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Abstract

The purpose of this research was to create response surface models through regression on experimental data and to apply the

Sequential Quadratic Programming (SQP) and Genetic Algorithms (GAs) on the models to obtain optimal processing conditions

for dairy tofu. The two-stage effort of obtaining a surface model using response surface methodology (RSM), and optimizing this

model using GAs or SQP techniques was demonstrated to be an effective approach. Both SQP and GAs techniques were able to

determine the optimal conditions for manufacturing the probiotic dairy tofu. The conditions were 1% of glucono-delta-lactone

(GDL), 0% of peptides level, 3% of isomaltooligosaccharides (IMO) and 18% of milk concentrations, and they were confirmed

by verification experiments. Among the SQP and two GAs employed, the SQP, modified with the multi-start capability, is the most

efficient one.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, there has been a worldwide increase

in consumption of fermented milk, especially for those

products with probiotics. Developing the new dairy

products with probiotics could provide the varieties of

selections for customers and might robust the market
in dairy industry (Liu, Chen, & Lin, 2002). The idea of

probiotic dairy tofu was from glucono-delta-lactone

(GDL) tofu and yogurt. This new product, containing

probiotics and prebiotics, provides the texture of tofu,

flavor of yogurt, as well as health benefits. In order to

manufacture a good quality dairy tofu and understand

the effect of different ingredients on the chemical, phys-

ical and microbial properties of this product, response
surface models were developed to describe the combined
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effect of the factors and modern optimization techniques

were applied to attain optimal conditions for the manu-

facturing process.

Response surface methodology (RSM) is a collection

of statistical and mathematical techniques useful for

developing, improving and optimizing processes. It usu-

ally contains three stages (Myers & Montgomery, 1995):
(1) design of experiments, (2) response surface modeling

through regression, and (3) optimization. The main

advantage of RSM is the reduced number of experimen-

tal trials needed to evaluate multiple parameters and

their interactions (Lee, Ye, Landen, & Eitenmiller,

2000; Porretta, Birzi, & Vicini, 1995). The experimental

data were utilized to build mathematical models using

regression methods. Once an appropriate approximating
model is obtained, this model can then be analyzed using

various optimization techniques to determine the opti-

mum conditions for the process. RSM was successfully

used for applications in developing new edible gels

(Chen & Lin, 2002) and finding the optimum producing
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conditions of the dairy product Kou Woan Lao, which

is produced by mixing milk and culture filtrates ex-

tracted from a fermented rice product and used to form

milk curds and to enhance flavor (Weng, Liu, & Lin,

2001).

Optimization theory consists of a body of numerical
methods for finding and identifying the best candidate

from a collection of alternatives without having to

explicitly evaluate all possible alternatives (Reklaintis,

Ravindran, & Ragsdell, 1983). In the context of RSM,

empirical (mathematical) models are built using regres-

sion techniques on the results of a selected set of exper-

iments. A well fitted model represents, approximately,

all possible experiments with their experimental factors
within the preset bounds. Through the use of optimiza-

tion techniques, the optimum of the model correspond-

ing to the experiment with conditions that will

presumably produce the best result can thus be found.

The final step is to perform experimental verification

based on the optimal, experimental conditions. Among

the optimization techniques, the steepest ascent (or des-

cent) is commonly used (see, for example, State-Ease,
Inc., 2000), but the method is relatively inefficient and

is a local optimization technique capable of finding only

local optima. Genetic Algorithms (GAs), although even

less efficient than the steepest ascent, are considered as

global schemes. The Sequential Quadratic Programming

(SQP) technique is very powerful and efficient, and with

some modifications it can also perform global optimiza-

tions (Chen, 2003). Both SQP and GAs were studied in
this research.

Genetic Algorithms are search procedures that imi-

tate the natural evolution process and can be used for

the computation of the global maximum or minimum

of a function (Mitchell, 1996). Genetic Algorithms differ

from other search techniques in that they search among

a population of points and use probabilistic rather than

deterministic transition rules. As a result, Genetic Algo-
rithms search more globally (Wang, 1997). D�souza and
Simpson (2003) utilized the so-called the non-dominated

sorting Genetic Algorithm for product family design

and optimization. Chen, Chen, and Lin (2003) optim-

ized the viability of probiotics in a new fermented milk

drink and concluded that the two-stage effort, obtaining

a surface model and optimizing this model using the

GAs, resulted in a useful method of finding an optimal
set of process parameters.

A quadratic programming problem is an optimiza-

tion problem involving a quadratic objective function

and linear constraints. The Sequential Quadratic Pro-

gramming method represents state-of-the-art in nonlin-

ear programming methods (The Math Works Inc.,

2000) and can be used to solve a series of quadratic pro-

gramming problems approximating the original non-
linearprogramming problem. The SQP is a powerful

tool but involves a complicated procedure. The theory
behind the SQP can be found in most optimization text-

books, e.g. Arora (1989) and Haftka and Gürdal (1992),

and will not be elaborated here.

The purpose of this research was to create response

surface models through regression on experimental data

and to apply the SQP and GAs on the models to obtain
optimal processing conditions for dairy tofu.
2. Experimental process and response surface modeling

This chapter describes the pre-optimization stages,

including design of experiments, experimental process

and response surface modeling. Optimizations will be
presented in the next chapter.

2.1. Experimental process

The dairy product under investigation is a new type

of dairy tofu made from milk. The experimental process

is described in the following subsections.

2.1.1. Preparation of probiotic dairy tofu

The samples were prepared using 12–18% (w/w) skim

milk powder (Anchor Foods, New Zealand, protein

37.60%, lactose 49.80%). Reconstituted skim milk in

deionized water was mixed with 0.3–1% of glucono-

delta-lactone (GDL) and the prebiotics (peptides from

casein, pancreatic digested, 0.0–1.0%, Cheng-Fung

Co., Taiwan; isomaltooligosaccharides, IMO, 0.0–3.0%,
Cheng-Fung Co., Taiwan). Then, the mixed samples

(each of 200mL) were inoculated with 1% each of Lacto-

bacillus acidophilus, Lactobacillus casei, Bifidobacteria

bifidum and Bifidobacteria longum in 250mL beakers

covered with aluminum foil, and fermented for 12h at

37 �C. The fermentation time and temperature were sug-
gested by the preliminary tests, which revealed that

dairy tofu with 12-h fermentation at 37 �C yielded better
hardness and had higher viability of probiotics. The

headspace volume of the fermentation was around

20% of the total volume.

2.1.2. Cultures and medium performance

Pure lyophilized cultures of B. longum (CCRC

14605), L. casei subsp. rhamnosus (CCRC 12321), B. bifi-

dum (CCRC 11844) L. acidophilus (CCRC 14079) were
purchased from the Culture Collection and Research

Center, Hsinchu, Taiwan, ROC Lactobacilli MRS

(deMan, Rogosa and Sharp) and Lithium propionate

MRS agar (LP-MRS) were used as the selective media

for Lactobacillus spp. and Bifidobacteria spp., respec-

tively (Lapierre, Undeland, & Cox, 1992).

2.1.3. Determination of probiotic growth rate

For the determination of the viabilities of the

probiotics, the populations of Lactobacillus spp. and



Table 1

Process variables and their levels in four variables-three levels of

response surface design

Independent variable Symbol Level

Coded Uncoded

GDL concentration (%) X1 �1 0.30

0 0.65

+1 1.00

Peptides concentration (%) X2 �1 0.00

0 0.75

+1 1.50

IMO concentration (%) X3 �1 0.00

0 1.50

+1 3.00

Skim milk concentration (%) X4 �1 12.00

0 15.00

+1 18.00
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bifidobacteria spp. were measured as growth rates. The

suitability of the media was tested by plating decimal

dilutions of the probiotic cultures. Thus, a 1-g sample

of each pure lyophilized culture was decimally diluted

into sterile peptone water (0.1%) and then 0.1-mL ali-

quot dilutions were plated onto the different media, in
triplicate. Plates of MRS agar were incubated aerobi-

cally for 72h at 37 �C to inhibit bifidobacteria. Plates

of LP-MRS agar were incubated anaerobically (72h at

37 �C, GasPak System-Oxoid, Basingstoke, Hampshire,
England). The population in colony-forming units

(CFU) and the characteristics of the colonies were re-

corded for each medium.

The specific growth rate (GR) corresponding to each
culture was calculated using the following equation:

GR ¼ ½logðCFU1Þ � logðCFU2Þ�
t2 � t1

ð1Þ

where CFU1 and CFU2 are the CFU at time t1 (fermen-

tation for 0h) and t2 (fermentation for 12h).

2.1.4. Determination of hardness

The hardness of samples was determined by testing 5

replicate samples on a TA-XT2i/5 Texture Analyser

(Stable Micro Systems, USA) fitted with a 5kg load cell.

The gels were formed in glass containers (50mm diame-
ter, 65mm height) with 80mL of mixed samples and

tested using a cylinder probe with a flat-ended head of

20mm in diameter at a fixed rate of 10mm/s. The probe

traveled 80% depth into the samples. Gel hardness was

expressed as the force (g) at the maximum peak of the

force–time curve.

2.2. Response surface modeling

Before any experiment taking place, design of exper-

iments were first performed. The Box and Behnken de-

sign (BBD) (Box & Behnkin, 1960) is a three-level

design based on the construction of a balanced incom-

plete block design. The BBD is an efficient option for fit-

ting response surfaces using three evenly spaced levels

(Myers & Montgomery, 1995). A four-variable BBD
with five replicates at the center point was selected

to build response surface models. The coded and un-

coded variables and their respective levels are shown

in Table 1.

To carry out response surface modeling, the regres-

sion method was performed on experimental results to

build mathematical models. The models were then for-

mulated as an objective function in an optimization
problem that was consequently optimized using optimi-

zation techniques to obtain the maximum viability of

the probiotics and the maximum hardness of the

product. The RSM procedure of the Design-Expert�

software package (State-Ease, Inc., 2000) was used to
fit the experimental data to polynomial equations of

order one through three to obtain coefficients. The fol-

lowing linear relationship achieved this.

Y i ¼ fiðX 1;X 2;X 3;X 4Þ þ �i i ¼ 1; 2; 3 ð2Þ

where Y1, Y2, Y3 were the growth rates of Lactobacillus

spp. and Bifidobacteria spp. and the hardness of the

dairy tofu, respectively. f1, f2, f3 represented the modeled

response surfaces. X1, X2, X3, X4, defined as natural var-

iables, were the concentrations of GDL, peptides, IMO

and milk,respectively. �1, �2, �3 were the errors in each
model. With RSM, it is convenient to transform the nat-

ural variables to coded variables n1, n2, n3, n4, where the
coded variables are defined as dimensionless, with mean

zero and the same spread or standard deviation:

Y i ¼ fiðn1; n2; n3; n4Þ þ �i i ¼ 1; 2; 3 ð3Þ
3. Optimization on the response surface models and

model verifications

3.1. Development of the objective function

All measured variables are subjected to random er-

rors and should be considered in the formulation of
the objective function. In order to search a solution

maximizing multiple responses, a composite function

(CF) was defined as the following:

Composite FunctionðCFÞ ¼ ðf1 � f2 � f3Þ1=3 ð4Þ

The composite function combines three responses into

one single function whose maximum can be sought by

optimization techniques. Each response contributes

equally to the composite function.



Table 2

Parameters of the Simple Genetic Algorithm (SGA) and the Micro

Genetic Algorithm (MGA)

Parameter SGA MGA

Population size 50 10

Number of bitsa 20 · 4 20 · 4
Mutation rate 0.02 0

Crossover rate 0.5 0.5

Maximum generation 100 500

a No. of bits = No. of bits per variable · No. of variables.
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3.2. Optimization by the sequential quadratic

programming

An SQP procedure implemented in the MATLAB

(The Math Works Inc., 2000) environment was em-

ployed to optimize the growth rate of probiotics and
hardness of probiotic dairy tofu that were formulated,

via RSM, as polynomial functions of four independent

variables bounded by preset upper and lower limits.

The basic scheme of an SQP technique can be expressed

in the following steps (Chen, 2003; Reklaintis et al.,

1983):

Step 1: Set up and solve a quadratic programming
(QP) subproblem, giving a search direction.

Step 2: Test for convergence, stop if it is satisfied.

Step 3: Step forward to a new point along the search

direction.

Step 4: Update the Hessian matrix in QP and go to

step 1.

In order to search for the global optimum, the con-
cept of multi-start global optimization procedure (Sny-

man & Fatti, 1987) was combined with the SQP

method. Let F* denote the global maximum and r be

the number of sample points falling within the region

of convergence of the current overall maximum F after

n points have been sampled. Then, under statistically

noninformative prior distribution, the probability that

F be equal to F* satisfies the following relationship
(Chen, 2003):

Pr½F ¼ F 	�=qðn; rÞ
¼ 1� ½ðnþ 1Þ!ð2n� rÞ!�=½ð2nþ 1Þ!ðn� rÞ!� ð5Þ

A very high probability (>0.9999) in Eq. (5) was set in

this study to ensure the global optimum would be

attained.

3.3. Optimization by Genetic Algorithms

In the present paper, the Simple Genetic Algorithm

and the Micro Genetic Algorithm were also employed

to optimize the processing conditions. Both GAs were

programmed in MATLAB (The Math Works Inc.,

2000) codes. The numbers of bits in the binary strings,
population size, crossover rate, mutation rate and max-

imum number of generations in GAs were all obtained

by fine tuning the algorithms through multiple trial

runs, which is a common practice for using GAs to solve

an optimization problem, e.g. D�souza and Simpson
(2003) and Vallapuzha et al. (2002).

3.3.1. Simple Genetic Algorithm

The Simple Genetic Algorithm (SGA)(Chen et al.,

2003; Mitchell, 1996) searches for optimal values by sim-
ulating the biological evolutionary process, based on

crossover and mutational genetics. In order to use the

GAs, a chromosome was formed by all four independent

variables, i.e. four ingredients: concentrations of GDL,

peptides, IMO and milk, which were all coded as 20-

bit binary strings making an 80-bit chromosome. Table
2 shows the parameters for the SGA. The initial popula-

tion, consisting of 50 chromosomes (population size),

was generated at random. The crossover and mutation

operators were applied to those chromosomes. The

crossover rate and mutation rate were 0.5 and 0.02 indi-

vidually. The selection technique was based on the rou-

lette wheel selection and the elitist strategy (Chen et al.,

2003; Mitchell, 1996). The roulette wheel technique is
the most simple selection method while the elitist strat-

egy makes sure the one chromosome with the highest

CF value survives to the next generation. The maximum

number of generations was set to 100 for SGA.

This iterative process continues until a pre-specified

maximum number (100) of generations are reached, or

until there is no appreciable improvement in the CF

value. With each new generation, the population gets
closer to an optimal value. Once the search is complete,

the best value from the final generation is taken as the

optimal solution.
3.3.2. Micro Genetic Algorithm

The essence of the Micro Genetic Algorithm (MGA)

(Chen et al., 2003) is the lack of mutations and the pres-

ence of restarts. Due to these features, the algorithm
converges rapidly to a local or global maximum

(Nikitas, Pappa-Louisi, Papageorgiou, & Zitrou, 2001).

The lack of mutations also results rapidly in a decrease

of the variance of the cost values of the population.

When the variance value falls below a certain limit, a

restarting process begins, in which the chromosome with

the highest CF value is retained and the restN � 1 chromo-
somes (N is the total number of chromosomes in one gen-
eration) are replaced by randomly generated new ones.

Table 2 also shows the parameters for the adopted

MGA. The initial population consisting of 10 chromo-

somes (population size) was generated at random. The

crossover rate was 0.5. The chromosomes with higher

CF values were selected and retained for the next
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generation. The maximum number of generations was

set to 500 for the MGA.

3.4. Model verification

After optimal processing conditions were found by
the SQP and GAs, experiments based on the conditions

were performed and repeated three times. The results

were then analyzed using ANOVA from the SAS soft-

ware package (SAS Institute Inc., 1990), with Duncan�s
multiple range test for significance to detect differences

between predicted values and observed values.
4. Results and discussion

4.1. Response surface modeling

The present work has developed prediction models

for the growth rates of probiotics and the hardness of

the probiotic dairy tofu by using RSM. Four treatments

(concentrations of GDL, peptides, IMO and milk) were
Table 3

Box–Behnkin design matrix with three responses

Independent variables

GDL% Peptide% IMO% Milk%

0 0 0 0

0 �1 1 0

0 0 1 1

1 0 1 0

0 0 0 0

�1 1 0 0

1 0 0 �1
0 1 1 0

0 �1 0 �1
1 1 0 0

0 0 0 0

0 0 0 0

�1 0 1 0

1 0 0 1

0 �1 0 1

�1 0 0 �1
0 1 0 1

�1 0 0 1

�1 0 �1 0

0 0 0 0

0 0 �1 �1
0 1 0 �1
0 1 �1 0

�1 �1 0 0

1 0 �1 0

0 0 1 �1
0 �1 �1 0

1 �1 0 0

0 0 �1 1

a GR: growth rate.
b L: L. acidophilus + L. casei.
c B: B. longum + B. bifidum.
d Hardness: Unit in g.
mixed with milk in an attempt to improve the growth

rate of Lactobacillus spp. and Bifidobacteria spp. as well

as the hardness of the product.

The experimental results for the probiotic growth

rates and hardness of the probiotic dairy tofu based

on a Box–Behnkin design of experiments, and analysis
of variance (ANOVA) of their means are presented in

Tables 3 and 4. According to the results, approximate

functions are constructed using a curve fitting proce-

dure. The model-fitting step was carried out using the

Design-Expert� software package, which employs the

least squares procedure to compute the model coeffi-

cients. The responses modeled as linear, quadratic and

cubic functions of the four independent variables were
tested for adequacy and for model fitness using ANO-

VA. The selections of adequate models (Table 4) were

determined using model analysis, lack-of fit test and

R-square analysis as outline by Lee et al. (2000) and

Weng et al. (2001). Table 4(a) examines the probability

(Prob > F) to see if it falls below 0.05. The highest order

polynomial that is significant is selected. The ‘‘Lack of

Fit Test’’ (Table 4b) compares the residual error to the
Responses

GRa (L)b GR(B)c Hardnessd

0.153 ± 0.005 0.124 ± 0.004 36.18 ± 3.24

0.145 ± 0.004 0.163 ± 0.005 64.42 ± 5.87

0.174 ± 0.003 0.125 ± 0.003 37.60 ± 2.03

0.173 ± 0.007 0.123 ± 0.007 48.86 ± 4.33

0.165 ± 0.006 0.124 ± 0.006 41.18 ± 4.32

0.192 ± 0.006 0.123 ± 0.003 23.12 ± 5.73

0.131 ± 0.009 0.116 ± 0.004 44.90 ± 3.21

0.162 ± 0.006 0.133 ± 0.005 32.45 ± 2.45

0.134 ± 0.009 0.124 ± 0.003 54.17 ± 5.12

0.152 ± 0.003 0.135 ± 0.007 48.86 ± 1.01

0.175 ± 0.006 0.123 ± 0.009 32.32 ± 3.98

0.166 ± 0.004 0.107 ± 0.003 39.99 ± 2.39

0.174 ± 0.003 0.124 ± 0.002 28.89 ± 3.25

0.153 ± 0.005 0.116 ± 0.003 54.30 ± 3.45

0.133 ± 0.007 0.134 ± 0.002 82.70 ± 2.11

0.183 ± 0.005 0.115 ± 0.003 29.24 ± 3.53

0.156 ± 0.007 0.117 ± 0.001 35.86 ± 4.21

0.195 ± 0.007 0.123 ± 0.003 37.15 ± 5.23

0.183 ± 0.006 0.138 ± 0.003 36.64 ± 3.27

0.163 ± 0.008 0.104 ± 0.002 39.59 ± 2.31

0.175 ± 0.005 0.135 ± 0.001 42.59 ± 4.54

0.153 ± 0.005 0.103 ± 0.002 33.81 ± 2.32

0.187 ± 0.006 0.165 ± 0.001 43.36 ± 3.17

0.156 ± 0.007 0.134 ± 0.002 49.30 ± 3.02

0.178 ± 0.003 0.124 ± 0.002 58.15 ± 4.35

0.165 ± 0.004 0.123 ± 0.003 56.35 ± 1.43

0.143 ± 0.007 0.146 ± 0.002 61.74 ± 2.23

0.145 ± 0.005 0.154 ± 0.004 77.90 ± 3.48

0.184 ± 0.006 0.103 ± 0.005 39.25 ± 1.32



Table 4

(a) Model analysis, (b) lack of fit and (c) R-square analysis of probiotic growth rate model after 12-h fermentation

Source ACa growth rate Bb growth rate Hardness

Sum of squares P > F Sum of squares P > F Sum of squares P > F

(a) Model analysisc

Mean 0.74 0.0030** 0.43 0.0021** 59256.57 <0.0001**

Linear 4.930 · 10�3 0.0002** 5.967 · 10�4 0.6469 3936.02 <0.0001**

Quadratic 2.506 · 10�3 0.0212* 3.996 · 10�3 0.0211* 989.09 0.0924

Cubic 7.527 · 10�4 0.2476 8.156 · 10�4 0.6943 583.00 0.0135*

Residual 3.159 · 10�4 8.862 · 10�4 60.67

Total 0.75 0.44 64825.35

(b) Lack of fitd

Linear 3.447 · 10�3 0.0561 5.280 · 10�3 0.1906 1580.61 0.0463*

Quadratic 9.416 · 10�4 0.1531 1.284 · 10�3 0.4553 591.52 0.0790

Cubic 1.889 · 10�4 0.1615 4.684 · 10�4 0.2222 8.52 0.7387

Pure error 1.270 · 10�4 4.178 · 10�4 52.14

(c) R-square analysise

R-square Press R-square Press R-squared Press

Linear 0.5797 5.538 · 10�3 0.0948 8.562 · 10�3 0.7068 2399.16

Quadratic 0.8743 5.622 · 10�3 0.7296 8.049 · 10�3 0.8844 3488.66

Cubic 0.9629 0.027 0.8592 0.068 0.9891 1309.02

*Significant at 5% level.
**Significant at 1% level.

a AC: L. acidophilus + L. casei.
b B: B. longum + B. bifidum.
c Model analysis: select the highest order polynomial where the additional terms are significant.
d Lack of fit test: want the selected model to have insignificant lack-of-fit.
e R-square analysis: focus on the model minimizing the ‘‘Press’’.
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pure error from replicated design points. If there is a

significant lack of fit, as indicated by a low probability

value (Prob > F), the response predictor should be dis-

carded. The model with insignificant lack-of-fit is se-

lected. ANOVA showed that the quadratic models of

Eq. (6) for the growth rates of Lactobacillus spp. and

Bifidobacteria spp. as well as the cubic model of Eq.

(7) for the hardness of the product appeared to be the
most accurate, with no significant lack of fit (Table 4).

fk ¼ b0 þ
Xn

i¼1
biX i þ

Xn

i¼1
biiX

2
i þ

Xn�1

i¼1

Xn

j¼iþ1
bij X iX j

k ¼ 1; 2 ð6Þ

f3 ¼ b0 þ
Xn

i¼1
biX i þ

Xn

i¼1
biiX

2
i þ

Xn�1

i¼1

Xn

j¼iþ1
bij X iX j

þ
Xn

i¼1
biiiX

3
i þ

Xn�1

i¼1

Xn

j¼iþ1
biijX

2
i X j þ

Xn�1

i¼1

Xn

j¼iþ1
bijj X iX 2j

þ
Xn�2

i¼1

Xn�1

j¼iþ1

Xn

k¼jþ1
bijkX iX jX k ð7Þ

where f1 and f2 were the growth rates of Lactobacillus

spp. and Bifidobacteria spp., respectively, and f3 was

the hardness of the product. b0, bi, bii, bij, biii, biij, bijj,

bijk were constant coefficients and Xi, Xj, Xk were the

uncoded independent variables. The regression coeffi-
cients for the statistically significant models are given

in Table 5. The three-level design of BBD is incapable

of forming the pure cubic terms, i.e. biiiX
3
i in Eq. (7),

and the coefficients in Table 5 do concur with this fact.

The three responses were then combined into one single

function (Composite Function) whose maximum can

then be sought by optimization techniques.

4.2. Search for optimal combinations of ingredients

4.2.1. Sequential quadratic programming

Since the composite function was a product of two

quadratic and one cubic functions, it was very likely that

there existed more than one local maximum. Therefore,

a global optimization program consisting of a multi-

start SQP with the probability criterion for global opti-
mum, i.e. Eq. (5), was coded. The program generated a

series of uniformly distributed random points as initial

searching points, and then SQP was applied to find the

optimum based on each initial points. If the probability

exceeds a preset value (99.99%, in this study) according

to Eq. (5), the global optimum is considered found. Oth-

erwise, next random initial point is generated and SQP

executed again. Table 6 shows the initial points and their
corresponding optimal CF values and Fig. 1 shows the

evolution of all optimal values graphically. From Table

6, there are six different local optimal CF values (from

1.0131 to 1.2944) found from 28 randomly generated



Table 5

The coefficients of probiotic growth rate model and hardness model of

probiotic dairy tofu after 12-h fermentation

Coefficient nY GRa (AC)b GR (B)c Hardness

ß0 0.10 �0.066 �134.81
ß1 �0.098 �4.557 · 10�3 503.52

ß2 0.046 �0.048 208.61

ß3 �0.013 �0.033 4.26

ß4 9.645 · 10�3 0.030 7.68

ß11 0.037 0.016 �354.42
ß22 �0.021 0.027 �107.43
ß33 4.007 · 10�3 5.176 · 10�3 �2.27
ß44 �3.306 · 10�4 �1.053 · 10�3 0.31

ß12 �0.030 �2.393 · 10�3 �86.11
ß13 5.871 · 10�3 7.610 · 10�3 42.58

ß14 2.021 · 10�3 �1.537 · 10�3 �34.46
ß23 �4.855 · 10�3 �9.272 · 10�3 �1.47
ß24 2.048 · 10�3 8.749 · 10�4 �14.65
ß34 �1.902 · 10�4 1.305 · 10�3 �0.86
ß111 0 0 0

ß222 0 0 0

ß333 0 0 0

ß444 0 0 0

ß112 0 0 32.61

ß113 0 0 �39.66
ß114 0 0 26.78

ß122 0 0 27.32

ß133 0 0 2.75

ß144 0 0 0

ß223 0 0 �6.03
ß224 0 0 7.80

ß233 0 0 2.50

ß244 0 0 0

ß334 0 0 0

ß344 0 0 0

ß123 0 0 0

ß124 0 0 0

ß134 0 0 0

ß234 0 0 0

a GR: growth rate.
b AC: L. acidophilus + L. casei.
c B: B. longum + B. bifidum.
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initial points. The rightmost column of Table 6 shows

the probability of an optimal CF value being the global

one. Among those local optimal values, the global opti-

mal CF value was 1.2944 with 99.99% certainty. The

optimal CF value corresponds to 0.1463 of growth rate

for Lactobacillus spp., 0.1575 of growth rate for Bifido-

bacteria spp. and 94.15 of the product�s hardness. There
were 11 sets among 28 sets attained the highest optimal

CF value (1.2944) with optimal points X1 = 1, X2 = 0,

X3 = 3 and X4 = 18. The optimal conditions for manu-

facturing probiotic dairy tofu were 18% of skim milk

blended with 1% of GDL, 0% of peptides and 3% of

IMO.

To further depict the global optimization results, 3-D
response surface plots were created by fixing two of the

four factors. Fig. 2 shows four local maxima including

the global one in a CF response function that was pro-

duced by setting X1 = 1 and X4 = 18 while varying X2
and X3 within their boundaries. Fig. 3 shows the other

two local maxima found during the optimization process

by fixing X3 = 0 and X4 = 18 while changing X1 and X2.

The optimization results clearly show that whether the

global optimum could be found depends on the initial

searching points for our response surface models. To
reassure the global optimum that was found was indeed

the global one, GAs were also applied on the CF re-

sponse surface model.

4.2.2. Genetic Algorithms

The composite function was optimized using the

SGA and MGA. Fig. 4 shows the evolution curves in

searching for the global optimum. The composite func-
tion value increased in accordance with the number of

function evaluations and reached the maximum value

on the both curves. The maximum CF value provided

the optimal processing conditions for the probiotic dairy

tofu. The number of function evaluations in Eq. (8) rep-

resents the efficiency of the algorithms. A smaller num-

ber indicates a greater efficiency.

N e ¼ N g � N p ð8Þ
where Ne, Ng and Np represent, respectively, the num-

bers of total function evaluations, the generations and

the population size.

Both searching procedures were allowed to continue

to reach the maximum number of function evaluations,

i.e. 5000, even though there had been no significant

changes in CF values after 3750 function evaluations.

In Fig. 4, both SGA and MGA produced fast increasing
CF values during the early stage of the optimization

processes, which are typical for GAs. For 900 function

evaluations, the composite function by SGA has been

increased from 1.1446 to 1.2834, compared to 1.0298

to 1.2928 for MGA. The same maximal value (CF

value = 1.2944) was obtained in 4600 and 3340 function

evaluations for SGA and MGA, respectively. The MGA

converged more rapidly to the optimal value than did
the SGA. The essences of MGA are the lack of muta-

tions and the mechanism of restarts. Due to these fea-

tures, the algorithm converges faster to the global

maximum.

Population size also affected the results (Fig. 4). An

optimal value was obtained at the 92nd generation, i.e.

4600/50 = 92 from Eq. (6), for the SGA curve. For the

MGA curve, comparing to the SGA curve, an optimal
value was obtained at the 334th generation, i.e. 3340/

10 = 334. This means the highest fitness value could be

obtained at earlier generations for increasing population

size because of the variety of chromosomes. Moriyama

and Shimizu (1996) also drew a similar conclusion and

indicated that large population size could decrease the

generation to reach the highest fitness value.

The elitist strategy used in this study has been
known as an effective way for improving the fitness of



Table 6

The randomly generated, initial searching points and optimal CF values found by SQP

Set no. Initial searching point Optimal point Optimal CF value Probability

X1
a X2

b X3
c X4

d X1 X2 X3 X4

1 0.6911 1.0511 1.0385 12.0752 1 0 0 18 1.2381 0.6667

2 0.8479 1.2047 0.5282 13.8055 1 1.5 0 18 1.2403 0.7000

3 0.3985 0.7750 0.2037 17.7905 0.3 0 0 18 1.1485 0.7143

4 0.6904 0.7540 0.9282 12.6125 1 0 0 18 1.2381 0.7222

5 0.4438 1.1321 1.0043 15.5761 0.3 1.5 0 18 1.1779 0.7273

6 0.9023 0.3572 1.1285 14.8139 1 0 0 18 1.2381 0.7308

7 0.4801 1.4146 2.8566 16.304 1 1.5 3 18 1.0131 0.7333

8 0.4943 0.1329 2.158 17.1532 1 0 3 18 1.2944 0.7353

9 0.5017 0.8145 2.338 13.1136 1 0 3 18 1.2944 0.8762

10 0.8143 1.3552 1.853 14.7742 1 1.5 0 18 1.2403 0.8759

11 0.6479 1.2920 1.9477 17.4198 1 1.5 0 18 1.2403 0.8758

12 0.3383 0.9472 2.2688 12.1326 1 0 3 18 1.2944 0.9435

13 0.4339 0.3935 0.4435 16.5624 0.3 0 0 18 1.1485 0.9430

14 0.8072 0.5685 1.7984 16.7751 1 0 3 18 1.2944 0.9747

15 0.9816 0.5060 2.6958 13.8831 1 0 3 18 1.2944 0.9891

16 0.7931 0.4719 0.5158 13.415 1 0 0 18 1.2381 0.9888

17 0.8611 1.4207 2.4568 14.9667 1 1.5 3 18 1.0131 0.9886

18 0.4444 0.8028 0.2079 16.1115 0.3 0 0 18 1.1485 0.9883

19 0.8409 1.0529 2.8671 17.6678 1 0 3 18 1.2944 0.9950

20 0.9109 1.3126 0.952 14.6359 1 1.5 0 18 1.2403 0.9948

21 0.8652 1.4794 0.0156 14.9846 1 1.5 0 18 1.2403 0.9947

22 0.8296 1.3280 2.2798 12.5917 1 0 3 18 1.2944 0.9977

23 0.9332 0.6073 0.926 15.3266 1 0 0 18 1.2381 0.9977

24 0.5947 0.9407 2.1458 14.6142 1 0 3 18 1.2944 0.9990

24 0.7609 0.5782 0.2428 13.0876 1 0 0 18 1.2381 0.9990

26 0.3009 1.2718 2.5376 12.9229 1 0 3 18 1.2944 0.9996

27 0.9874 0.7903 2.1551 17.6024 1 0 3 18 1.2944 0.9998

28 0.5886 1.2111 2.6112 12.8176 1 0 3 18 1.2944 0.9999

a X1: GDL%.
b X2: Peptide %.
c X3: IMO%.
d X4: Skim milk powder %.
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chromosomes because a chromosome with maxi-

mum fitness is compulsorily remained for next genera-

tion (Morimoto, Purwanto, Suzuki, & Hashimoto,

1997).
Fig. 1. Optimum CF values for randomly generated initial searching

points when using SQP.
4.2.3. Comparison between GAs and SQP

Comparing the optimization results, the SQP and

GAs all produced the global optimum in this research.

Both GAs yielded comparable results with MGA being
Fig. 2. A response surface plot under the conditions of constant GDL

(1%) and skim milk (18%).



Fig. 3. A response surface plot under the conditions of constant IMO

(0%) and skim milk (18%).

Fig. 4. Evolution curves of the two Genetic Algorithms for searching

the optimal processing conditions for the probiotic dairy tofu.
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slightly more efficient than SGA. Although the SQP�s
searching performance is dictated by the initial search-

ing points in our study, the modified SQP with the mul-

ti-start capability reached the global optimum with
99.99% certainty in 28 tries. The SQP was obviously

the most efficient method of all.

4.2.4. Effects of optimized factors on responses

The optimal manufacturing conditions were found to

be 1% of GDL (upper limit), 3% of IMO (upper limit),

0% of peptides (lower limit) and 18% of milk concentra-

tion (upper limit). Addition of skim milk powder can in-
crease the total solid of milk and improve the hardness

of dairy tofu. GDL is allowed for use in human food

as a coagulant and a pH control agent. Increasing the

GDL level can raise the hardness of probiotic dairy tofu.
Therefore, both milk concentration and GDL in their

upper limits were suggested by the optimization meth-

ods. As for IMO and peptides, both are growth promot-

ers for probiotics. IMO can stimulate lactic microflora

as well as facilitate the elevated product of butyrate

(Fooks, Fuller, & Gibson, 1999). Consequently, the
highest level of IMO was recommended by the optimiza-

tion procedures. Peptides have been proved to be able to

improve the viability of bifidobacteria (Dave & Shah,

1997). According to our preliminary tests, peptides did

increase the growth rate of bifidobacteria, but decreased

the hardness of dairy tofu. The composite function (Eq.

(4)) is composed of all three responses. If the addition of

a certain factor increases one response but decreases an-
other, a compromise will be made to achieve a higher

composite function value during optimization. This is

why peptides attained the value of the lower limit in

our results. The optimal conditions are the results of

the interactions among the four factors and the com-

bined effects of all three responses.

4.3. Experimental verification

The optimal producing conditions were suggested by

theMGA, SGA and SQP, and were verified by additional

independent experiments. The optimal manufacturing

conditions were obtained as those of maximum GDL

(1%), IMO (3%) as well as milk concentrations (18%),

and in combination with a minimal peptides level (0%).

The three responses, the growth rates of Lactobacillus

spp. and Bifidobacteria spp. and the hardness of the dairy

tofu, and the composite function value produced by ver-

ification experiments were all very close to the predicted

values with no apparent significant differences being

demonstrated between the two sets (P > 0.05).
5. Conclusion

The two-stage effort of obtaining a surface model

using RSM, and optimizing this model using GAs or

SQP techniques has been demonstrated to represent an

effective approach. Both SQP and GAs techniques are

able to determine the optimal conditions for manufac-

turing the probiotic dairy tofu. The conditions were

1% of GDL, 0% of peptides level, 3% of IMO and
18% of milk concentrations, and they were confirmed

by verification experiments. Among the SQP and two

GAs employed, the SQP, modified with the multi-start

capability, is the most efficient one.
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