IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 11, NO. 7, JULY 2002 771

Enhancing Image Watermarking Methods
With/Without Reference Images by Optimization
on Second-Order Statistics

Jengnan Tzeng, Wen-Liang Hwang, and I-Liang Chern

Abstract—The watermarking method has emerged as an im-  Usually, watermarking methods are classified into two types:
portant tool for content tracing, authentication, and data hiding in  visible and invisible. We will focus our discussion on invis-
multimedia applications. We propose a watermarking strategy in jp|a \atermarks. One can refer to [3] for a discussion of vis-
which the watermark of a host is selected from the robust features . .
of the estimated forged images of the host. The forged images aure|b|(.e_watermarks. WatermarbbustnespampuIarI_y referstothe
obtained from Monte Carlo simulations of potential pirate attacks ~ ability to detect an embedded watermark in animage even when
on the host image. The solution of applying an optimization tech- the image is modified by means of image operations. In [7],
nique to the second-order statistics of the features of the forged im- [18], and [19], there are many interesting discussions of wa-
ages gives two orthogonal spaces. One of them characterizes mMosfarmark tampering methods. Despite much previous research,

of the variations in the modifications of the host. Our watermark ¢ K robust is still thwhile topic with plenty of
is embedded in the other space that most potential pirate attacks WAlErMark robustness 1s stiif a worthwhile topic with pienty o

do not touch. Thus, the embedded watermark is robust. Our wa- Unknown issues. Another important watermarking property, ac-
termarking method uses the same framework for watermark de- cording to Craveet al.[9], is ambiguityregarding the retrieval

tection with a reference and blind det_ection. We demonstrate the of g3 watermark which is unambiguou5|y identified by the owner.
performance of our method under various levels of attacks. It has been shown that for a large class of watermarking methods
Index Terms—Authentication, copyright protection, watermark.  that require the use of a reference image to identify owner-
ship, there is ambiguity in resolving the rightful ownership of
an image with multiple signatures [23]. This has motivated re-
search on watermarking methods requiring no reference images
IGITAL signatures embedded in contents, called “watefn watermark detection process (blind detection) [24].
marks,” are important for copyright protection, copyright e propose a watermarking method which uses optimization
control, and information hiding in multimedia applications [1]methods to embed invisible watermarks in images. We assume
[10], [15], [22]. From the perspective of watermark detectionpat 3 pirate attack on an image aims to create an invisible mod-
the media content where a watermark is embedded is noig@ation of it by means of image operations. Like many pre-
However, as pointed out in [8], the media content should not RRyys researches, we embed our watermark using features. The
viewed purely as noise since this view does not take advantaggtures can be obtained from DCT coefficients, wavelet coeffi-
of the fact that the content is known completely to the watermagkants, spatial patterns (Dirac patterns), etc. We simulate pirate
embedders. Thus, one should embed a watermark accordingdgcks by modifying our original image using image operations
the available information of the content. This view of watersg that the resultant forged images are still visually acceptable.
mark embedment has a similar approach in signal selection fit§is means that our operations do not produce excessive visual
optimum coherent detection [20] where optimum signals to tﬁ@ality loss. The probability density function of the featuses
embedded in a noisy channel whose properties are known to {he estimated forged images is obtainable. As a result, we can
sender, are selected. From this point of view, we demonstraigcylate the statistics ef and, thus, characterize statistically
that there is a reasonable method for choosing an optimum wge pirate attacks on the image. In practieés a random vari-
termark sequence according to the robust features of the contgt in a fixed dimension vector space.
and the statistics of possible attacks. We propose a subspace Wgye then show that from the second-order statistics, afe
termarking method, where an optimum subspace of an imagge able to partition the feature space whels in two sub-
from which a watermark sequence is selected for the imagesi%aces orthogonal to each other in such way that one of them,
derived for detection according to the covariance of a MonggyiedV, has most of the variations of the estimated forged im-
Carlo simulation of pirate attacks on the image. ages. As a consequence, its complementary space, dilled
contains fewer variations a@f. Sincee characterizes our sim-
Manuscript received June 28, 2000; revised February 27, 2002. The assodidations of potential attack$}” will be the subspace in which
editor coordinating the review of this manuscript and approving it for publicgyttacks have less chance of modifying feature components. In
tion was Dr. Naohisa Ohta. other words, embedding a watermark within features in space
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in watermark detection no matter whether a reference imagd (X, ®; ;)] represents the features of the host image, and the
required or not. vector

Aword on the notations we use: a bold capital letter stands for M
a matrix (or an image), a bold small letter stands for a column m = [(X™ - X, &, ;)] 3)

vector, and an underlined letter denotes a random variable. AlsOha \watermark features added by copyright owners. We are
the transposition of a matriA is A’. We use AA] to denote e to obtain the watermaid from m by means of
arranging the matrix elements iA as a vector sequence in

a pre-given order, for example, a lexicographic order. In Sec- M= Z(XM - X, @ijﬁfi)i,j. (4)
tion 11, we will specify our problem in a very general setting. In i

Section I1I-A, we will present our watermarking method which

- - M _ wM

requires the use of a reference image for detection. The sah{¢ last term on the right sidgX ™ — X%, &, ;)], has a spe-
framework will be extended in Section I1I-B to a watermark fof'&! reaning, itrepresents the features which deviate from those
blind detection. In Section IV, we will demonstrate the perfof X~ and possibly were introduced by a pirate attack. We de-
mance of our method subject to different levels of attack. Fiote the feature perturbation from thatxst as

nally, a conclusion will be given in the last section. oM = [(XM — XM, &, )] (5)

Il. PROBLEM MODEL and the centered perturbation as

If we are able to measure the effect of possible attacks on af M — [(x™M _ xM, ®; )] - (E{XM} - XM &, ,)]. (6)
image and embed our watermark in the features of the image
that are resistant to the attacks, then the performance of wateWe are interested in the following watermark selection
mark detection can be improved. Given a host imXgef size problem: Which watermark featusa to be embedded in the
N = m xn pixels, one can experiment daby performing ele- host is most resistant to the random feature perturbagith,
mentary image processing operations, such as translation, rétoduced by possible attacks on the host image?
tion, smoothing, compression, etc., or by combining elementary
operations to obtain an estimated forged imagK ofVe use the A. Remark
random variabl& for images obtained by means of such mod- In many researches, a subseof {®; ;} with coefficients

ifications of X. more relevant to perceptual substances or more robust to sta-
Let us expandX against the basegp; ;|i = 1,...,m,j = tistical decision are selected, whef®; ;} can be either DCT
1,...,n}, whose dual bases a#gb,; ;|i = 1,...,m,j = bases [6], wavelet bases [13], or delta functions if the water-
1,...,n}. We have mark is to be embedded by means of spatial domain methods
~ [2], [21]. Copyright owners can then embed their watermarks
X= Z<37 D, ;)P (1) only into the coefficients irf (its complement set i§); there-
i) fore
where(X, @.i,ﬁ istheinnerpr.oductogand the basis function XM — Z (XM P, V@, ; + Z (X, ®; ;)®; .
®, ;. Equation (1) can be written as %, cSs ®,,CS
X = Z<X —-X,®; )®, ; + Z<X’ P, )P, ; Since watermark information is contained entirely in the coef-
i i ficients of S, the features we need for embedding a watermark

are restricted t&. The restricted watermark feature is denoted
where(X — X, @, ;) is the deviation ofX from X along the asm|s = [(XM - X, ®; ;)]e, .cs. The to-be-proposed wa-
basis®; ;. The corresponding feature is denoted as termarking methods are applicable to features extracted either
_ X —X. % 9 from all baseq @, ; } or from any subses. Thus, for simplicity,
e=[X-X, &) @ in most of the following sections, we will assume that water-
Let XM = X + M be the watermarked image obtained by enfparks are casthc_)nhfegﬁures relevant to all bd@éiﬁ' Only
bedding watermar into imageX. As before, we us&M to in Sectlonfl\r/], whic \t/)w cover our experiments, will we use a
denote the modifications ®&™ by means of elementary imageSu set5 of the DCT bases.

operations and their combinations
I1l. W ATERMARK SUBSPACESELECTION

XM= Z(XM, q’i,j)‘i)i,j Many measurements have been proposed for watermark de-
iJ tection [16]. Among them, a frequently used one is the correla-
= Z<X’ d,; j>‘i)i,j tion measurement, which measures the cosine angle of the two
iy feature vectorsu andv, by means of
(M X )+ (XM XM 2 ) B sin(uv) = el
3% ull||v

Every item on the right side of the above equation is explainedle say that the two vectors are similar if theiim value is close
If we use inner product coefficients as our features, théoone;orwe say that the two are not similar if this value is close
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to zero. LefX be the hostimage. We aim to select the watermaikthe attack were applied to the watermarked image, then the
featurem of X and a linear transfor@®, which is related tan, correlation measurement will be
such that we have the following.
High detection probability: If the featuret is extracted sim(m, Py (t)) & sim (m, Py (e™)) = )
from an attacked watermarked image X, then the [lml[[| Py (e)]|
sim(m, P’t) should be as large as possible. ©)
Low false-alarm probability: If the featuret is extracte
from an unwatermarked image, then thign(m, P't) 5
should be as small as possible. sim(m, Py (eM)) = o | ~0

= 2 ~ .
We propose a watermarking strategy in whinhs embedded afpm{}* + [fof[w]|

in a subspacéV, called the watermark subspace, which is rorps, the false alarm probability is small. If our test image is
bust against the pirate attacks, and wirie a projection onto he host imagéX, thent is e which is given in (2).

this subspace. To find the watermark subspace in which wepy gypspace Selection by Means of Second-Order Statis-
embed our watermark feature such that the conditions of highs- The conditions in (7) can be satisfied W is chosen

detection probability and low false-alarm probability are met iﬁerpendicular to most of the realizations e¥. We will

watermark detection, some optimization method should be g@sort to the second order statisticsedf to find the optimal

plied to an objective function related to our watermark detectiQpatermark subspacl’ by means of the following objective
scheme. function:

_ [m'Pr(e)

d According to (7b), we have

A. Watermark Subspace for Detection With a Reference min E{(m’e.)(m’e, M)} (10)
7 meWw ) — — -
Suppose our feature spacefd’, and that our watermark

featurem € W. The feature perturbatios’, after projecting wheree, is the centered perturbation X™ given in (6). By

to subspacéV, can be rewritten as means of simple calculation, we have
Py(e")=am+w B{(m'e.")(m'e.")} =m’E{(e.")(e.") }m
=m'UZU'm
where «¢ is a scalar random variable, obtained by projecting N
Py (eM) ontom, andm andv are perpendicular to each other. = Z af(m’vlf,)2 (11)
If W is the subspace d®" such that most of the realizations i=1
of v have ) ) )
whereX = diag(c?,0% ...,0%), in which the eigenvalues
(a) |lw|| < |jml]| o? are arranged_ in decreasing order (_)f magn_itt_Jde Und:_
{ (b) |af is close to0 (") [uy,uy,...,uy] is an orthonormal matrix containing the prin-

ciple components of the covariance matrixeef. If we sepa-

then for mostw, we will have the following detection proba-rate the eigenvalues into nonzero and zero components

bility and false alarm probability.

Detection Probability: If a test image contains our water- NZ ={o?|o? > 0;i=1,...,d},

mark sequencen, and if our watermark detection method re- 2152 (0 —

quires a?eference image, then the correlation measurement be- Z=toflol =0ii=d 1., N}

tweenm and the projection of an extracted feattrentoW'is  and if Z is not an empty set, then we can obtain a simple op-
timization of (10) by assigning our watermark featureac-

sim(m, Py (t)) =sim (m, Py (m + gM)) cording to

! P M
__|m'Pv(m + ') ) , {o if 02 € NZ

Il P (m + )] W = 9 arbitrary number, ibieZ
According to (7a), we have and)", (m'u;)? = |m|* = C, whereC is a parameter rele-
vant to the perceptual capacity of imaeUsually,C is chosen
sim(m, Py (m + ")) =sim(m, (1 + a)m + w) so as to be large enough, but so that the resultant watermark is
resim(m, (1 + @)m) = 1. still invisible. Any vectonm in the subspace spanned by the or-
thonormal basefu;|i = d+1,. .., N}isasolution of (10), and
Hence, ife’ represents the features corresponding to attacksibrean be chosen as the watermark featureXofThus, the op-
XM andifm is chosen so as to satisfy (7a), then the watermatiknal watermark spacl’, where the watermark featura lies,
detection probability is high. is spanned by the orthonormal badeg|i = d + 1,..., N}
False Alarm Probability: If a test image does not containwith dimensionN — d.
m, and if we assume that an attack on the unwatermarked tesfor the case where there is no zero eigenvalue, one can obtain
will yield a result in W similar to which would be obtained a solution of (10) according to the theorem of arithmetic and
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geometric means. Assume thatu; # 0 for all ¢; we have the
following inequality:

> of(m'w;)?
7

1/N
Tz(f[a;%m’ui)?) )

This inequality becomes an equality if and only if

2 a2
;—Z(m’ui)Q = —2—(m'u;)?, for any pair ofo} ando?.
> of > a7
=1 =1
Thus,
C
/ 2
(m uZ) N * (13)
2 (£ )
=1 !
We have
m/ui = —

fori =1...N forany givenC. The strength ofn in the direc-

tion of a given eigenvector will be inversely proportional to the
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corresponding eigenvalue. There afe éhoices for our water-
mark feature. Our watermark space is, thus, a finite set, whose
dimension is zero.

Fixed-Dimension Watermark Subspac&he dimension
of our watermark space should not be too small since malicious
attackers can jam the watermark space by spreading random
noise into it. For this reason, the dimension of the watermark
space should be large enough to avoid such attacks. In practice,
itis convenient to fix the dimension &, sayD, and to choose
W such that it is spanned by the eigenvectors corresponding

to the D smallest eigenvalues ifoi|k = 1,...,N}. This
corresponds to finding a linear transformationegf? with a
matrix A as

A./ec M

whereA is anN by D matrix, whose rank i with D < N

(b)

Fig. 1. Simplified schematic diagram of our watermarking strategy.

spacel” spanned by a few eigenvectors, whose corresponding
eigenvalues take a large proportion of the total varianae*af

and where each column &f has only one nonzero element withthen we expect that the image distortions due to pirate attacks
a value of one. The covariance matrix of the resultant randawill tend to produce images with features in subspéc@hus,

vector is
E{A/&JW&JW’A}

which is equal taAA’UXU’ A. The sum of thé) smallest eigen-
values inUX U’ corresponds to finding thA such that the fol-
lowing objective function is minimized:

11}&11 trace(A'UXU’A)

by superimposing a watermark with features mainly in the com-
plementary subspace bf, callediW, we can obtain a robust wa-
termark in the sense that this watermark will have less chance
of being erased by pirate attacks.

Fig. 1is a simple schematic presentation of a watermark space
with dimension 2 inRk3. From Fig. 1(a), we can see that most
of the variation ok lies in the subspacg, which has dimen-
sion 1. Its complementary spadé has dimension 2, as shown
in Fig. 1(b).u; andu, are the bases d¥'. Any vector that be-

wheretrace is the trace operation on a matrix. One can easilgngs to the watermark spa&€ can be chosen as our watermark
see that this corresponds to our optimum solution of (10) if weature.

setthe smalledb eigenvalues to zero and use the corresponding2) Perceptual Model:We will present a simple extension of
eigenvectors as the bases for our watermark space. Our watiee-described method using a perceptual model. Previously, we
mark spacéV is characterized by the eigenvalues of the covargtated that A] is a sequence whose elements come from the
ance oke™. If the variations are concentrated mostly in the submatrix A in a pre-assigned order. Here, we uige denote this
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{Xi}— | feature extraction

w

i

| choose watermark sequence m in W |

l

| insert spreading spectrum sequence ‘ - o

|

m*

l

X —= | feature extraction ‘ e [embed) —_— | reconstranction | —= xM
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W be the resultant watermark feature. Sidc¥" = X + M*,
according to (3), we have

m" = [(XM - X, @m)} = Pw ([(XM - X, @@j)D.
(15)

In Section IV, an example is shown where a subset of DCT coef-
ficients is used as our feature; therefore, bbtand® are DCT
bases. The unitary matri is obtained from the covariance of
the features of the estimated forged image&XofA fixed-di-
mension watermark subspai€ is then selected from thi&J
according to the magnitudes of its eigenvalues.

4) Watermark Decoding:Given a testimag#', we first sub-
tract the reference image, whichXs, from the test image and

@ then represent the resultant image using the badeg} (in
Section IV, we will use DCT bases). The extracted featuige

T —

feature extraction
feature extraction

extract sequence and
project into W

t =[(T - X, ;)]
) =[(XM =X, @)+ (T - XM, 8y )],

X —

| remove spreading spectrum sequence | — ¢

l

mt

Projectingt onto the spacé&V, we have
Py (t) = m* + Py ([(T - XM, @, ;)]).

i We then testim(m*, Py (t)) against a threshold and claim the

ownership of the test imag® when this value is greater than

b) the threshold. For decoding, in addition to the host imXge

we require knowledge of the bases of the watermark space
Fig. 2. (a) Ourwatermark encoder requires a reference iXagehere{X; }

* L
stands for our estimated forged images. Our watermark feature, modula er(yd the sequenaa”. A schematic dlagram of our watermark

using the spreading spectrum technique, is embedddd.itb) Our watermark decoding method requiring a reference image is shown in the
decoder requiring a reference imaga’ is obtained after the spreading bottom subfigure of Fig. 2. Here, we ua&* for watermark se-

spectrum random sequence is removed. quencan after conducting spreading spectrum modulation. The
correlation drawn in this figure is carried out after the spreading
order. We say that the element at the locati@i;) in vector spectrum random sequence is removed, which yields the same
[A], denoted a$A]l(m»), is the element in thé&h row and the result as described previously_
Jjth column ofA, i.e., A; ; = [Aly -
If a perceptual model is considered, we can write the wates: Watermark Subspace for Blind Detection

marked coefficient at the bas; ; Our watermarking method discussed previously can be mod-

ified for blind detection. If the feature is extracted from an

XM @, )V =(X,®, )+ (XM -X,®,; _
< ) = )+ ) attacked watermarked image, then

=(X, ®; ;) + my )
:<X, ‘i’@ﬁ + 7’(‘1’1‘7]')W1(1‘7j) (14) sim(m”*, Py (t)) = sim (m*, Py (m™ + [(X, ‘1’2‘7]'>] + ij))

16
wheremy(; ; andwy; ;y are thel(7, j)th element of the vectors g|se (19
m andw, respectively, andv is a sequence whose value is
between-1 and 1 in each component. Alsq®, ,) is a scalar sim(m*, Py (t)) = sim (m*7 Py (X, ®; ;)] + QM)) )
indicating the sensitivity of the bas; ; to the human visual (17)
system (HVS), whose value depends on which perceptual mogtee arguments of theém function in the above equations having
and which bases have been used. In a perceptual magiel,;)|  a hostimage component are that, unlike the previous watermark
is constrained to be no larger than the just-noticeable-distortigacoder [see (8)1.(K, ®; ;)] is unknown to the blind water-
(JND) value of the basi®; ;. If we chooser(®; ;) to be the mark decoder. Thus, the host component must be included in
JND of the basis, thew;; ; will be a sequence whose valueyatermark detection.
is either—1 or 1 in each component. The reader may refer to |f we chooseW such that
[4] and [11] for a discussion of IND in Fourier bases, in wavelet
bases, and in spatial domain patterns.

3) Watermark Encoding:Fig. 2(a) shows our watermark en-
coding method. Any selected vectai € W can be either a then (16) and (17) are reduced to (8) and (9), respectively. Thus,
random sequence or alogo. The spreading spectrum technigwedsuse the method described in Section I1I-A3 to find a space
then applied to modulaté with a random sequence. Let* € W’ with a given dimensionD > 2. Then, we can find our

Py ([(X,®;,1)]) =0
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{Xi}—= | feature extraction

space W orthogonal to feature of X

l

| choose watermark sequence m in W |

l

| insert spreading spectrum sequence | - a
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@

e e nd
— —
T feature extraction project into W

‘ remove spreading spectrum sequence ‘ —

l

I]l‘

|

correlation with m
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of 1024. Then, we operated on each image to obtain a set of
forged images by means of image operations. Our operations
included blurring, compression with JPEG, small rotations (by
+0.1°, £0.2°), small translations (by shifting one pixel either
up, down, left or right), applying geometrical deformation
(see http:/lwww.cl.cam.ac.uk/ mgk25/stirmark/) to the image,
adding random noise, and other image operations built into the
image toolbox of Matlab and Microsoft Photo Editor. In total,
we obtained 183 forged images for each image.

For each image, we then computed the covariance matrix
from the collections of features obtained from the forged im-
ages of the image. Using singular value decomposition (SVD),
we chose our watermark spaces with a fixed-dimension of 900
for each image. Each image has two watermark spaces: one for
detection with a reference and the other for blind detection. The
SVD results show that most of the eigenvalues were zero since
the number of training feature vectors, which was 183 for each
image was less than the dimension of a feature. We then studied
the performance of our watermarking scheme by either embed-
ding a visually meaningful pattern or by using a random se-
guence in the watermark spaidé of each image. Our pattern is
a 30 x 30 Bee pattern [see Fig. 6(b)] taking a value in either 1

Fig. 3. (a) Our blind watermark encoder. The watermark sequence g —1. Embedding a meaningful pattern into spéerovides

embedded in the spad& which is orthogonal to the feature of the host imag

X. (b) Our blind watermark decoder.

fmore meaningful evidence to a judge than a detected number

for verifying ownership.

, .
watermark spac@®” as a subspace &¥’ such that?” will also A. Enhancing Existing Watermarking Methods
be orthogonal to (X, ®; ;)].

In our implementation, we first projec{X, ®; ,)] onto W’

Our method can be used to enhance the strength of many ex-

and then choose the projected vecky ([(X, @, ;)]) as the isting watermarking methods. As an example, we will improve

first vector to which we will apply Gram-Schmidt i#¥’. The

the robustness of the frequency domain watermarking method

bases inW’ are again modified by Gram—Schmidt, which reProPosed by Cot al.[6]. The method of Coet al. uses DCT

sults in new bases orthogonal to the projected vector. These rf@gfficients as features and requires a reference image for wa-
bases are the bases of our watermark spgicef there is no termark detection. Their watermark feature is embedded in the

basis inW" parallel to Py ([(X, ®; ;)]), then the dimension significant DCT coefficients in a multiplicative way. Lef be
of W is one less than that 6¥/": otﬁerwise, the dimension of theith feature of the host image. Cox’s method modificand
W’ will be reduced by 2. We can derive froli’ > W and obtains, for each

PW’(PW’/(KX, ‘1’171>])) = 0 that

P ([(X, @:,5)]) = 0.

This method can be implemented by adding to each feature com-

Given a threshold, the ownership of the test imagean be PoOnent a noisen; with n; = v; o w;, thus obtaining

determined by comparingim(m*, Py (t)) to the threshold,

v +1n;

wheret = [(T, ®, ;}]. Shown in Fig. 3 are block diagrams of

our watermark encoding and decoding methods for blind deteghere the featurm = [ni,n2,...,np]" € R". When our
tion, respectively. In decoding, the bases of the watermark spagethod is used, the resultaith component is

W andm™* are required.

IV. EXPERIMENTAL RESULTS

3
v +m;

whereD is the dimension of watermark spadé and our wa-

In this section, we will demonstrate the attack resistance ®fmark featuran* = [m}, m3, ..., mjj]' is in a subspac&’
our watermarking methods. The reader can refer to [14] antl RY .

[19] for further discussions of various attacks. We applied full In Fig. 4 are shown the mean and the standard deviation of
frame DCT to a set of 22 images including the images Lenthesim values obtained by performing various attacks on each

Barbara, and Mandrill. The major features of the other imagasage in our image set using our watermarking methods and
are flowers, cats, dogs, forest, boys, and girls. Their sizes #nat of Coxet al, respectively. In these experiments, we kept

all larger than 32x 32. We then selected DCT coefficientghe watermark energy and the watermark dimension the same
from their upper left 32< 32 corner, corresponding to combi-for both methods. Attacks 1 to 5 were operations whose param-
nations of 32 horizontal low-frequency bands and 32 verticaters were included in our obtained forged images, while the
low-frequency bands. Thus, our vector space had a dimensgarameters of the operations used in Attacks 6 to 10 were larger
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1.4 T T

0.8

mean

0.4

0.25

SD

0.05

0 5 10 15
(b)

Fig. 4. Comparisons of the mean and standard derivation of various attacks on our methods (solid line with reference, dash-dot lines witheuaneferenc
Cox’s method (dash lines) with 22 test images. Each image was subjected to 15 attacks. The first five were operations that were intended to é¢btaiarkur wa
spacelV, while the middle five were not, and the last five were combinations of attacks with one of them from one to five except for Attack 13. Attacks 1 to 5
were, respectively: 1) JPEG (60%): JPEG compression with a quality setting of 60%; 2) Stirmark(with small values for its parameters); 3) Small0dtati

4) Small translation (one pixel in either direction); 5) Small random noise. Attacks 6 to 10 were: 6) JPEG (53%): JPEG compression with a qupabfy settin
53%; 7) Stirmark(with larger values than Attack 2); 8) Rotatidn 9) Translation two pixels in either direction; 10) Blur (cubic): Smooth by cubic spline. The
last five were, respectively: 11) JPEG 60f0Rotation T'; 12) Translation one pixe} Blur (cubic); 13) Rotate 10and then rotate XOback+ blur (quadratic);

14) Stirmark (with the same parameters used in Attack dyanslation (two pixels); 15) Random noise (more noise than in Attaek 3PEG 53%.

than those used for forged images. Attacks 11 to 15 were costandard deviation, shown, respectively, in Fig. 4(a) and (b), the
binations of various attacks. One can see from the mean apnbustness of these methods to various attacks. Our methods, in-
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Fig. 5. (a), (b) Mean detection probability and (c), (d) the mean false alarm probability of our method (solid lines) compared with those of Cak{slasétho
lines). Left: Attacks 1 to 5 are included. Right: Attacks 1 to 5 are excluded. The horizontal axes of these figures are thresholds. The false bibties@amba
approximately the same for both methods. Given a threshold, our method has a higher mean detection probability.

cluding both detection with a reference and blind detection, dvettom part of the figure plots the mean false alarm probability.
more effective since they have better average detection vallde false-alarm probability measures the probability that an
and similar standard deviations than that of Gdxal. There image contains no watermark sequence but is falsely identified
is only a slight difference in the mean and standard deviati@as ours since its detected value is greater than a given threshold.
between our two detection methods. This can be explained byFig. 6 shows the results of the recovered Bee pattern when
measuring the mean obtained by projecting the features of edtoh watermarked image was subjected to JPEG compression at-
host image onto its watermark space used for detection withaegks. The quality value in xv for JPEG was set to 40. Shown
reference. This mean is 0.05, which means that on average,dhéhe top is the compressed Lena image. Shown in the middle
feature of each host image is approximately perpendicularitothe recovered Bee pattern, and shown at the bottom is a two-
the image’s watermark space used for detection with the hdestel image produced by thresholding the the middle pattern at
required as reference. zero. A more sophisticated thresholding method can be found
In Fig. 5, the mean detection probability and the mean falgge[17]. The left column lists the results obtained using the orig-

alarm probability of different methods are compared. Ounalimage as areference, while the right column lists the results
experiments were carried out by applying different attacks tibtained using blind detection.

our images and testing the resultant detection values against
a threshold. We determined that an image had our watermayk
if the detected value was higher than the threshold. The de-

tection probability measures the probability that an attackedWhen we carried out the following blind attack experiment,
watermarked image has a detection value greater than a givenassumed that our subjects were naive attackers: they did not
threshold. The top part of the figure plots the mean detectitnow our watermarking method. Five subjects were involved
probability versus a threshold. The mean values are averageshis experiment. All of them understood image processing
of the values of various attacks on our 22 watermarked imageasethods quite well. They were instructed to attack our water-
In Fig. 5(a), the previously mentioned 15 attacks applied toarked Lena image aggressively, modulated with the Bee logo,
these watermarked images are included while in the top rigut to keep the resultant images as visually acceptable as pos-
subfigure, only the Attacks 6 to 15 are included. The curvessble. Each of them carried out from 25 to 47 attacks using pop-
show similar profiles, and ours has higher detection values. Thlkar programs like Photoshop version 6, Photolmpact version 5,

Blind Attacks
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(© (d)

(e) ®

Fig. 6. (Top) JPEG compression with a quality factor of 40. (a) Compressed image and (b) our Bee Pattern. (Middle) Extracted Bee (c) with reference and
(d) without reference. (Bottom) Two-level Bee obtained by thresholding the middle image (e) with reference and (f) without reference.

Microsoft Photo Edit version 3, and xv. Most of their attackattackers do not know our watermark space. In the Appendix ,
were performed by means of elementary operations providedsg present an experiment in which attackers aimed to discover
the programs or combinations thereof. A total of 120 images ofir watermark space and its bases using these 120 images. Our
the attacked images were selected by means of a voting proegperimental results indicate that our watermark space can be
dure by our subjects. Our subjects voted for an attacked imagmproximately estimated but that its bases can not.

if the image was perceptually acceptable. Fig. 8 shows the his-

togram of thesim vglue for detectio'n applied to these 120 im; _ Malicious Attacks

ages. In our experiment, the Lena image was used as the refer-

ence image. From the histogram, 86.55% of the attacked image% he following malicious attacks were carried out by attackers
had a detectesim value>> 0.5, and about 80.67% of them hadvho knew both our watermark spaces, its bases, and our water-
asim value larger than 0.7. So far, we have assumed that timarking methods.
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Fig. 7. Spreading random noise attackl®h The watermark space of each image was attacked by random noise 64 times. There were 22 images. (a) Average
sim versus SNR. (b) Mean detection probability versus a threshold when attacks were performed on watermarked images. From left to right, the SNR of each
curve is, respectively, to be8, —6, —4, —2, and 0 dB.

% ' ' ' ' ' ’ | can compare the attacked image with the original image. We

used a test group of ten persons. All of them knew little about
image processing. We asked them to comment on the percep-
tual quality of each attacked image when it was placed side by
side with the reference. When tS&IRwas above-2 dB, none

of them saw any difference between the attacked image and the
original image. When the SNR was belewt dB, all the sub-
jects noticed differences between the images, and the average
sim at thisSNRwas below 0.5. This implies that if the jamming
attack is so severe that than falls to below 0.5, according to
this test, the attacked image will have noticeable visual distor-
tion compared to the original image.

b) Objectionable distortion:In real-world scenarios, one
may not always be able to compare an attacked image with a ref-
erence image. Therefore, we asked our subjects (the same ones
used in the visual distortion) to comment on whether the percep-
0 ot 02 03 04 05 06 07 08 08 1 tual quality of an image was acceptable or not by giving a score
for each image. Therefore, the set of attacked images (the same
set used in the visual distortion), the watermarked images, and

. . . the original images were presented to our subjects one image
1) Spreading Noise Thraughout Watermark Spatreihis at a time. The subjects were asked to give a score according

attack, we assume_d that the atta_lckgrs. attacl_<ed our Waterr%rﬁ\e perceptual quality of each image, but they did not know
spacelV” by spreading random noise in it, hoping that the NOISGhich image was which. The scores ranged from one to five.

would flood the space and, as a result, remove our watermagiigher score meant better quality. We also asked our subjects

feature. We embedded 64 random noises with various IevelstgfgiVe a score less than three if an image was not acceptable.

energy into the watermark spaces of the previously mentiong(e resulits were as follows: the score fe8 dB was 2.1, those

22 images. The performance results for response to this attggk g dB, —4 dB, —2 dB were, respectively, 3, 3.6, 3.4, and
are shown in Fig. 7(a). In this figure, we plot the mean, obtaingqose for 4 dB, the watermarked images, and the original images
by averaging the detection values of 64 attacks on 22 imagggyre higher than four. According to this experiment, it was not
versus SNR, measured B9 log, , |m*||/[|w||, wherem* and  yntil SNR is below—8 dB, where the mean detection value was
w are, respectively, to be our watermark and noise feature. In h&low 0.35, that the attacked images were not accepted by our
right part of the figure, we plot the curves of the mean detectigbjects. We conclude that, according to our experiments with
probability versus a threshold when SNR from the left to righhese two perceptual distortions, our subjects started to notice

Fig. 8. Histogram of theim values of 120 test images.

curves are, respectively, to be8, —6, —4, -2, and 0 dB. visual differences between attacked images and original images
The perceptual quality of the attacked images were evaluaigden SNR was-4 dB, which means detection value was 0.5.
as follows: Furthermore, when thEeNRwas—8 dB, with detection value of

a) Visible distortion from the original imageThe vis- 0.35, our subjects started to regard the attacked images as per-
ible distortion of an attacked image is measured when a subjeeptually not acceptable.
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2) Copy Attacks:Finally, we experimented on our water-sion of our watermark space, but that they do not know the de-
marking method using the copy attack [14]. The watermathkils of our simulations. Thus, he/she had to make up his/her
copy attack attempts to extract an approximation of the wat@wn simulations to obtain his/her watermark space. We use the
mark from a watermarked (stego) image. Once an approxini0 test images in Section 1V-B as the simulation data for wa-
tion of the watermark is obtained, it can be embedded into othtermark space estimation.

(target) images. In the copy attack, the watermark is consideredet U = [uy,...,ux] andU®* = [u{,...,u%] be our and

to be noise added to the original image. The watermark predibe attacker’s eigenvectors, respectively. Our watermark space,
tion process is, therefore, a denoising process. Once an appiidk-and the attacker'sy ®, are the subspaces spanned by the
imation of the watermark is predicted from the stego, one ctastN —d column vectorsfiy 1, ..., uxlandug, ;,...,ugl,
modify the energy of this predicted watermark and then embeskpectively. In our experimenly — d is 900. We use the se-

it into a target image. In the experiment, we assumed that theenceq »;} and{/;} to find the relationship betweeld and
copy attacks were conducted by attackers who knew perfectly?.

our watermarking methods and watermark spaces. Our experiWe define
ment was carried out as follows.

N
1) Alice has her watermark signatune™ of imageY and h; = Z (u;—” uj)Q
Bob has image¥ andZ. Bob knowsWy- andW , the j=dt1

watermark spaces &f andZ, respectively.
2) Bob applies the copy attack to the imageby

« estimating the watermark imag® using a de-
noising method;

 projectingN ontoWy- and obtaining the vectdyy;

* increasing the energy d¥y- and then projecting the
resultonto¥ z. This corresponds to embedding int
Z what Bob believes to be Alice’s watermark signa-
ture forY. In this step, the energy @¥y- should be
as large as possible but not large enough to distort

~ thevisual quality of the resultant image. _ fori = d+1,...,N. The valuez; is the maximal energy of
3) Alice usesiV; and henm” to extract the watermark sig- o, pasis inW projected onto the attacker's bases¥if. If

nature embedded i by Bob. z; is small, then the energy of our basis is spread out in
We estimated the watermark imagéby measuring the local every direction of the attacker's bases¥i®. Thus, the se-
mean of the imag&’ with a 3 x 3 mask. We then carried quence{-;}},, is a measurement of the alignment of a basis
out the above copy attack on the set of 22 images descriggdy with some basis i ®. We measure that the mean of
in Section IV-A by randomly pairing any two images and de{zi}f};l, is 0.1123. Thus, there is only limited alignment of the
noting any one image in a pair & and the other a%. Thus, pases iV andWwe.
each image belonged to two pairs, and there was a total of tWorhjs experiment confirms our assumption that most of the
detection values. Their mean and standard deviation were, &&xcks on an image have similar main directions in the feature

method is robust to copy attacks even when the attackers are e its bases are harder to estimate.

formed of our watermarking methods and watermark spaces.

whereh; is the energy of our basis; € W projected ontdV @.

The sequencéhi}f}ﬂrl, thus, represents the amount of overlap
between our watermark space and the attack’s watermark space.
The mean off ,;}},, is 0.9. Since the value df:;}2, , is rel-
atively large, we conclude th& andWW* have a large area of
0overlap.

We then define

N
2 = uax {juf uj}
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~ Inwatermark detection, the media content where a watermgjfikwers. Special thanks go to the first reviewer, who pointed
is embedded is noise. This content is not viewed purely as no that the principle behind our method may be related to the
in our approach. From a set of estimated forged images of th@nciple proposed in [8] where it is advocated that content not

originalimage, we derive a watermark subspace from the robugt b rely viewed as noise in watermark detection.
feature of the image by means of the second order statistics. A

watermark sequence is then embedded into the watermark space
using a spreading spectrum. Our watermarking methods are agﬁl
plicable to watermark detection whether a reference image i
given or not. The proposed methods can be used to enhande]
many existing watermarking methods. It may also be possible[3]
to find a watermark space using higher order statistics.

APPENDIX 4l
ATTACK THAT AIMS TO ESTIMATE THE WATERMARK SPACE

We give an example here of an attack that aims to derive our[5]
watermark space. We assume that the attackers know the dimen-
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