
Pattern Recognition 38 (2005) 2256–2269
www.elsevier.com/locate/patcog

A statistics-based approach to control the quality of subclusters in
incremental gravitational clustering

Chien-Yu Chena,∗, Shien-Ching Hwanga,Yen-Jen Oyanga,b

aDepartment of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
bGraduate Institute of Networking and Multimedia, National Taiwan University, Taipei 106, Taiwan

Received 30 July 2004; received in revised form 21 March 2005; accepted 21 March 2005

Abstract

As the sizes of many contemporary databases continue to grow rapidly, incremental clustering has emerged as an essential
issue for conducting data analysis on contemporary databases. An incremental clustering algorithm refers to an abstraction of
the distribution of the data instances generated by the previous run of the algorithm and therefore is able to cope well with
the ever-growing contemporary databases. There are two main challenges in the design of incremental clustering algorithms.
The first challenge is how to reduce information loss due to the data abstraction (or summarization) operations. The second
challenge is that the clustering result should not be sensitive to the order of input data. This paper presents the GRIN algorithm,
an incremental hierarchical clustering algorithm for numerical datasets based on the gravity theory in physics. In the design
of GRIN, a statistical test aimed at reducing information loss and distortion is employed to control formation of subclusters
as well as to monitor the evolution of the dataset. Due to the statistical test-based summarization approach, GRIN is able to
achieve near linear scalability and is not sensitive to input ordering.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords:Data clustering; Hierarchical clustering; Incremental learning; Gravity theory

1. Introduction

Data clustering is an important mechanism for solving
various real-world problems such as segmentation, database
compression, vector quantization, and pattern recognition
[1–5]. Due to rapidly emerging application domains in
recent years such as data mining and bioinformatics, data
clustering has attracted a new round of attention[6–8]. One
of the main challenges in the design of modern clustering
algorithms is that, in many applications, new data instances
are continuously added into an already huge database.

∗ Corresponding author. Tel.: +886 3 4638800x2185;
fax: +886 2 23688675.

E-mail addresses:cychen@mars.csie.ntu.edu.tw
(C.-Y. Chen),schwang@mars.csie.ntu.edu.tw(S.-C. Hwang),
yjoyang@csie.ntu.edu.tw(Y.-J. Oyang).

0031-3203/$30.00� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2005.03.005

Therefore, it is impractical to carry out data clustering from
scratch whenever new data instances are added into the
database. One way to tackle this challenge is to incorporate
a clustering algorithm that operates incrementally.

The development of incremental clustering algorithms
can be traced back to 1970s[4]. The LEADER[9] algorithm
uses a threshold to determine if an instance can be placed
in an existing cluster or it should form a new cluster by
itself. Many incremental algorithms follow this model for
clustering data instances incrementally. COBWEB[10] and
CLASSIT [11] are incremental hierarchical clustering algo-
rithms designed for categorical and numerical datasets, re-
spectively. When processing incoming data instances, COB-
WEB and CLASSIT employ four operationsinsert, create,
split, andmergeto adjust the hierarchical structure locally.
A clustering dendrogram is desired in many applications due
to the need of taxonomies[4]. However, both COBWEB

http://www.elsevier.com/locate/patcog
mailto:cychen@mars.csie.ntu.edu.tw
mailto:schwang@mars.csie.ntu.edu.tw
mailto:yjoyang@csie.ntu.edu.tw

C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269 2257

and CLASSIT could result in highly unbalanced trees[6].
In recent years, several incremental clustering algorithms
have been proposed for mining and monitoring evolving
datasets[12–16]. Among them, Ribert’s algorithm and the
BIRCH algorithm keep maintaining a hierarchy as clustering
outputs. Ribert’s algorithm suffers a higher time complexity
when compared with a linear time algorithm and therefore is
not suitable for handling large datasets. On the other hand,
the BIRCH algorithm[14,16] features low time and space
complexity by means of grouping similar instances as a
subcluster and using the derived subclusters as the primitives
when generating a hierarchy.

Grouping data instances as a subcluster is considered as
a process of summarization or data abstraction[4]. Data
summarization keeps playing an important role in develop-
ing incremental clustering algorithms. Furthermore, as Ganti
and Zhang showed in their papers[14,16], grouping data in-
stances as a subcluster provides a good solution when main-
taining hierarchies for large datasets incrementally. This idea
has also been employed to scale up the hierarchical cluster-
ing algorithms successfully[17]. Since the subclusters are
the primitives for generating a hierarchy as the clustering
results, the quality of subclusters is crucial to the quality of
the hierarchy derived.

There are three common issues associated with data sum-
marization or abstraction. The first issue lies in how to
choose a threshold while utilizing a fixed threshold to con-
trol subclusters. A new instance can be inserted into an exist-
ing subcluster as long as the dissimilarity between the new
instance and the representative of the subcluster is smaller
than a given threshold.Fig. 1(a) shows an example where a
global threshold may fail. InFig. 1(a), the gray balls are data
instances in the database so far. As we can see, unreasonable
clustering results arise due to the improper threshold. The
second issue associated with data abstraction is the informa-
tion loss due to data abstraction. As illustrated inFig. 1(b),
the distribution of the instances in the cluster is not con-
sistent with the abstraction model employed to summarize
a cluster. In this case, the abstraction model is the centroid
and the radius of a cluster. When only the centroid and the
radius of the subcluster are given, the algorithm will insert
new data instances (i.e. the white balls) into wrong clusters.
The third issue concerns how to properly monitor the transi-
tion of dataset. We observed that the insertions of new data
points into an existing subcluster might result in the shifting
of distribution within the subclusters. As exemplified inFig.
1(c), once there are some more new instances falling in the
left part of the circle, the elements inside the subcluster is
not uniformly distributed any more. Splitting this subcluster
would be necessary; otherwise the information loss will be
amplified in the remaining clustering process.

Besides, the sensitiveness to the arriving ordering of in-
put data is also a main problem associated with modern
incremental clustering algorithms. Improper arriving order
makes designing an incremental clustering a more challeng-
ing task when data abstraction is considered.Fig. 2presents

(a)

(b)

(c)

Fig. 1. Problems might happen due to data abstraction. Gray balls
stand for the data instances being issued so far, and white balls
stand for the new instances that will come later. (a) Flaws arise
if using a fixed distance threshold to control the formation of
subclusters. (b) New data instances (i.e. the white balls) will fall
in wrong subclusters due to information loss after data abstraction
has been executed. (c) The subcluster is not homogeneous any
more after new data instances are added.

3 1 2

Fig. 2. A case in which the distance-based controlling approach may
fail to deliver satisfactory clustering quality due to the improper
arriving order of data instances.

an example where data instances arrive in unexpected or-
der. In this example,� denotes the threshold imposed on
the diameters of leaf subclusters and it is assumed that dis-
tance (instance 1, instance 2)< �, distance (instance 2, in-
stance 3)< �, and distance (instance 1, instance 3)> �. As
the example shows, if the data enters in the following order

2258 C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269

1 → 2 → 3 . . ., then data instance 2 will be clustered with
data instance 1 instead of with data instance 3. Such a clus-
tering result is not in conformity with what we consider nat-
ural clusters. It is certain that this problem can be resolved
by setting� to a smaller value. However, since� is a pa-
rameter automatically set by users heuristically or based on
some system metrics, it could occur that the setting is not
appropriate for some leaf subclusters.

In this paper we proposed the GRIN algorithm, an in-
cremental hierarchical clustering algorithm for numerical
datasets based on gravity theory in physics. Different from
previous approaches, GRIN employs a statistical test to de-
termine the subclusters. By employing the proposed statis-
tical test, the distribution of a subcluster will be consistent
with the assumption of the abstraction model. Continuing
with the example shown inFig. 2, even though instance 2
is clustered with instance 1 in the first run of the algorithm
due to the unexpected sequence order, instance 2 would not
be in the same subcluster with instance 1 according to the
proposed statistical test. Thus, instance 2 forms a subcluster
by itself. In this case, instance 2 still has the opportunity to
merge with other subclusters or other instances that come
later. Furthermore, the proposed statistical test can also be
used to monitor the transition of dataset. This approach re-
duces the impact from improper input ordering. As the ex-
periments conducted in this study reveal, the GRIN algo-
rithm delivers favorite clustering quality in comparison with
some other clustering algorithms and enjoys efficient exe-
cution time in general.

The time complexity of the GRIN algorithm isO(nm),
wheren is the number of instances in the dataset andm is
the number of leaf subclusters maintained by the algorithm.
Actually, the value ofm is related to the number of instances
in the dataset,n. In the worst case,m equalsn and each leaf
subcluster contains only one instance. Our experiments show
that empirically the value ofm is much smaller thann in
most cases. This observation holds when the dataset exhibits
cluster tendency. As the space complexity is considered, the
space requirement of GRIN algorithm isO(m)

As to the followings of this paper, Section 2 describes
the agglomerative hierarchical clustering algorithm that the
GRIN algorithm invokes to construct the clustering dendro-
gram. Section 3 presents the proposed summarization pro-
cess and the statistical test. In Section 4 we discuss how the
GRIN algorithm works. Section 5 reports the experiments
conducted to study the characteristics of the GRIN algo-
rithm, while the concluding remarks are given in Section 6.

2. The gravitational hierarchical clustering algorithm

This section briefly introduces the gravitational hierar-
chical clustering algorithm that is invoked by the GRIN
algorithm for constructing the clustering dendrogram. The
gravitational clustering algorithm is first proposed in Ref.
[18], and has been well studied by Refs.[19–22]. In this

paper, we employ the physical model defined in the paper
[20]. The gravitational clustering algorithm simulates how a
number of objects move and interact with each other due to
the gravity force. Whenever two objects hit, which means
that the distance between these two objects is less than the
lumped sum of their radii, they merge to form one new and
larger object. In the simulation, the merge of objects corre-
sponds to forming a new, one-level higher cluster that con-
tains two existing clusters. An analysis of why the gravita-
tional clustering algorithm is guaranteed to terminate and its
main characteristics can be found in[20,21]. Since the grav-
itational clustering algorithm generates a clustering dendro-
gram like other hierarchical agglomerative clustering (HAC)
algorithms[2,3], we will use G-HAC to refer to the gravi-
tational hierarchical clustering algorithm invoked by GRIN
in this paper.

Fig. 3 shows the pseudo-code of the G-HAC algorithm.
Basically, the G-HAC algorithm iteratively simulates the
movement of each node during a time interval and check for
possible merge. One key operation in the G-HAC algorithm
is to compute the velocity of each disjoint node remaining
in the system. In the G-HAC algorithm, Eq. (1) below is
employed to compute the velocity of a node during one
time interval. The derivation of Eq. (1) involves solving a
differential equation under several pragmatical assumptions
and is elaborated in Ref.[21].

vj =

√√√√√
∥∥∥∥
∑

nodeni

⇀
F gi

∥∥∥∥
Cr

, (1)

where
∑

nodeni

⇀
F gi is the vector sum of the gravity forces

that nodenj experiences from all the other disjoint nodes
remaining in the physical system at the beginning of the
time interval, andCr is the coefficient of air resistance.
According to gravity theory,

‖⇀
F gi ‖ = Cg

(mass ofni)(mass ofnj)

distancek(ni , nj)
, (2)

where Cg is a coefficient. In the physical world,k = 2.
However, in the G-HAC algorithm,k can be any positive
integer number.

3. The statistics-based summarization process

In this paper, we use centroid, radius, and the number of
data instances it contains as the features of the abstraction
model to represent a subcluster. The assumption of using
this model for data summarization is that the data instances
in each subcluster should be uniformly spread in the sphere
defined by the centroid and the radius. The legitimacy of
this assumption is based on the following observation: any
cluster, regardless of its shape and whether it has a uniform
density, can be decomposed into a number of spherical sub-
clusters, each with virtually uniform density.Fig. 4(a) and

C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269 2259

Procedure G-HAC
Input: W: the set of instances
{

Repeat {
min_D = MAX; (MAX could be the maximal number of floats when
implementing the algorithm.)
max_V = 0;
For every pair of nodes ni, nj ∈ W {

calculate the distance Dij between ni and nj;
if (min_D > Dij) min_D = Dij;

}
For every ni ∈ W {

calculate the new velocity Vi of ni according to equation (2);
if (max_V < Vi) max_V = Vi;

}
time interval T = (min_D / R) / max_V; (R is a scalar number.)
For every ni ∈ W {

calculate the new position of ni based on Vi and T;
}
For every pair of nodes ni, nj ∈ W {

if (ni and nj hit during the time interval T){
create a new cluster containing the clusters represented by ni and nj;
merge ni and nj to form a new node nh with lumped masses and

merged momentum;
delete ni and nj from W;
add nh to W;

}
}

} Until (W contains only one node);
Return the dendrogram;

}

Fig. 3. The pseudo-code of the G-HAC algorithm.

Fig. 4. An example demonstrating how an arbitrarily-shaped cluster can be represented by a set of spherical clusters. (a). Decomposition of
arbitrarily-shaped clusters into a set of spherical subclusters. (b). Decomposition of a cluster with non-uniform density into a set of spherical
subclusters.

2260 C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269

(b) show two examples. InFig. 4(a), two arbitrarily-shaped
clusters with virtually uniform density are decomposed into
a number of spherical subclusters.Fig. 4(b) shows an exam-
ple of decomposing a cluster with non-uniform density into
a set of spherical subclusters, each with virtually uniform
density. Therefore, spherical subclusters will be the primi-
tive building blocks of the clustering dendrogram derived.
We call it a leaf cluster or a leaf subcluster. In particular, the
term leaf spherical clusteris alternatively used in this pa-
per, because the leaf clusters identified by our algorithm is
in spherical shape. Note that, though any two clusters con-
tain disjoint sets of data instances, the spheres defined by
their respective centroids and radii may overlap. The cen-
troid of a cluster is defined to be the geometric center of
the data instances in the cluster and the radius is defined to
be the maximum distance between the centroid and the data
instances in the cluster (Figs. 3). and4

This summarization process is supposed to be applied to
a dendrogram generated by a HAC algorithm[2,3]. Each
node in the clustering dendrogram corresponds to a cluster
of data instances. A cluster is said to be in the spherical
shape, if the cluster satisfies either one of the following two
conditions:

(1) The cluster contains less thanMin data instances, where
Min is a parameter to be set based on the statistical
sense discussed in the following.

(2) The cluster containsMin or more data instances and
passes the statistical test.

A cluster containing less thanMin data instances is consid-
ered as a spherical cluster by default, because such a cluster
does not contain sufficient number samples for any mean-
ingful statistical test to be conducted. Therefore, we just
trust the employed HAC algorithm for its capability of iden-
tifying spherical clusters of small size. Concerning a cluster
containingMin or more data instances, a�2 goodness of fit
test [23] is conducted to check whether the data instances
in a cluster are uniformly distributed or not. The hypothesis
of the statistical test is that the data instances in the cluster
are uniformly distributed in the sphere defined by the cen-
troid and the radius of the cluster. The test is applied to each
node in the dendrogram in order of their formation. In other
words, a node is tested only after all of its descendents have
been tested. A node that has passed the test will be marked
as a spherical cluster.Fig. 5 presents an example that illus-
trates the statistical test. In bothFig. 5(a) and (b), there is a
cluster containing three subclusters, each of them is already
identified as a spherical cluster and is not covered by an-
other parent spherical cluster. Conceivably the new cluster
in Fig. 5(a) should have a higher chance to pass the statisti-
cal test when compared with that ofFig. 5(b). In the statis-
tical test, each subcluster in the new cluster is considered as
containing a set of random samples from it. TakeFig. 5(a)
as example, the�2 test of goodness of fit is applied to deter-
mine whether the distributions of the data instances in the

1
2

3

0
1

2
3

0
(a) (b)

Fig. 5. An example illustrating the statistical test of spherical clus-
ters. (a) The node will pass the spherical test. (b) The node will
not pass the spherical test.

following 4 subspaces conform with the hypotheses or not:

(1) The subspace enclosed by the sphere of subcluster 1.
(2) The subspace enclosed by the sphere of subcluster 2.
(3) The subspace enclosed by the sphere of subcluster 3.
(4) The subspace enclosed by the sphere of the parent clus-

ter but outside subclusters 1, 2, and 3.

The parent cluster is said to be in the spherical shape, if

(k1 − V1�0)2

V1�0
+ (k2 − V2�0)2

V2�0
+ (k3 − V3�0)2

V3�0

+ [0 − (V0 − V1 − V2 − V3)�0]2
(V0 − V1 − V2 − V3)�0

��2
�, (3)

whereki is the number of points in subclusteri, Vi is the
subspace enclosed by clusteri, �0 = (k1 + k2 + k3)/V0
and�2

� is a threshold for the�2 distribution of 3 degrees of
freedom. In general, if the parent cluster of concern contains
m spherical subclusters, then the�2 test withm degrees of
freedom is conducted. In the statistical test, if one of the
child subclusters contains only one single data instance, then
the radius of the child cluster is defined to be one half of
the distance between the instance and its nearest neighbor
among the instances in the parent cluster. Note that applying
the �2 goodness of fit in identifying spherical clusters is
an empirical mechanism in some sense, as inequality (3)
above assumes that the spheres of subclusters 1, 2, and 3 do
not overlap and each of them is completely enclosed by the
sphere of the parent cluster.

After all the nodes in the dendrogram are examined by
the statistical test, the next operation performed in the sum-
marization process is to flatten the bottom levels of the clus-
tering dendrogram in order to derive the so-calledabstract
dendrogram. In the flattening process, a spherical cluster in
the original dendrogram will become aleaf clusterin the
dendrogram, if it satisfies both of the following conditions:

(1) The cluster is of spherical shape according to the sta-
tistical test.

C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269 2261

(2) All of its ancestors do not satisfy condition (1). The
ancestors of a node are defined as the nodes on the path
from the root of the dendrogram to the current node.

The structure under a leaf cluster in the original dendrogram
is then flattened so that all the data instances under the leaf
cluster become its children. An example of the summariza-
tion process will be given in the next section.

4. The GRIN algorithm

This section describes the GRIN algorithm. The GRIN
algorithm operates in two phases, initial phase and incre-
mental phase. In both phases, it invokes the gravitational
agglomerative hierarchical clustering algorithm presented in
Section 2 to construct clustering dendrograms.Fig. 6shows
the flowchart andFig. 7 provides the pseudo-code of GRIN
algorithm.

4.1. Initial phase

In the GRIN algorithm, it is assumed that all the incoming
data instances are first buffered in anincoming data pool. In
the initial phase of the algorithm, the firstsdata instances in
the incoming data pool are collected and the G-HAC algo-
rithm, the gravity-based agglomerative hierarchical cluster-
ing algorithm described in Section 2, is invoked to build a
clustering dendrogram for these instances. After the G-HAC
algorithm terminates, the summarization process presented
in Section 3 is invoked to identify the spherical subclusters
and flatten the dendrogram. The parameters can be set by
the users under the consideration thats is the input size of
a HAC algorithm. In fact, the initial phase could be omit-
ted entirely if an abstract dendrogram is available from the
previous run.

Initial phase

Invoke G-HAC
algorithm

Execute
summarization

process

Collect some
instances from

the dataset

Incremental phase

Take one instance
from the

remaining dataset

Execute insert
operation

Execute split
operation

Execute reconstruct
operation

Add the current
instance into

temporary buffer

Fig. 6. The flowchart of the GRIN algorithm.

Fig. 8 demonstrates an example that illustrates the op-
erations carried out by the initial phase.Fig. 8(a) shows a
dataset andFig. 8(b) shows the first 100 data instances in
the dataset.Fig. 8(c) depicts the dendrogram built based on
these first 100 data instances by G-HAC. InFig. 8(c), the
clusters that pass the criterion of spherical cluster are marked
by “*”. Fig. 8(d) shows the dendrogram derived from flat-
tening the dendrogram depicted inFig. 8(c).

Each leaf spherical cluster in the abstract dendrogram is
represented by three features: the centroid, the radius, and
the mass of the cluster. The radius of a cluster is defined
as the maximum distance between the centroid and the data
instances in this cluster. The mass of a cluster is defined to be
the number of data instances that it contains. In other words,
it is assumed that the mass of each single data instance is
equal to unity. In addition, to facilitate the procedure of
conducting the proposed statistical test on a leaf spherical
subcluster in the incremental phase of GRIN algorithm, we
accumulate the number of instances in each subspace defined
by the child spherical clusters.

4.2. Incremental phase

In the second phase of the GRIN algorithm, the not-yet
clustered instances in the incoming data pool are exam-
ined one by one. Let the new coming data instance move
in the space based on the gravity theory, provided that all
the leaf spherical clusters are fixed. Like the G-HAC al-
gorithm, GRIN iteratively simulates the movement of the
new instance during a time interval and stops when the new
data instance falls in the sphere enclosed by its nearest leaf
spherical cluster in the current iteration.

4.2.1. Insert operation
If the distance between the new data instance and its

nearest leaf spherical cluster in the final iteration is smaller
than the radius of the leaf spherical cluster, the new data
instance is inserted into that leaf spherical cluster. On the
other hand, if the distance between the new data instance
and the leaf spherical cluster that absorbs it is larger than
the radius of the leaf spherical cluster, the statistical test is
conducted first to determine whether this leaf cluster is still
qualified to be a spherical cluster given the data instance
were added into the cluster. If yes, then the data instance
can be added into that leaf cluster. If no, the data instance is
treated as an outlier to the abstract dendrogram and will be
put into thetemporary buffer. The data instance, however,
may form a cluster with other data instances that are already
in the temporary buffer or that come in later.

4.2.2. Split operation
The GRIN algorithm checks whether a leaf spherical clus-

ter should be split whenever a new instance has been added
into it. For large datasets, this procedure could be hold until
the number of new data instances added into the leaf spher-
ical cluster exceeds one half of the number of original data

2262 C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269

Procedure GRIN
Input: I : an input buffer

T : an abstract dendrogram
{

/* Phase I: Initial phase */
If (T is null) {

Let S = {p | some data instances in I};
I = I – S;
T = G-HAC(S);
Apply the summarization process to T;

}
/* Phase II: Incremental phase */
While (I is not empty) {

Take a new instance p from I;
Repeat {

Let p move in the space based on the gravity theory, provided that all the spherical clusters
are fixed.

} until (a leaf spherical cluster c absorbs p)
Let Dis be the distance between p and the centroid of c.
If (Dis is smaller than the radius of c) {

/* insert operation */
Add instance p as a member of the leaf spherical cluster c.
If (c is not satisfied as a spherical cluster any more) {

/* split operation */
S = {n | all the instances in leaf spherical cluster c}
T ´ = G-HAC(S);
Apply the summarization process to T ;
Replace the leaf cluster c in T with the sub abstract dendrogram T ;

}
}
Else if (c is still satisfied as a spherical cluster after absorbing p) {

Add instance p as a member of the leaf spherical cluster c;
}
Else {

Add p into the temporary buffer TempBuffer;
}
Remove p from I;
If (TempBuffer is full) {

/* reconstruct operation */
S = {n | all the leaf spherical clusters in the dendrogram T}; Each node n is summarized by
its centroid, radius, and the number of data instances it contains.
T = G-HAC(S ∪ TempBuffer).
Apply the summarization process to T;

}
}
Return T;

}

´
´

Fig. 7. The pseudo-code of the GRIN algorithm.

instances. To do that, the statistical test will be conducted
to verify whether the cluster is still satisfied as a spheri-
cal cluster. If not, asplit operation will be executed on this
cluster. The split operation is performed by executing the
G-HAC algorithm to cluster all the data instances inside the
cluster, executing the summarization process to construct a
sub abstract dendrogram, and finally replacing the current
cluster in the abstract dendrogram with the new sub abstract
dendrogram.

4.2.3. Reconstruct operation
Once the number of data instances in the temporary buffer

exceeds a threshold, the G-HAC algorithm described in Sec-

tion 2 is invoked to construct a new abstract dendrogram.
In this reconstruction process, the primitive objects are the
leaf spherical clusters in the current abstract dendrogram
and the data instances in the temporary buffer, where a leaf
spherical cluster is treated as an object located at the cen-
troid of it and with the mass equal to the number of data
instances it contains. After new dendrogram is generated,
the same summarization process invoked in the initial phase
is conducted to generate a new abstract dendrogram.

4.2.4. Time and space complexities
The time complexity of the first-phase is a constant, as

long as the number of data instances taken in the first phase

C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269 2263

Fig. 8. An example employed to demonstrate the operations of the GRIN algorithm. (a) The dataset containing 1500 data instances. (b) The
first 100 instances of the dataset in (a). (c) The dendrogram built based on the 100 instances in (b). (d) The flattened dendrogram derived
from (c).

is not a function of the size of the dataset. As to the second
phase, the time taken to process each incoming data instance
is O(m), wherem is the number of leaf clusters kept by the
algorithm. The time taken to issue aninsertion operation
is constant. Given that the maximum data instances in a
leaf cluster isq, the time taken to issue asplit operation
is O(q2) because the time complexity of G-HAC isO(n2)

[20]. Similarly the time taken to reconstruct the dendrogram
in the incremental phase isO(m2), provided that the size
of the temporary buffer is fixed. Thus, the time complexity
of the GRIN algorithm isO(nm + a + bq2 + cm2), where
n is the number of instances in the dataset, anda, b, and
c are the number of times thatinsert, split, andreconstruct
operations occur, respectively. One important observation
in the experiments regarding the operations performed the
incremental phase is that,b>n, c>n, and a is bounded
by n. Given this observation, the time complexity of GRIN
algorithm isO(nm). Even though the value ofm is related
to the number of data instancesn, our experimental results
show that the ratio ofm to n is getting smaller whenn
increases. On the other hand, the space complexity of the
GRIN algorithm isO(m) because the size of the abstract
dendrogram is bound by the number of leaf subclusters.

5. Experiments

This section reports the experiments conducted to study
the following three issues concerning the GRIN algorithm:

(1) How the GRIN algorithm compares with the BIRCH
algorithm in terms of clustering quality.

(2) Whether the clustering quality of GRIN algorithm is
influenced by the order of input data?

(3) How the GRIN algorithm performs in terms of execution
time in real applications?

Table 1shows how the parameters in the GRIN and G-HAC
algorithms are set in the experiments. The values of param-
eters in G-HAC algorithm are selected according to the sug-
gestions in[20,21]. The parameterMin is set to 3 because we
observed that the proposed statistical test performs well on
clusters containing more than 3 data instances. Similarly the
significance of the�2 test,�, is set to 0.01 after a large num-
ber of experiments have been performed on several skewed
datasets for different values of� from 0.1 to 0.001. The pa-
rametersas well as the size of temporary buffer could be set
by the users. As mentioned before, these parameters should

2264 C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269

Table 1
Parameter settings of the GRIN and G-HAC algorithms in the
experiments

G-HAC

k: Order of the distance term in 10
gravity force formula
Cr : Coefficient of air resistance 10000

GRIN
s: number of instances used in the first phase 500
size of temporary buffer 500
Min 3
�: significance of the�2 test 0.01

be set under the consideration that they directly or indirectly
determine the input size of the G-HAC algorithm.

Fig. 9(a) shows a dataset used in the experiments. InFig.
9(a), natural clusters are annotated according to human’s in-
tuition. Fig. 9(b) depicts the clusters identified by the GRIN
algorithm and the dendrogram constructed. In this experi-
ment, data is fed to the GRIN algorithm one natural cluster
by another natural cluster in the following order 1→ 2 →
3 → · · · . For providing better visualization quality, only
the clusters at the top few levels of the dendrogram are plot-
ted. The result inFig. 9(b) shows that the GRIN algorithm
is able to identify natural clusters flawlessly. Several runs
of the GRIN algorithm were executed with the data fed to
the algorithm in different orders. In one particular run, the
data was fed to the algorithm also one natural cluster by
another natural cluster but in the reverse order. In the re-
maining runs, data was fed to the algorithm randomly. The
outputs of all these separate runs of the GRIN algorithm
are basically identical to what is depicted inFig. 9(b). The
experiment results show that the clustering quality of the
GRIN algorithm is irrelevant to the order of input data.

Fig. 9(c) and (d) depict the data clusters identified by the
BIRCH algorithm with different hierarchical clustering al-
gorithms incorporated. The BIRCH algorithm is employed
for comparison, because it is a well-known incremental hi-
erarchical clustering algorithm that featuresO(n) time com-
plexity. In Fig. 9(c), we enlarge the portion of the dataset
in which the BIRCH algorithm with the complete-link al-
gorithm incorporated fails to deliver reasonable clustering
quality, and data instances belonging to different clusters
are marked by different symbols. In this case, the BIRCH
algorithm mixes the data instances from natural clusters 2,
3, and 4. BIRCH’s imperfection is due to two factors. First,
BIRCH uses a distance threshold to determine the leaf sub-
clusters. Therefore, as exemplified inFig. 2, it could occur
that no optimal value for this parameter can be found when
the local distributions of the dataset are skewed. Second, the
complete-link algorithm itself suffers bias towards spheri-

cal clusters[20]. Fig. 9(d) reveals that the clustering quality
of BIRCH is improved when the G-HAC algorithm is in-
corporated instead of the complete-link algorithm. The G-
HAC algorithm contributes to the improvement of cluster-
ing quality, because the complete-link algorithm suffers bias
towards spherical clusters in a much higher degree than the
G-HAC algorithm[20]. Nevertheless, there are still a few
flaws in Fig. 9(d) due to the poor parameter chosen within
the BIRCH algorithm.

Fig. 10(a) depicts the clusters identified by the GRIN al-
gorithm and the dendrogram constructed for another dataset.
Fig. 10(b) shows the clusters outputted by the BIRCH al-
gorithm with the G-HAC algorithm incorporated. Several
flaws are observed as marked by the squares.Fig. 11(a) and
(b) show the leaf subclusters identified by the GRIN algo-
rithm and the BIRCH algorithm, respectively. InFig. 11(b),
more leaf subclusters are used to summarize the same dataset
when compared withFig. 11(a), and some flaws happened
in the boundary of natural clusters. Again, in order to test
the sensitivity of the GRIN algorithm to the input ordering,
several runs of the GRIN algorithm were executed with var-
ious arriving orders.

In the third experiment, we first use a subset of the Se-
quoia 2000 benchmark[24] to test how the GRIN algorithm
performs while dealing with a real application. The subset
contains the locations of all the high schools in California.
Fig. 12(a) plots the 989 location instances in the subset.Fig.
12(b) depicts the outlook of the remaining 946 schools after
outliers are removed manually.Fig. 12(c) shows the clusters
outputted by the GRIN algorithm, where different clusters
are plotted using different symbols. We also use the dataset
shown inFig. 12(b) to test the how the BIRCH algorithm
performs when operating with the complete-link algorithm
and the G-HAC algorithm, respectively. Here, we would
like to emphasize the right bottom section of the results. As
shown in bothFig. 12(d) and (e), the largest natural cluster
(marked by X) inFig. 12(c) is divided into two parts and
the left part is clustered with the location instances further
to the left.

Two other real datasets from UCI Machine Learning
Repository[25] are further used to test the capability of
GRIN in summarizing data incrementally. The first one is
the famous Iris Plant data, a small dataset that contains 150
instances with four attributes. And the second dataset is a
larger one, the Image Segmentation data from the Statlog
Project. The Image Segmentation data contains 2310 in-
stances and originally has 19 attributes. Here we organized
it into a reduced dataset with only four attributes because
the proposed statistical test is not able to handle that high
dimensionality of the feature set. The selected features show
their strong correlation with the categorization of data in-
stances and are supposed to be non-redundant to each other.
The UCI datasets are considered for comparison because
they provide categorization for each data instance that can
be used to judge the clustering results objectively. Several
clustering algorithms are employed in the experiment to

C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269 2265

Fig. 9. The first experiment conducted to evaluate clustering quality. (a) A dataset containing 3000 data instances. (b) The clusters identified
by the GRIN algorithm and the dendrogram constructed. (c) Flaws in the output of the BIRCH algorithm with the complete-link algorithm
incorporated. (d) Flaws in the output of the BIRCH algorithm with the G-HAC algorithm incorporated.

Fig. 10. The second experiment conducted to evaluate clustering quality. (a) The clusters identified by the GRIN algorithm and the dendrogram
constructed. (b) Clusters identified by the BIRCH algorithm with the G-HAC algorithm incorporated.

2266 C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269

Fig. 11. The spheres identified by BIRCH overlap with each other more seriously than the spheres identified by the GRIN algorithm. Some
spheres identified by BIRCH cross through the regions of low densities. (a) 180 leaf spherical subclusters identified by the GRIN algorithm.
(b) 367 leaf subclusters identified by the BIRCH algorithm.

Fig. 12. Experiment conducted to show how the GRIN algorithm performs with real datasets. (a) A subset of the Sequoia 2000 benchmark.
(b) The dataset after outliers are removed by GRIN. (c) Clusters outputted by GRIN. (d) The clustering result outputted by BIRCH when
the complete-link algorithm is incorporated. (e) The clustering result outputted by BIRCH when the G-HAC algorithm is incorporated.

C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269 2267

0

200

400

600

800

1000

1200

1400

50
00

+5
00

0

10
00

0+
50

00

15
00

0+
50

00

20
00

0+
50

00

25
00

0+
50

00

30
00

0+
50

00

35
00

0+
50

00

40
00

0+
50

00

45
00

0+
50

00

50
00

0+
50

00

55
00

0+
50

00

S
ec

on
ds

GRIN if utilizing the previously generated dendrogram

The ratio of m to n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

n

GRING-HAC

(a)

(b)

Fig. 13. Experiment conducted to test the performance of the GRIN algorithm. (a) The performance of the GRIN algorithm as the number
of instances in the dataset increases. (b) The behavior of the GRIN algorithm as the number of instances in the dataset increases.

Table 2
Comparison of the capability in identifying natural subclusters on two real datasets from UCI Machine Learning Repository[25]

Clustering algorithm SLINK CLINK ALINK K-meansa LEADERb BIRCHb GRINb

Number of flaws for the Iris dataset(150 instances, 4 attributes, 3 classes)
Number of cluster= 25 32 7 9 7.6 ± 1.51 11.2 ± 1.21 7.2 ± 1.46 4.6 ± 1.48
Number of cluster= 30 27 5 6 7.9 ± 1.52 9.0 ± 1.73 6.8 ± 1.34 4.6 ± 1.48

Number of flaws for the Image Segmentation dataset(2310 instances, 4 attributes, 7 classes)
Number of cluster= 200 479 177 187 204.4 ± 16.5 243.2 ± 10.92 202.2 ± 11.6 197.6 ± 9.86
Number of cluster= 250 448 164 156 181.6 ± 8.15 201.8 ± 10.71 192.6 ± 9.53 173.6 ± 8.96

aEach record of K-means algorithm is the average (followed by the standard deviation) of ten runs with different initial centers.
bIn the experiment of incremental clustering algorithms, the original dataset was shuffled randomly to generate five datasets with different

orders. Each record in the table is the average (followed by the standard deviation) of the five runs.

generate a set of clusters that summarize the original dataset.
An instance is marked as a flaw if its class attribute is dif-
ferent to the majority of the cluster it belongs to.Table 2
shows that GRIN algorithm delivers slightly better clus-
tering results than the BIRCH algorithm on these datasets,
where BIRCH is incorporated with the complete-link algo-
rithm. GRIN also outperforms the K-means algorithm[3]
and the LEADER algorithm[4], a distance-based incre-
mental clustering algorithm. The parameter of LEADER is

set to produce about the same number of clusters with the
other clustering algorithms. We also provide inTable 2the
clustering results of three traditional hierarchical clustering
algorithms, single-link algorithm (abbreviated as SLINK in
Table 2), complete-link algorithm (abbreviated as CLINK),
and average-link algorithm (abbreviated as ALINK). The
results inTable 2reveal that GRIN algorithm even performs
better than the non-incremental hierarchical clustering algo-
rithms on the Iris dataset due to the summarization process

2268 C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269

Table 3
The accumulated number of times thatinsert, split, andreconstruct
operation occurred versus the number of data instances in the
dataset

n # of insert # of split # of reconstruct
operation operation operation

5000 3312 64 1
10000 7529 119 1
15000 11824 158 1
20000 16246 207 1
25000 20659 246 1
30000 25085 286 1
35000 29534 323 2
40000 33941 324 2
45000 38451 336 2
50000 42959 351 2
55000 47574 379 2
60000 52234 414 2

it employs. However, as shown inTable 2, the incremental
approaches do degrade the performance a little bit on the
Segmentation dataset.

Fig. 13(a) shows how the execution time of the GRIN
algorithm increases with the number of data instances in
the dataset. The experiment was conducted on a machine
equipped with a 1 GHz Intel Pentium-III CPU and running
Microsoft Window 2000 operating system. The dataset used
is the point data in Sequoia 2000 Earth benchmark[24],
which contains 62556 data instances in total. The experiment
is conducted by executing the clustering process whenever
there have been 5000 instances added into the dataset. The
results inFig. 13(a) reveal that the GRIN algorithm gener-
ally features linear scalability.Fig. 13(b) provides the ra-
tio of the number of leaf subclusters to the number of data
instances in the dataset.Table 3 shows that thesplit and
reconstructoperation happens much less frequently when
compared with theinsert operation (Tables 2and3).

6. Conclusion

This paper presents the GRIN algorithm, an incremental
hierarchical clustering algorithm based on gravity theory in
physics. The incremental nature of the GRIN algorithm im-
plies that it is particularly suitable for handling the already
huge and still growing databases in modern environments.
In addition, its hierarchical nature is a highly desirable es-
tate for many applications in biological, social, and behavior
studies due to the need to construct taxonomies. In GRIN
algorithm, the leaf subclusters are determined according to
a statistical test. The derived spherical subclusters are the
basis in further clustering process and will be updated dy-
namically. Employing the proposed statistical test as well as
invoking thesplit and reconstructoperations based on the

testing results can alleviate the damage caused from ill input
ordering. Furthermore, the proposed summarization process
decomposes the original dataset into several spherical clus-
ters, which can provide a good representation for clusters in
arbitrary shape.

In this paper, we demonstrate that the idea of decompos-
ing a distribution into several spherical clusters with differ-
ent densities works well on low-dimensional datasets. How-
ever, further studies are required to determine whether the
same assumption and approach work for high-dimensional
datasets. Though currently, the G-HAC algorithm works well
on the datasets studied in this paper, we would like to see
whether the proposed summarization process could be in-
corporated with other HAC algorithms for different appli-
cations.

7. Summary

One of the main challenges in the design of modern clus-
tering algorithms is how to cope with new data instances
that are continuously added into an already huge database.
The importance of incremental clustering algorithms arises
as a result, since it is impractical to carry out data clustering
from scratch whenever there are new data instances added
into the database. An incremental clustering algorithm refers
to an abstraction of the distribution of the data instances
generated by the previous run of the algorithm and therefore
is able to deliver reasonable efficiency. This paper presents
the GRIN algorithm, an incremental hierarchical clustering
algorithm for numerical datasets based on the gravity theory
in physics. Due to its hierarchical nature, GRIN outputs a
clustering dendrogram, which is a highly desirable feature
for some applications due to the need to create taxonomies.
The main distinction in the design of the GRIN algorithm
is how abstraction (or summarization) of the distribution of
the dataset is carried out. Abstraction (or summarization) is
an essential operation for incremental clustering algorithms.
The main challenge in this regard is that information loss
and distortion may result. In the design of GRIN, a statis-
tical test aimed at reducing information loss and distortion
is employed to control formation of subclusters as well as
to monitor the evolution of the dataset. Due to the statis-
tical test-based summarization approach, GRIN is able to
achieve near linear scalability and is not sensitive to input
ordering.

References

[1] R.J. Brachman, T. Anand, in: U.M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, R. Uthurusamy (Eds.), The Process of
Knowledge Discovery in Databases, Advances in Knowledge
Discovery and Data Mining, AAAI/MIT Press, Cambridge,
MA, 1996, pp. 37–57.

[2] B. Everitt, Cluster Analysis, Halsted Press, New York, 1980.

C.-Y. Chen et al. / Pattern Recognition 38 (2005) 2256–2269 2269

[3] A.K. Jain, R.C. Dubes, Algorithms for clustering data,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[4] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review,
ACM Comput. Surv. 31 (3) (1999) 264–323.

[5] M.N. Murty, G. Krishina, A computationally efficient
technique for data clustering, Pattern Recognition 12 (1980)
153–158.

[6] J. Han, M. Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann Publishers, San Francisco, 2000.

[7] J. Han, M. Kamber, A.K.H. Tung, Spatial clustering methods
in data mining: a survey, in: H. Miller, J. Han (Eds.),
Geographic Data Mining and Knowledge Discovery, Taylor
and Francis, London, 2001.

[8] I.H. Witten, Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations, Morgan
Kaufmann, San Francisco, CA, 2000.

[9] J.A. Hartigan, Clustering Algorithms, Wiley, New York, 1975.
[10] D. Fisher, Improving inference through conceptual clustering,

Proceedings of the sixth National Conference on Artificial
Intelligence (AAAI-87), 1987, pp. 461–465.

[11] J. Gennari, P. Langley, D. Fisher, Models of incremental
concept formation, Artif. Intell. 40 (1989) 11–61.

[12] M. Charikar, C. Chekuri, T. Feder, R. Motwani, Incremental
clustering and dynamic information retrieval, Proceedings of
the 29th Annual ACM Symposium on Theory of Computing
(STOC-97), 1997, pp. 626–634.

[13] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu,
Incremental clustering for mining in a data warehousing
environment, Proceedings of the 24th International Conference
on Very Large Data Bases (VLDB-98), 1998, pp. 323–333.

[14] V. Ganti, J. Gehrke, R. Ramakrishnan, DEMON: mining and
monitoring evolving data, IEEE Trans. Knowledge Data Eng.
13 (1) (2001) 50–63.

[15] A. Ribert, A. Ennaji, Y. Lecourtier, An incremental
hierarchical clustering, Proceedings of the 1999 Vision
Interface Conference, 1999, pp. 586–591.

[16] T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an
efficient data clustering method for very large databases,
Proceedings of 1996 ACM-SIGMOD International Conference
on Management of Data (SOGMOD-96), 1996, pp. 103–114.

[17] L. Talavera, J. Bejar, Using multistrategy learning to scale up
hierarchical clustering algorithms, Proceedings of the Second
International Workshop on Extraction of Knowledge from
Data Bases (EKDB-99), 1999.

[18] W.E. Wright, Gravitational clustering, Pattern Recognition 9
(1977) 151–166.

[19] S. Kundu, Gravitational clustering—a new approach based on
the spatial distribution of the points, Pattern Recognition 32
(1999) 1149–1160.

[20] Y.-J. Oyang, C.-Y. Chen, T.-W. Yang, A study on the
hierarchical data clustering algorithm based on gravity theory,
Proceedings of the Fifth European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD-
01), 2001, pp. 350–361.

[21] Y.-J. Oyang, C.-Y. Chen, S.-C. Hwang,
C.-F. Lin, Characteristics of a Hierarchical Data Clustering
Algorithm Based on Gravity Theory, Technical Report of
NTUCSIE 02-01, 2001 (available athttp://mars.csie.ntu.edu.
tw/∼cychen/publications_on_dm.htm).

[22] T.V. Ravi, C.K. Gowda, Clustering of symbolic objects using
gravitational approach, IEEE Trans. Syst. Man Cybern.—Part
B: Cybernetics 29 (6) (1999) 888–894.

[23] R.V. Hogg, E.A. Tanis, Probability and Statistical Inference,
Prentice-Hall, Englewood Cliffs, NJ, 2001.

[24] M. Stonebraker, J. Frew, K. Gardels, J. Meredith, The Sequoia
2000 storage benchmark, Proceedings of the 1993 ACM-
SIGMOD International Conference on Management of Data
(SIGMOD-93), 1993, pp. 2–11.

[25] C.L. Blake, C.J. Merz, UCI repository of machine
learning databases, Technical report, University of California,
Department of Information and Computer Science, Irvine, CA,
1998.

About the Author —CHIEN-YU CHEN received the B.S. degree in Electrical Engineering from National Taiwan University in 1996, the
M.S. degree in Electrical Engineering from the Stanford University in 1998, and the Ph.D. degree in Computer Science and Information
Engineering from National Taiwan University in 2003. She is currently an Assistant Professor in the Graduate School of Biotechnology and
Bioinformatics, Yuan Ze University. Her research interests include bioinformatics, data mining and machine learning.

About the Author —SHIEN-CHING HWANG received the B.S. degree in Mathematics from Fu Jen Catholic University, Taiwan, in 1993,
and the M.S. and Ph.D. degrees in computer science and information engineering from National Taiwan University, Taiwan, in 1995 and
2000, respectively. He is currently an Assistant Professor in the Department of Information Science and Applications, Taichung Healthcare
and Management University, Taiwan. His research interests include machine learning, data mining and bioinformatics.

About the Author —YEN-JEN OYANG received the B.S. degree in Information Engineering from National Taiwan University in 1982, the
M.S. degree in Computer Science from the California Institute of Technology in 1984, and the Ph.D. degree in Electrical Engineering from
Stanford University in 1988. He is currently a Professor in the Department of Computer Science and Information Engineering, National
Taiwan University. His research interests include data mining/machine learning and bioinformatics.

http://mars.csie.ntu.edu.tw/~cychen/publicationsprotect LY1	extunderscore onprotect LY1	extunderscore dm.htm

	A statistics-based approach to control the quality of subclusters in incremental gravitational clustering
	Introduction
	The gravitational hierarchical clustering algorithm
	The statistics-based summarization process
	The GRIN algorithm
	Initial phase
	Incremental phase
	Insert operation
	Split operation
	Reconstruct operation
	Time and space complexities

	Experiments
	Conclusion
	Summary
	References

