there is ambiguity in resolving the rightful ownership of
an image with multiple signatures [23]. This has motivated re-
search on watermarking methods requiring no reference images
in watermark detection process (blind detection) [24].

We propose a watermarking method which uses optimization
methods to embed invisible watermarks in images. We assume
that a pirate attack on an image aims to create an invisible mod-
ification of it by means of image operations. Like many pre-
vious researches, we embed our watermark using features. The
features can be obtained from DCT coefficients, wavelet coeffi-
cients, spatial patterns (Dirac patterns), etc. We simulate pirate
attacks by modifying our original image using image operations
so that the resultant forged images are still visually acceptable.
This means that our operations do not produce excessive visual
quality loss. The probability density function of the featuresof
the estimated forged images is obtainable. As a result, we can
calculate the statistics of and, thus, characterize statistically
the pirate attacks on the image. In practice,is a random vari-
able in a fixed dimension vector space.

We then show that from the second-order statistics of, we
are able to partition the feature space wherelies in two sub-
spaces orthogonal to each other in such way that one of them,
called , has most of the variations of the estimated forged im-
ages. As a consequence, its complementary space, called,
contains fewer variations of. Since characterizes our sim-
ulations of potential attacks, will be the subspace in which
attacks have less chance of modifying feature components. In
other words, embedding a watermark within features in space

, called the watermark space, is more robust since doing so
offers a higher probability of protecting the watermark against
pirate attacks. Any vector in the watermark space can be our wa-
termark feature of the original image. Our method can be used
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in watermark detection no matter whether a reference image is
required or not.

A word on the notations we use: a bold capital letter stands for
a matrix (or an image), a bold small letter stands for a column
vector, and an underlined letter denotes a random variable. Also,
the transposition of a matrix is . We use [ ] to denote
arranging the matrix elements in as a vector sequence in
a pre-given order, for example, a lexicographic order. In Sec-
tion II, we will specify our problem in a very general setting. In
Section III-A, we will present our watermarking method which
requires the use of a reference image for detection. The same
framework will be extended in Section III-B to a watermark for
blind detection. In Section IV, we will demonstrate the perfor-
mance of our method subject to different levels of attack. Fi-
nally, a conclusion will be given in the last section.

II. PROBLEM MODEL

If we are able to measure the effect of possible attacks on an
image and embed our watermark in the features of the image
that are resistant to the attacks, then the performance of water-
mark detection can be improved. Given a host image, of size

pixels, one can experiment onby performing ele-
mentary image processing operations, such as translation, rota-
tion, smoothing, compression, etc., or by combining elementary
operations to obtain an estimated forged image of. We use the
random variable for images obtained by means of such mod-
ifications of .

Let us expand against the bases
, whose dual bases are
. We have

(1)

where is the inner product of and the basis function
. Equation (1) can be written as

where is the deviation of from along the
basis . The corresponding feature is denoted as

(2)

Let be the watermarked image obtained by em-
bedding watermark into image . As before, we use to
denote the modifications of by means of elementary image
operations and their combinations

Every item on the right side of the above equation is explained:
If we use inner product coefficients as our features, then

[ ] represents the features of the host image, and the
vector

(3)

is the watermark features added by copyright owners. We are
able to obtain the watermark from by means of

(4)

The last term on the right side, [ ], has a spe-
cial meaning; it represents the features which deviate from those
of and possibly were introduced by a pirate attack. We de-
note the feature perturbation from that of as

(5)

and the centered perturbation as

(6)

We are interested in the following watermark selection
problem: Which watermark feature to be embedded in the
host is most resistant to the random feature perturbation,,
introduced by possible attacks on the host image?

A. Remark

In many researches, a subsetof with coefficients
more relevant to perceptual substances or more robust to sta-
tistical decision are selected, where can be either DCT
bases [6], wavelet bases [13], or delta functions if the water-
mark is to be embedded by means of spatial domain methods
[2], [21]. Copyright owners can then embed their watermarks
only into the coefficients in (its complement set is ); there-
fore

Since watermark information is contained entirely in the coef-
ficients of , the features we need for embedding a watermark
are restricted to . The restricted watermark feature is denoted
as The to-be-proposed wa-
termarking methods are applicable to features extracted either
from all bases or from any subset . Thus, for simplicity,
in most of the following sections, we will assume that water-
marks are cast on features relevant to all bases . Only
in Section IV, which will cover our experiments, will we use a
subset of the DCT bases.

III. W ATERMARK SUBSPACESELECTION

Many measurements have been proposed for watermark de-
tection [16]. Among them, a frequently used one is the correla-
tion measurement, which measures the cosine angle of the two
feature vectors, and , by means of

We say that the two vectors are similar if their value is close
to one; or we say that the two are not similar if this value is close
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to zero. Let be the host image. We aim to select the watermark
feature of and a linear transform , which is related to ,
such that we have the following.

High detection probability: If the feature is extracted
from an attacked watermarked image of, then the

should be as large as possible.
Low false-alarm probability: If the feature is extracted
from an unwatermarked image, then the
should be as small as possible.

We propose a watermarking strategy in whichis embedded
in a subspace , called the watermark subspace, which is ro-
bust against the pirate attacks, and whereis a projection onto
this subspace. To find the watermark subspace in which we
embed our watermark feature such that the conditions of high
detection probability and low false-alarm probability are met in
watermark detection, some optimization method should be ap-
plied to an objective function related to our watermark detection
scheme.

A. Watermark Subspace for Detection With a Reference

Suppose our feature space is , and that our watermark
feature . The feature perturbation , after projecting
to subspace , can be rewritten as

where is a scalar random variable, obtained by projecting
onto , and and are perpendicular to each other.

If is the subspace of such that most of the realizations
of have

is close to
(7)

then for most , we will have the following detection proba-
bility and false alarm probability.

Detection Probability: If a test image contains our water-
mark sequence , and if our watermark detection method re-
quires a reference image, then the correlation measurement be-
tween and the projection of an extracted featureonto is

(8)

According to (7a), we have

Hence, if represents the features corresponding to attacks on
, and if is chosen so as to satisfy (7a), then the watermark

detection probability is high.
False Alarm Probability: If a test image does not contain

, and if we assume that an attack on the unwatermarked test
will yield a result in similar to which would be obtained

if the attack were applied to the watermarked image, then the
correlation measurement will be

(9)
According to (7b), we have

Thus, the false alarm probability is small. If our test image is
the host image , then is which is given in (2).

1) Subspace Selection by Means of Second-Order Statis-
tics: The conditions in (7) can be satisfied if is chosen
perpendicular to most of the realizations of . We will
resort to the second order statistics of to find the optimal
watermark subspace by means of the following objective
function:

(10)

where is the centered perturbation of given in (6). By
means of simple calculation, we have

(11)

where , in which the eigenvalues
are arranged in decreasing order of magnitude and

is an orthonormal matrix containing the prin-
ciple components of the covariance matrix of . If we sepa-
rate the eigenvalues into nonzero and zero components

and if is not an empty set, then we can obtain a simple op-
timization of (10) by assigning our watermark featureac-
cording to

if
arbitrary number, if

and , where is a parameter rele-
vant to the perceptual capacity of image. Usually, is chosen
so as to be large enough, but so that the resultant watermark is
still invisible. Any vector in the subspace spanned by the or-
thonormal bases is a solution of (10), and
it can be chosen as the watermark feature for. Thus, the op-
timal watermark space , where the watermark feature lies,
is spanned by the orthonormal bases
with dimension .

For the case where there is no zero eigenvalue, one can obtain
a solution of (10) according to the theorem of arithmetic and
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geometric means. Assume that for all ; we have the
following inequality:

(12)

This inequality becomes an equality if and only if

for any pair of and

Thus,

(13)

We have

for for any given . The strength of in the direc-
tion of a given eigenvector will be inversely proportional to the
corresponding eigenvalue. There are 2choices for our water-
mark feature. Our watermark space is, thus, a finite set, whose
dimension is zero.

Fixed-Dimension Watermark Subspace:The dimension
of our watermark space should not be too small since malicious
attackers can jam the watermark space by spreading random
noise into it. For this reason, the dimension of the watermark
space should be large enough to avoid such attacks. In practice,
it is convenient to fix the dimension of , say , and to choose

such that it is spanned by the eigenvectors corresponding
to the smallest eigenvalues in . This
corresponds to finding a linear transformation of with a
matrix as

where is an by matrix, whose rank is with
and where each column of has only one nonzero element with
a value of one. The covariance matrix of the resultant random
vector is

which is equal to . The sum of the smallest eigen-
values in corresponds to finding the such that the fol-
lowing objective function is minimized:

wheretrace is the trace operation on a matrix. One can easily
see that this corresponds to our optimum solution of (10) if we
set the smallest eigenvalues to zero and use the corresponding
eigenvectors as the bases for our watermark space. Our water-
mark space is characterized by the eigenvalues of the covari-
ance of . If the variations are concentrated mostly in the sub-

(a)

(b)

Fig. 1. Simplified schematic diagram of our watermarking strategy.

space spanned by a few eigenvectors, whose corresponding
eigenvalues take a large proportion of the total variance of,
then we expect that the image distortions due to pirate attacks
will tend to produce images with features in subspace. Thus,
by superimposing a watermark with features mainly in the com-
plementary subspace of, called , we can obtain a robust wa-
termark in the sense that this watermark will have less chance
of being erased by pirate attacks.

Fig. 1 is a simple schematic presentation of a watermark space
with dimension 2 in . From Fig. 1(a), we can see that most
of the variation of lies in the subspace, which has dimen-
sion 1. Its complementary space has dimension 2, as shown
in Fig. 1(b). and are the bases of . Any vector that be-
longs to the watermark space can be chosen as our watermark
feature.

2) Perceptual Model:We will present a simple extension of
the described method using a perceptual model. Previously, we
stated that [ ] is a sequence whose elements come from the
matrix in a pre-assigned order. Here, we useto denote this
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(a)

(b)

Fig. 2. (a) Our watermark encoder requires a reference imageX, wherefX g
stands for our estimated forged images. Our watermark feature, modulated
using the spreading spectrum technique, is embedded inW . (b) Our watermark
decoder requiring a reference image.m is obtained after the spreading
spectrum random sequence is removed.

order. We say that the element at the location in vector
[ ], denoted as , is the element in theth row and the
th column of , i.e., .
If a perceptual model is considered, we can write the water-

marked coefficient at the basis

(14)

where and are the th element of the vectors
and , respectively, and is a sequence whose value is

between 1 and 1 in each component. Also, is a scalar
indicating the sensitivity of the basis to the human visual
system (HVS), whose value depends on which perceptual model
and which bases have been used. In a perceptual model,
is constrained to be no larger than the just-noticeable-distortion
(JND) value of the basis . If we choose to be the
JND of the basis, then will be a sequence whose value
is either 1 or 1 in each component. The reader may refer to
[4] and [11] for a discussion of JND in Fourier bases, in wavelet
bases, and in spatial domain patterns.

3) Watermark Encoding:Fig. 2(a) shows our watermark en-
coding method. Any selected vector can be either a
random sequence or a logo. The spreading spectrum technique is
then applied to modulate with a random sequence. Let

be the resultant watermark feature. Since ,
according to (3), we have

(15)
In Section IV, an example is shown where a subset of DCT coef-
ficients is used as our feature; therefore, bothand are DCT
bases. The unitary matrix is obtained from the covariance of
the features of the estimated forged images of. A fixed-di-
mension watermark subspace is then selected from this
according to the magnitudes of its eigenvalues.

4) Watermark Decoding:Given a test image , we first sub-
tract the reference image, which is, from the test image and
then represent the resultant image using the bases (in
Section IV, we will use DCT bases). The extracted featureis

Projecting onto the space , we have

We then test against a threshold and claim the
ownership of the test image when this value is greater than
the threshold. For decoding, in addition to the host image,
we require knowledge of the bases of the watermark space
and the sequence . A schematic diagram of our watermark
decoding method requiring a reference image is shown in the
bottom subfigure of Fig. 2. Here, we use for watermark se-
quence after conducting spreading spectrum modulation. The
correlation drawn in this figure is carried out after the spreading
spectrum random sequence is removed, which yields the same
result as described previously.

B. Watermark Subspace for Blind Detection

Our watermarking method discussed previously can be mod-
ified for blind detection. If the feature is extracted from an
attacked watermarked image, then

(16)
else

(17)
The arguments of the function in the above equations having
a host image component are that, unlike the previous watermark
decoder [see (8)], [ ] is unknown to the blind water-
mark decoder. Thus, the host component must be included in
watermark detection.

If we choose such that

then (16) and (17) are reduced to (8) and (9), respectively. Thus,
we use the method described in Section III-A3 to find a space

with a given dimension . Then, we can find our
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(a)

(b)

Fig. 3. (a) Our blind watermark encoder. The watermark sequence is
embedded in the spaceW which is orthogonal to the feature of the host image
X . (b) Our blind watermark decoder.

watermark space as a subspace of such that will also
be orthogonal to [ ].

In our implementation, we first project [ ] onto
and then choose the projected vector as the
first vector to which we will apply Gram–Schmidt in . The
bases in are again modified by Gram–Schmidt, which re-
sults in new bases orthogonal to the projected vector. These new
bases are the bases of our watermark space. If there is no
basis in parallel to , then the dimension
of is one less than that of ; otherwise, the dimension of

will be reduced by 2. We can derive from and
that

Given a threshold, the ownership of the test imagecan be
determined by comparing to the threshold,
where . Shown in Fig. 3 are block diagrams of
our watermark encoding and decoding methods for blind detec-
tion, respectively. In decoding, the bases of the watermark space

and are required.

IV. EXPERIMENTAL RESULTS

In this section, we will demonstrate the attack resistance of
our watermarking methods. The reader can refer to [14] and
[19] for further discussions of various attacks. We applied full
frame DCT to a set of 22 images including the images Lena,
Barbara, and Mandrill. The major features of the other images
are flowers, cats, dogs, forest, boys, and girls. Their sizes are
all larger than 32 32. We then selected DCT coefficients
from their upper left 32 32 corner, corresponding to combi-
nations of 32 horizontal low-frequency bands and 32 vertical
low-frequency bands. Thus, our vector space had a dimension

of 1024. Then, we operated on each image to obtain a set of
forged images by means of image operations. Our operations
included blurring, compression with JPEG, small rotations (by

0.1 , 0.2 ), small translations (by shifting one pixel either
up, down, left or right), applying geometrical deformation
(see http://www.cl.cam.ac.uk/ mgk25/stirmark/) to the image,
adding random noise, and other image operations built into the
image toolbox of Matlab and Microsoft Photo Editor. In total,
we obtained 183 forged images for each image.

For each image, we then computed the covariance matrix
from the collections of features obtained from the forged im-
ages of the image. Using singular value decomposition (SVD),
we chose our watermark spaces with a fixed-dimension of 900
for each image. Each image has two watermark spaces: one for
detection with a reference and the other for blind detection. The
SVD results show that most of the eigenvalues were zero since
the number of training feature vectors, which was 183 for each
image was less than the dimension of a feature. We then studied
the performance of our watermarking scheme by either embed-
ding a visually meaningful pattern or by using a random se-
quence in the watermark spaceof each image. Our pattern is
a 30 30 Bee pattern [see Fig. 6(b)] taking a value in either 1
or 1. Embedding a meaningful pattern into spaceprovides
more meaningful evidence to a judge than a detected number
for verifying ownership.

A. Enhancing Existing Watermarking Methods

Our method can be used to enhance the strength of many ex-
isting watermarking methods. As an example, we will improve
the robustness of the frequency domain watermarking method
proposed by Coxet al. [6]. The method of Coxet al.uses DCT
coefficients as features and requires a reference image for wa-
termark detection. Their watermark feature is embedded in the
significant DCT coefficients in a multiplicative way. Let be
the th feature of the host image. Cox’s method modifiesand
obtains, for each

This method can be implemented by adding to each feature com-
ponent a noise with , thus obtaining

where the feature . When our
method is used, the resultantth component is

where is the dimension of watermark space and our wa-
termark feature is in a subspace
of .

In Fig. 4 are shown the mean and the standard deviation of
the values obtained by performing various attacks on each
image in our image set using our watermarking methods and
that of Coxet al., respectively. In these experiments, we kept
the watermark energy and the watermark dimension the same
for both methods. Attacks 1 to 5 were operations whose param-
eters were included in our obtained forged images, while the
parameters of the operations used in Attacks 6 to 10 were larger
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(a)

(b)

Fig. 4. Comparisons of the mean and standard derivation of various attacks on our methods (solid line with reference, dash-dot lines without reference) and on
Cox’s method (dash lines) with 22 test images. Each image was subjected to 15 attacks. The first five were operations that were intended to obtain our watermark
spaceW , while the middle five were not, and the last five were combinations of attacks with one of them from one to five except for Attack 13. Attacks 1 to 5
were, respectively: 1) JPEG (60%): JPEG compression with a quality setting of 60%; 2) Stirmark(with small values for its parameters); 3) Small rotation 0.02 ;
4) Small translation (one pixel in either direction); 5) Small random noise. Attacks 6 to 10 were: 6) JPEG (53%): JPEG compression with a quality setting of
53%; 7) Stirmark(with larger values than Attack 2); 8) Rotation 1; 9) Translation two pixels in either direction; 10) Blur (cubic): Smooth by cubic spline. The
last five were, respectively: 11) JPEG 60%+ Rotation 1 ; 12) Translation one pixel+ Blur (cubic); 13) Rotate 10and then rotate 10back+ blur (quadratic);
14) Stirmark (with the same parameters used in Attack 2)+ Translation (two pixels); 15) Random noise (more noise than in Attack 5)+ JPEG 53%.

than those used for forged images. Attacks 11 to 15 were com-
binations of various attacks. One can see from the mean and

standard deviation, shown, respectively, in Fig. 4(a) and (b), the
robustness of these methods to various attacks. Our methods, in-
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(a) (b)

(c) (d)

Fig. 5. (a), (b) Mean detection probability and (c), (d) the mean false alarm probability of our method (solid lines) compared with those of Cox’s method (dash
lines). Left: Attacks 1 to 5 are included. Right: Attacks 1 to 5 are excluded. The horizontal axes of these figures are thresholds. The false alarm probabilities are
approximately the same for both methods. Given a threshold, our method has a higher mean detection probability.

cluding both detection with a reference and blind detection, are
more effective since they have better average detection values
and similar standard deviations than that of Coxet al.. There
is only a slight difference in the mean and standard deviation
between our two detection methods. This can be explained by
measuring the mean obtained by projecting the features of each
host image onto its watermark space used for detection with a
reference. This mean is 0.05, which means that on average, the
feature of each host image is approximately perpendicular to
the image’s watermark space used for detection with the host
required as reference.

In Fig. 5, the mean detection probability and the mean false
alarm probability of different methods are compared. Our
experiments were carried out by applying different attacks to
our images and testing the resultant detection values against
a threshold. We determined that an image had our watermark
if the detected value was higher than the threshold. The de-
tection probability measures the probability that an attacked
watermarked image has a detection value greater than a given
threshold. The top part of the figure plots the mean detection
probability versus a threshold. The mean values are averages
of the values of various attacks on our 22 watermarked images.
In Fig. 5(a), the previously mentioned 15 attacks applied to
these watermarked images are included while in the top right
subfigure, only the Attacks 6 to 15 are included. The curves
show similar profiles, and ours has higher detection values. The

bottom part of the figure plots the mean false alarm probability.
The false-alarm probability measures the probability that an
image contains no watermark sequence but is falsely identified
as ours since its detected value is greater than a given threshold.

Fig. 6 shows the results of the recovered Bee pattern when
the watermarked image was subjected to JPEG compression at-
tacks. The quality value in xv for JPEG was set to 40. Shown
at the top is the compressed Lena image. Shown in the middle
is the recovered Bee pattern, and shown at the bottom is a two-
level image produced by thresholding the the middle pattern at
zero. A more sophisticated thresholding method can be found
in [17]. The left column lists the results obtained using the orig-
inal image as a reference, while the right column lists the results
obtained using blind detection.

B. Blind Attacks

When we carried out the following blind attack experiment,
we assumed that our subjects were naive attackers: they did not
know our watermarking method. Five subjects were involved
in this experiment. All of them understood image processing
methods quite well. They were instructed to attack our water-
marked Lena image aggressively, modulated with the Bee logo,
but to keep the resultant images as visually acceptable as pos-
sible. Each of them carried out from 25 to 47 attacks using pop-
ular programs like Photoshop version 6, PhotoImpact version 5,



TZENG et al.: OPTIMIZATION ON SECOND-ORDER STATISTICS 779

(a) (b)

(c) (d)

(e) (f)

Fig. 6. (Top) JPEG compression with a quality factor of 40. (a) Compressed image and (b) our Bee Pattern. (Middle) Extracted Bee (c) with reference and
(d) without reference. (Bottom) Two-level Bee obtained by thresholding the middle image (e) with reference and (f) without reference.

Microsoft Photo Edit version 3, and xv. Most of their attacks
were performed by means of elementary operations provided by
the programs or combinations thereof. A total of 120 images of
the attacked images were selected by means of a voting proce-
dure by our subjects. Our subjects voted for an attacked image
if the image was perceptually acceptable. Fig. 8 shows the his-
togram of the value for detection applied to these 120 im-
ages. In our experiment, the Lena image was used as the refer-
ence image. From the histogram, 86.55% of the attacked images
had a detected value 0.5, and about 80.67% of them had
a value larger than 0.7. So far, we have assumed that the

attackers do not know our watermark space. In the Appendix ,
we present an experiment in which attackers aimed to discover
our watermark space and its bases using these 120 images. Our
experimental results indicate that our watermark space can be
approximately estimated but that its bases can not.

C. Malicious Attacks

The following malicious attacks were carried out by attackers
who knew both our watermark spaces, its bases, and our water-
marking methods.
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(a) (b)

Fig. 7. Spreading random noise attack onW . The watermark space of each image was attacked by random noise 64 times. There were 22 images. (a) Average
sim versus SNR. (b) Mean detection probability versus a threshold when attacks were performed on watermarked images. From left to right, the SNR of each
curve is, respectively, to be�8,�6,�4,�2, and 0 dB.

Fig. 8. Histogram of thesim values of 120 test images.

1) Spreading Noise Throughout Watermark Space:In this
attack, we assumed that the attackers attacked our watermark
space by spreading random noise in it, hoping that the noise
would flood the space and, as a result, remove our watermark
feature. We embedded 64 random noises with various levels of
energy into the watermark spaces of the previously mentioned
22 images. The performance results for response to this attack
are shown in Fig. 7(a). In this figure, we plot the mean, obtained
by averaging the detection values of 64 attacks on 22 images,
versus SNR, measured by , where and

are, respectively, to be our watermark and noise feature. In the
right part of the figure, we plot the curves of the mean detection
probability versus a threshold when SNR from the left to right
curves are, respectively, to be8, 6, 4, 2, and 0 dB.

The perceptual quality of the attacked images were evaluated
as follows:

a) Visible distortion from the original image:The vis-
ible distortion of an attacked image is measured when a subject

can compare the attacked image with the original image. We
used a test group of ten persons. All of them knew little about
image processing. We asked them to comment on the percep-
tual quality of each attacked image when it was placed side by
side with the reference. When theSNRwas above 2 dB, none
of them saw any difference between the attacked image and the
original image. When the SNR was below4 dB, all the sub-
jects noticed differences between the images, and the average

at thisSNRwas below 0.5. This implies that if the jamming
attack is so severe that the falls to below 0.5, according to
this test, the attacked image will have noticeable visual distor-
tion compared to the original image.

b) Objectionable distortion:In real-world scenarios, one
may not always be able to compare an attacked image with a ref-
erence image. Therefore, we asked our subjects (the same ones
used in the visual distortion) to comment on whether the percep-
tual quality of an image was acceptable or not by giving a score
for each image. Therefore, the set of attacked images (the same
set used in the visual distortion), the watermarked images, and
the original images were presented to our subjects one image
at a time. The subjects were asked to give a score according
to the perceptual quality of each image, but they did not know
which image was which. The scores ranged from one to five.
A higher score meant better quality. We also asked our subjects
to give a score less than three if an image was not acceptable.
The results were as follows: the score for8 dB was 2.1, those
for 6 dB, 4 dB, 2 dB were, respectively, 3, 3.6, 3.4, and
those for 4 dB, the watermarked images, and the original images
were higher than four. According to this experiment, it was not
until SNR is below 8 dB, where the mean detection value was
below 0.35, that the attacked images were not accepted by our
subjects. We conclude that, according to our experiments with
these two perceptual distortions, our subjects started to notice
visual differences between attacked images and original images
when SNR was 4 dB, which means detection value was 0.5.
Furthermore, when theSNRwas 8 dB, with detection value of
0.35, our subjects started to regard the attacked images as per-
ceptually not acceptable.
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2) Copy Attacks:Finally, we experimented on our water-
marking method using the copy attack [14]. The watermark
copy attack attempts to extract an approximation of the water-
mark from a watermarked (stego) image. Once an approxima-
tion of the watermark is obtained, it can be embedded into other
(target) images. In the copy attack, the watermark is considered
to be noise added to the original image. The watermark predic-
tion process is, therefore, a denoising process. Once an approx-
imation of the watermark is predicted from the stego, one can
modify the energy of this predicted watermark and then embed
it into a target image. In the experiment, we assumed that the
copy attacks were conducted by attackers who knew perfectly
our watermarking methods and watermark spaces. Our experi-
ment was carried out as follows.

1) Alice has her watermark signature of image and
Bob has images and . Bob knows and , the
watermark spaces of and , respectively.

2) Bob applies the copy attack to the imageby
• estimating the watermark image using a de-

noising method;
• projecting onto and obtaining the vector ;
• increasing the energy of and then projecting the

result onto . This corresponds to embedding into
what Bob believes to be Alice’s watermark signa-

ture for . In this step, the energy of should be
as large as possible but not large enough to distort
the visual quality of the resultant image.

3) Alice uses and her to extract the watermark sig-
nature embedded in by Bob.

We estimated the watermark imageby measuring the local
mean of the image with a 3 3 mask. We then carried
out the above copy attack on the set of 22 images described
in Section IV-A by randomly pairing any two images and de-
noting any one image in a pair as and the other as . Thus,
each image belonged to two pairs, and there was a total of two
detection values. Their mean and standard deviation were, re-
spectively, 0.0111 and 0.0340, indicating that our watermarking
method is robust to copy attacks even when the attackers are in-
formed of our watermarking methods and watermark spaces.

V. CONCLUSION

In watermark detection, the media content where a watermark
is embedded is noise. This content is not viewed purely as noise
in our approach. From a set of estimated forged images of the
original image, we derive a watermark subspace from the robust
feature of the image by means of the second order statistics. A
watermark sequence is then embedded into the watermark space
using a spreading spectrum. Our watermarking methods are ap-
plicable to watermark detection whether a reference image is
given or not. The proposed methods can be used to enhance
many existing watermarking methods. It may also be possible
to find a watermark space using higher order statistics.

APPENDIX

ATTACK THAT AIMS TO ESTIMATE THE WATERMARK SPACE

We give an example here of an attack that aims to derive our
watermark space. We assume that the attackers know the dimen-

sion of our watermark space, but that they do not know the de-
tails of our simulations. Thus, he/she had to make up his/her
own simulations to obtain his/her watermark space. We use the
120 test images in Section IV-B as the simulation data for wa-
termark space estimation.

Let and be our and
the attacker’s eigenvectors, respectively. Our watermark space,

, and the attacker’s, , are the subspaces spanned by the
last column vectors [ ] and [ ],
respectively. In our experiment, is 900. We use the se-
quences and to find the relationship between and

.
We define

where is the energy of our basis projected onto .
The sequence , thus, represents the amount of overlap
between our watermark space and the attack’s watermark space.
The mean of is 0.9. Since the value of is rel-
atively large, we conclude that and have a large area of
overlap.

We then define

for The value is the maximal energy of
our basis in projected onto the attacker’s bases in . If

is small, then the energy of our basis is spread out in
every direction of the attacker’s bases in . Thus, the se-
quence is a measurement of the alignment of a basis
in with some basis in . We measure that the mean of

, is 0.1123. Thus, there is only limited alignment of the
bases in and .

This experiment confirms our assumption that most of the
attacks on an image have similar main directions in the feature
space. The watermark space can be approximately estimated,
while its bases are harder to estimate.
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