
Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005

A Novel Radial Basis Function Network Classifier
with Centers Set by Hierarchical Clustering

Yu-Yen Ou and Yen-Jen Oyang
Department of Computer Science and Information Engineerin

National Taiwan University
Taipei, Taiwan

E-mail: {yien,yjoyang}(csie.ntu.edu.tw

Abstract-This paper proposes a novel method to construct a
radial basis function network (RBFN) classifier. Our contribution
consists of two parts. The first one is an incremental hierarchical
clustering algorithm for constructing the hidden layer, and the
second one is to improve the least mean square error method that
calculates the weights between the hidden and the output layers
of an RBFN. This paper discusses the effects of incorporating an
incremental hierarchical clustering algorithm for constructing
an RBFN optimized for data classification applications. The
formation of clusters is controlled by the class labels of training
samples and therefore the clusters identified are well adapted
to the local distributions of training instances. In addition,
the incremental framework largely reduces the requirement of
memory space when the training data set is large. In regard to
the calculation of weights, we employ the regularization theory
to solve the singular matrix problem that might happen in
determining the optimal weights. Experimental results show that
the data classifier constructed is capable of delivering comparable
classification accuracy as the support vector machine (SVM)
and the kernel density estimation based classifier that we have
recently proposed, while enjoying significant execution efficiency
in handling data sets that contains a high percentage of redundant
training instances.

I. INTRODUCTION

The radial basis function network (RBFN) is a special type
of neural networks with several distinctive features [1], [2], [3],
[4], [5], [6]. Since its first proposal, the RBFN has attracted
a high degree of interest in research communities. An RBFN
consists of three layers, namely the input layer, the hidden
layer, and the output layer. The input layer broadcasts the
coordinates of the input vector to each of the nodes in the
hidden layer. Each node in the hidden layer then produces
an activation based on the associated radial basis function.
Finally, each node in the output layer computes a linear com-
bination of the activations of the hidden nodes. How an RBFN
reacts to a given input stimulus is completely determined by
the activation functions associated with the hidden nodes and
the weights associated with the links between the hidden layer
and the output layer. The general mathematical form of the
output nodes in an RBFN is as follows:

k

cJ(x) = Ewji.(llx - i (I1)
i=1

Chien-Yu Chen
Ig Graduate School of Biotechnology and Bioinformatics

Department of Computer Science and Engineering
Yuan Ze University, Chung-Li, Taiwan
E-mail: cychen@mars.csie.ntu.edu.tw

where cj(x) is the function corresponding to the j-th output
unit (class-j) and is a linear combination of k radial basis
functions ¢() with center pi and bandwidth vi. Also, wj is the
weight vector of class-j and wji is the weight corresponding
to the j-th class and i-th center. The general architecture of
RBFN is shown in Fig 1.

In this paper, we select the spherical (or symmetrical)
Gaussian function as our basis function of RBFN, so the Eq. 1
becomes:

k (lix-i
cj (x)= 1wjiexp - 2oc?

i1l I
(2)

From Eq.2, we can see that constructing an RBFN involves
determining the number of centers, k, the center locations, ,ui,
the bandwidth of each center, vi, and the weights, wji. That is,
training an RBFN involves determining the values of three sets
of parameters: the centers (pi), the bandwidths (ai), and the
weights (wji), in order to minimize a suitable cost function.

Basically, there are two categories of learning algorithms
proposed for RBFNs [5], [7]. The first category of learning
algorithms simply places one radial basis function at each
sample [8], [9]. On the other hand, the second category of
learning algorithms attempt to reduce the number of hidden
nodes in the network, or equivalently the number of radial
basis functions in the linear function above [10], [11], [12],
[13], [14]. One primary motivation behind the design of the
second category of algorithms is to reduce the complexity of
the network constructed. The typical procedure incorporated
in the second category of learning algorithms conducts a
clustering analysis on the training instances and then allocates
one hidden node for each cluster of instances. In this regard,
the effects of a wide variety of clustering algorithms have
been investigated [4], [15]. Nevertheless, both the conventional
agglomerative hierarchical clustering algorithm and the con-
ventional partitional algorithm suffer some kinds of deficien-
cies. The main problem with the conventional agglomerative
hierarchical clustering algorithm is its space complexity of
0(n2), where n is the number of training instances, due to the
need to store pairwise distances or similarity scores between
the training instances. The main problem with the conventional
partitional clustering algorithm is that the user needs to figure

0-7803-9048-2/051$20.00 ©2005 IEEE 1 383

Input Layer Hidden Layer Output Layer

Fig. 1. General Architecture of Radial Basis Function Networks

out how many clusters are appropriate for the given training
data set.

In 1997, Hwang et al. [12] proposed an incremental clus-
tering based approach for determining the locations of hid-
den nodes in the RBFN to be constructed. The incremental
approach enjoys several advantages. First, it does not need to
compute all the pairwise distances or similarity scores between
training instances. The key issue in this regard is that the space
complexity for storing the pairwise distances or similarity
scores is greatly reduced, in addition to lower time complexity.
Second, it figures out the number of clusters automatically
based on a user-specified parameter. Third, it executes more
efficiently than the conventional agglomerative hierarchical
clustering algorithm and the conventional partitional clustering
algorithm. Nevertheless, the incremental clustering algorithm
proposed by Hwang employs a fixed threshold of radius to
control the formation of clusters. As a result, the clusters
identified may not be well adapted to the local distributions
of training instances. For example, in a region with a low
local density of training instances, the threshold of radius for
controlling the formation of clusters should be set to a large
value. On the other hand, in a region with a high local density
of training instances, the threshold of radius should be set to
a small value.

This paper proposes a novel method to construct an RBFN
classifier by using an incremental hierarchical clustering algo-
rithm for constructing an RBFN optimized for data classifica-
tion applications. Our contribution consists of two parts. The
first one is an incremental hierarchical clustering algorithm
that constructs the hidden layer effectively and efficiently.
Since the clustering algorithm is hierarchical, the formation
of clusters is controlled by the class labels of training samples
instead of a fixed threshold and therefore the clusters identified
are well adapted to the local distributions of training instances.
In addition, because the clustering algorithm is incremental,
it does not need to compute all the pairwise distances or
similarity scores between training instances. The second part is

an improved least mean square error method that calculates the
weights between the hidden and the output layers of an RBFN.
In [12], authors proposed an improved method which uses a
smaller matrix to compute the weights. The method proposed
by [12] is more efficient and practical than the traditional one,
but it may suffer the singular matrix problem and fails to
build the classifier in such case. We solve the singular matrix
problem by using the regularization theory in this paper, and
then propose a method that can obtain the optimal weights
analytically and efficiently.

Experimental results show that the data classifier con-
structed is capable of delivering comparable classification
accuracy as the SVM [16] and the novel kernel density
estimation (KDE) based classifier that we have recently pro-
posed [8], while enjoying significant execution efficiency in
handling data sets that contains a high percentage of redundant
training instances. For example, in the experiment with the
shuttle data set in the UCI repository [17], the mechanism
proposed in this paper enjoys 1231 times and 259 times
speedup over the SVM and the KDE based classifier that we
have recently proposed, respectively, for constructing a data
classifier. In addition, the mechanism proposed in this paper
delivers comparable execution efficiency as the SVM in the
prediction phase and enjoys 481 times speedup over the KDE
based classifier in this regard. Experimental results also reveal
that the approaches that have been proposed in recent years
for solving the efficiency issues of the SVM and the KDE
based classifier all lead to slight degradation of classification
accuracy.

This paper is organized as follows. In next section, we
introduce an incremental clustering method. In Section III and
IV, we detail how to calculate the bandwidths and weights of
the radial basis functions which are employed in constructing
the RBFN. Next, numerical experiments are shown in Section
V. Finally, we have some discussions and conclusions in
Section VI.

II. DETERMINING THE CENTERS

In the proposed hierarchical approach, a hierarchical ag-
glomerative clustering (HAC) algorithm [18], [19] is invoked
to cluster all the instances in training data set. After hier-
archical clustering terminates, the class labels are applied
to the dendrogram to derive target clusters. Each node in
the clustering dendrogram corresponds to a cluster of data
instances. A node in the dendrogram is identified as a target
cluster if it contains only data instances from a single class
and its parent does not satisfy the criterion. The centroids
of the target clusters are used as the centers in constructing
the hidden layer of RBFN. In this paper, the complete-
link algorithm [19] is employed. The reason of employing
the complete-link algorithm is its tendency to find spherical
clusters. Since the hierarchical clustering algorithms suffer
higher time complexity, an incremental clustering framework
for expediting the hierarchical clustering process is introduced
as follows.

1384

A. Incrementalframework
We adopt the incremental framework proposed in our pre-

vious work [20]. This section describes how the incremental
algorithm works. The incremental algorithm operates in two
phases, initial phase and incremental phase. In both phases, it
invokes the complete-link algorithm to construct a clustering
dendrogram.

1) Initial phase: In the incremental algorithm, it is assumed
that all the incoming data instances are first buffered in an
incoming data pool. In the first phase of the algorithm, a
number of data instances are taken from the incoming data
pool and the complete-link algorithm is invoked to cluster
these instances build a tentative dendrogram. We can assume
that these data instances are selected sequentially according to
the order of input sequence. As demonstrated in our previous
work [20], the proposed incremental framework employs two
operations, split and merge, to reduce the influence from input
ordering. When the complete-link algorithm terminates, target
clusters are derived by the method described above, i.e. the
class labels are used to identify the cluster boundaries in the
clustering hierarchy.

There are four pieces of information recorded for each target
cluster: (1) the centroid, (2) the radius, (3) the class label and
(4) the number of instances in the cluster. The radius of a
cluster is defined to be the maximum distance between the
centroid and the data instances in this cluster.

2) Incremental phase: In the second phase of the incremen-
tal algorithm, the data instances remained in the incoming data
pool are examined one by one. For each new data instance,
the algorithm will find its nearest neighbor in the set of target
clusters. If the distance between the new data instance and its
nearest target cluster is smaller than the radius of the target
cluster, the new data instance is inserted into the target cluster.
If not, the data instance is currently an outlier to the set of
target clusters and is therefore put into the tentative outlier
buffer temporarily. The data instance, however, may form a
target cluster with other data instances that are already in the
tentative outlier buffer or that come in later.

If a data instance is successfully inserted into an existing
target cluster, we should check if the new data instance
possesses the same class label with the other data instances
in the target cluster. If not, an additional operation called
split should be invoked to identify new target clusters in this
local area. In the split operation, we apply the complete-link
algorithm only to the data instances in this target cluster, and
identify new target clusters with pure property as we did in
the first phase. After the split operation finishes, the number
of target clusters will increase at least by one.
Once the number of data instances in the tentative outlier

buffer exceeds a threshold, the complete-link algorithm is
invoked again to construct a new tentative dendrogram. In
this reconstruction process, the primitive objects are the target
clusters and the data instances in the tentative outlier buffer.
In this case, each target cluster is represented by its centroid
and regarded as a single data instance. When a new tentative
dendrogram has been generated, the same procedure and

criterion invoked in the first phase are invoked again to find the
target clusters from the new tentative dendrogram. During the
reconstruction process, two original target clusters will have
chance to form a new bigger target cluster. This is regarded
as the so-called merge operation.
The incremental phase repeats until there is no data in-

stances left in the incoming data pool. After the clustering
process terminates, the centroids of all the target clusters
are collected as the centers of RBFN when constructing the
classifier in the following sections.

III. CALCULATION OF THE BANDWIDTHS
For the hidden layer of the RBFN classifier, we use the

proposed hierarchical approach to determine the number of
the nodes and their center locations. Another parameter to be
decided for each node in the hidden layer is the bandwidth of
its kernel function, oi. Here, we employ the method presented
by Moody and Darken [21] to determine the bandwidth of
each kernel function. The bandwidth of a kernel function is
set as /denemy, where denemy is the distance to the center
of the nearest cluster which belong to a different class and
,3 is a constant. In this paper, we follow the heuristic setting
suggested by [12], i.e. ,3 = 5.

IV. CALCULATION OF THE WEIGHTS

After the centers and bandwidths of the kernel functions
in hidden layer have been determined, the transformation
between the inputs and the corresponding outputs ofthe hidden
units is now fixed. The network can thus be viewed as an
equivalent single-layer network with linear output units. Then,
we use the least mean square error method to determine the
weights associated with the links between the hidden layer and
the output layer.

In this section, we will show how the least mean square error
method have been used in data classification field, and then
propose a method which has a better theoretical foundation
and practical use.
Assume h is the output of the hidden layer.

(3)

where k is the number of centers, Xl(x) is the output value
of first kernel function with input x. Then, the discriminant
function cj(x) of class-j can be expressed by the following:

ca(x)=wTh, j=1,2,...,m (4)
where m is the number of class, and wj is the weight vector
of class-j. We can show wj as:

Wj = [Wjl Wj2 * * * Wjk]. (5)
After calculating the discriminant function value of each

class, we choose the class with the biggest discriminant
function value as the classification result. We will discuss how
to get the weight vectors by using least mean square error
method in the following subsections.

1385

h= [01 (X) 02 (X) ... Ok (X) 7

A. Traditional Least Mean Square Error Method
The traditional least mean square error method was pro-

posed by Broomhead and Lowe [22]. This method is originally
proposed for function approximation, and is the most popular
supervised learning method of constructing the weights of
RBFN [2], [3], [5], [23]. In this method, the objective function
of class-j can be shown as:

n

minE [cj (Xi) -Vj (Xi) 2

i=l

where
if x E class-j,
otherwise.

This system is overconstrained, being composed of n equa-
tions with k unknown weights, then the optimal solution of
w; can be written as

3 Yi, (8)

where yj = [vj(xl) vj(x2) ... vj(x-)]T, 4Dli =
qi(xi) and 4.+ is the pseudoinverse of 4.. The matrix 4. is
rectangular (n x k) and its pseudoinverse can be computed as

(+ - (4DT4D)-114T

provided that (4DT4D)1- exists. The matrix (4.T4.) is square
and its dimensionality is k, so that it can be inverted in time
proportional to k3.

Although in theory the quantity of (.T4.)-1 exists, the cost
of computing 4.+ is very high. First, we need to store 4. of size
(n x k) in the memory. The value of n in some classification
problems is very large, such that it may be impractical to have
such large amounts of memory space for storage. Also, the
process of calculating (.T4.)-1 for large 4. is computationally
expensive. In addition, this method needs a lot of computations
for matrix multiplication and inversion. Therefore, this method
may not be suitable for the use of classification problem.

B. Improved Least Mean Square Error Method
The improved least mean square error method for data

classification was proposed by Devijver et. al.[24] and has
been employed by Hwang et. al. in [12]. This method aims
to calculate wj for m classes at the same time. We detail the
procedures as follows.

For a classification problem with m classes, let Vi designate
the i-th column vector of an m x m identity matrix and W
be an k x m matrix of weights:

W'=[W I W2 ... Wi].

Then the objective function to be minimized is
m

j(W) =EpE {Vil },
j=l

(10)

where Pj and Ej{} are the a priori probability and the
expected value of class-j, respectively.

(6)

To find the optimal W that minimizes J, we set the gradient
of J(W) to be zero:

m m

VwJ(W) = 2 E PjEj {hhT} W-2E PjEj {h} VjT = [0],
j=1 j=1

(1 1)
where [0] is a k x m null matrix.

Let Ki denote the class-conditional matrix of the second-
order moments of h, i.e.

Ki = Ei {hhT} . (12)

If K denotes the matrix of the second-order moments under
(7) the mixture distribution, we have

m

K =E PjKj.
j=l

(13)

Then Eq. 11 becomes

KW = M,

where

(14)

m

M=EP3Ej{h}VfT.
j=l

(15)

If K is nonsingular, the optimal W can be calculated by
W* =K-1M. (16)

When compared to the traditional method, the size of K,
k x k, is much smaller than the 4. matrix of size (n x k)
described in the previous subsection. Therefore, the improved
method requires less memory space for storing the matrix,
as well as consumes much less computation time for matrix
multiplication. It is apparent that the improved method is more
efficient than the traditional one.

However, there is a critical drawback of the improved
method. That is, K may be singular and this will crash the
whole procedure. By observing the matrix hhT, we are aware
of that the matrix hhT is symmetric positive semi-definite
(PSD) matrix with rank = 1. Since K is the summation of
hhT for each training instance, K is also a PSD matrix with
rank < n. When k -÷ n, it is highly possible to have K be
singular. From our experiences, if all the training instances are
chosen as centers, this method is not going to work eventually.
Thus, we solved this problem in the following subsection.

C. Proposed Least Mean Square Method
A very simple solution to solve the singular problem has

been shown in the context of regularization theory [25]. It
consists in replacing the the objective function as follows:

m m

J(W)=EP,PjE;i{|IWTh-jII}+ E+ A wfw (17)
j=1 j=1

where A is the regularization parameter. Then the Eq. 14
becomes

(K + AI)W = M. (18)

1386

1
vj (xi)= 0

TABLE I
THE BENCHMARK DATA SETS USED IN THE EXPERIMENTS

satimage
letter
shuttle
iris
wine
vowel
segment
glass
vehicle

of training samples # of testing samples
4435
15000
43500

150
178
528

2310
214
846

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY WITH THE THREE LARGER

DATA SETS

2000
5000
14500
N/A
N/A
N/A
N/A
N/A
N/A

KDE SVM INN 3NN APC-1II Proposed
satimage 92.30 91.30 88.80 90.65 90.25 92.00
letter 97.12 97.98 95.68 95.16 91.16 97.48
shuttle 99.94 99.92 99.94 99.91 97.34 99.82
Average 96.45 96.40 94.84 95.24 92.92 96.43

TABLE III
COMPARISON OF CLASSIFICATION ACCURACY WITH THE SIX SMALLER

DATA SETS

If we set A > 0, (K + AI) will be a positive definite (PD)
matrix and therefore is nonsingular. The optimal W* can be
calculated by

W* = (K + AI)1M. (19)

Finally, we can get the optimal wj* for class-j from W*,
and then the optimal discriminant function cj(x) for class-
j is derived. By using the regularization theory, the optimal
weights can be obtained analytically and efficiently.

V. EXPERIMENTS IN THE PROBLEM OF DATA
CLASSIFICATION

The experiments in this section are conducted to evaluate
the performance of the proposed RBFN classifier against
other famous classifiers, the KDE based classifier [8], SVM
[16], and KNN. Also, the incremental hierarchical clustering
algorithm is compared with the APC-III clustering algorithm
employed in [12]. Our proposed RBFN classifier and the APC-
III based classifier share the same procedures of determining
bandwidths and weights in constructing the RBFN. The dis-
cussions of the experiments will focus on the following two
issues: classification accuracy and execution efficiency.

Table I lists main characteristics of the nine benchmark data
sets used in the experiments. All these data sets are from the
UCI repository [17]. Among the nine data sets, three of them
are considered as the larger ones, as each contains more than
5000 samples with separate training and testing subsets. The
remaining six data sets are considered as the smaller ones and
there are no separate training and testing subsets in these six
smaller data sets. Accordingly, different evaluation practices
have been employed for the smaller data sets and for the larger
data sets. For the three larger data sets, 10-fold cross validation
has been conducted on the training set to determine the optimal
parameter values to be used in the testing phase. On the other
hand, for the six smaller data sets, 10-fold cross validation has
been conducted on the entire data set and the average result
is reported.
Our incremental algorithm has two key parameters, the size

of initial data samples and the size of the tentative outlier
buffer. In our experiments, both of the size of initial data
instances and the size of tentative outlier buffer are set to 1000.
We observed that these two buffers do not affect the quality of
the classifier much but do influence the execution time. The
larger the buffer size, the longer the reconstructing process. In
the experiments, the incremental mechanism is turned on when

KDE SVM INN 3NN APC-III Proposed
iris 97.33 97.33 96.00 95.33 95.33 96.00
wine 99.44 99.44 95.52 96.07 98.89 97.78
vowel 99.62 99.05 99.62 97.35 93.37 98.48
segment 97.27 97.40 97.27 96.14 94.98 97.53
glass 75.74 71.50 72.01 92.01 69.16 72.86
vehicle j 73.53 86.64 69.73 71.39 78.25 79.19
Average 90.49 91.89 88.36 88.05 88.33 90.31

the size of training data set is larger than 20000. In regard to
the parameter settings of other classifiers for comparison, we
adopted the parameter settings suggested by the authors in
their original papers.

Table II compares the accuracy delivered by alternative
classification algorithms with the three larger benchmark data
sets. As Table 1I shows, the proposed method basically deliver
the same level of accuracy with other famous classifiers, SVM
and KDE, while the KNN and APC-III based classifier do
not produce comparable generation results. Table III lists the
experimental results with the six smaller data sets. Table III
shows that the proposed method basically deliver the same
level of accuracy for these six data sets. The experimental
results presented in Table III also show that the proposed
method, KDE based classifier and the SVM generally deliver
a higher level of accuracy than the KNN and APC-III based
classifier.

Table IV compares the execution time of the KDE based
classifier, the SVM, the APC-III based classifier and the
proposed method with the three larger data sets presented
in Table I. In Table IV, the total time taken to construct
classifiers based on the given training data sets are listed
in the rows marked by "Make classifier". The time listed in
"Make classifier" row are the time of cross validation for KDE
based classifier and the time of model selection for SVM.
On the other hand, for both the APC-III based classifier and
the proposed algorithm, the reported time include the time of
clustering process and the time of calculting bandwidths and
weights. In addition, the time taken by alternative classifiers
to predict the classes of the testing instances are listed in the
rows marked by "Prediction".
As we can see in Table IV, the mechanism proposed in

this paper is much more efficient than the SVM and the KDE
based classifier for constructing a data classifier. In addition,
the mechanism proposed in this paper delivers comparable
execution efficiency as the SVM in the prediction phase and

1387

TABLE IV
COMPARISON OF EXECUTION TIME IN SECONDS

KDE SVM APC-III
0satimage 676 64644 136 274

Make Classifier letter 2842 387096 712 5244
shuttle 98540 467955 2595 380

_ - * 1%. e^ 11 t I ^ 1.

Prediction Time
satimage
letter
shuttle

21.30
128.60
996.10

11.53
94.91
2.13

0.63
2.15
0.48

enjoys 30 times speedup over the KDE based classifier in this
regard.

VI. CONCLUSION
In this paper we present an efficient method to construct an

RBFN classifier whose performance was shown to be as good
as the existing classification methods on the data sets used
in this paper. Our contribution consists of two parts. First,
we propose an incremental hierarchical clustering algorithm
for constructing the hidden layer effectively and efficiently.
Second, an improved least mean square error method that
calculates the weights between the hidden and the output
layers of an RBFN is introduced.

In the proposed clustering approach, the formation of clus-
ters is controlled by the class lables of training samples and
therefore the clusters identified are well adapted to the local
distributions of training instances. In addition, it does not
need to compute all the pairwise distances or similarity scores
between training instances. Experimental results show that the
data classifier constructed is capable of delivering comparable
classification accuracy as the SVM and the kernel density
estimation based classifier that we have recently proposed,
while enjoying significant execution efficiency in handling
data sets that contains a high percentage of redundant training
instances.

Also, the proposed least mean square error method is
efficient and with good theoretical foundations. The traditional
least mean square method requires large memory to store the
matrix and consumes a lot of execution time for the matrix
multiplications and inversions. The improved method- proposed
by [12] is more efficient and practical than the traditional one,
but it may suffer the singular matrix problem and fails to
build the classifier in such case. In this paper, we solve the
singular matrix problem by using the regularization theory, and
this provides a good framework for constructing an RBFN in
classification problems.

Experimental results also reveal that the approaches that
have been proposed in recent years for solving the efficiency
issues of the SVM and the kernel density estimation based
mechanism all lead to slight degradation of classification
accuracy. Thus, how to improve the efficiency of learning algo-
rithms without sacrificing classification accuracy still deserves
further studies.

[2] T. Poggio and F. Girosi, "A theory of networks for approximation
and learning," Tech. Rep. A.I. Memo 1140, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory and Center for Biological
Information Processing, Whitaker College, Jul 1989.

[3] J. Ghosh and A. Nag, "An overview of radial basis function networks,"
Radial Basis Function Neural NetworkTheory and Applications, R. J.
Howlerr and L. C. Jain (Eds), 2000.

[4] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[5] M. J. L. Orr, "Introduction to radial basis function networks," tech. rep.,

Center for Cognitive Science, University of Edinburgh, UK, 1996.
[6] V. Kecman, Learning and Soft Computing: Support Vector Machines,

Neural Networks, and Fuzzy Logic Models. The MIT Press, 2001.
[7] C. M. Bishop, "Improving the generalization properties of radial basis

function neural networks," Neural Computation, vol. 3, no. 4, pp. 579-
588, 1991.

[8] Y.-J.Oyang, S.-C. Hwang, Y.-Y. Ou, C.-Y. Chen, and Z.-W. Chen, "Data
classification with radial basis function networks based on a novel kernel
density estimation algorithm," IEEE Transactions on Neural Networks,
pp. 225 - 236, 2005.

[9] D. G. Lowe, "Similarity metric learning for a variable-kemel classifier,"
Neural Computation, vol. 7, pp. 72-85, 1995.

[10] A. Lyhyaoui, M. Martinez, I. Mora, M. Vazquez, J.-L. Sancho, and A. R.
Figueiras-Vidal, "Sample selection via clustering to construct support
vector-like classifiers," IEEE Transactions on Neural Networks, vol. 10,
p. 1474, Nov 1999.

[11] S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares
learning algorithm for radial basis function networks," IEEE Transac-
tions on Neural Networks, vol. 2, pp. 302-309, Mar. 1991.

[12] Y. Hwang and S. Bang, "An efficient method to construct a radial basis
function neural network classifier," Neural Networks, vol. 10, no. 8,
pp. 1495-1503, 1997.

[13] M. J. L. Orr, "Regularisation in the selection of radial basis function
centres," 1995.

[14] E. I. Chang and R. P. Lippmann, "A boundary hunting radial basis
function classifier which allocates centers constructively," in Advances
in Neural Information Processing Systems, vol. 5, pp. 131-138, Morgan
Kaufmann, San Mateo, CA, 1993.

[15] I. H. Witten and E. Frank, Data mining. Los Altos, US: Morgan
Kaufinann, 2000.

[16] C.-W. Hsu and C.-J. Lin, "A comparison of methods for multi-class
support vector machines," IEEE Transactions on Neural Networks,
vol. 13, no. 2, pp. 415-425, 2002.

[17] C. L. Blake and C. J. Merz, "UCI repository of machine learning
databases," tech. rep., University of California, Department of In-
formation and Computer Science, Irvine, CA, 1998. Available at
http://www.ics.uci..edu/-mlearn/MLRepository.html.

[18] A. K. Jain, M. N. Murty, and P. J. Flynn, "Data clustering: a review,"
ACM Computing Surveys, vol. 31, pp. 264-323, Sept. 1999.

[19] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Prentice
Hall International, 1988.

[20] C.-Y. Chen, S.-C. Hwang, and Y.-J. Oyang, "An incremental hierarchical
data clustering algorithm based on gravity theory," in Proc. ofPAKDD-
2002, pp. 237-250, 2002.

[21] J. Moody and C. J. Darken, "Fast learning in networks of locally-tuned
processing units," Neural Computation, vol. 1, no. 2, pp. 281-294, 1989.

[22] D. S. Broomhead and D. Lowe, "Multivariable functional interpolation
and adaptive networks," Complex Systems, vol. 2, pp. 321-355, 1988.

[23] I. Tarassenko and S. Roberts, "Supervised and unsupervised learning in
radial basis function classifiers," in IEE Proceedings-Vision, Image and
Signal Processing, vol. 141, pp. 210-216, 1994.

[24] P. A. Devijver and J. Kittler, Pattern recognition: a statistical approach.
Prentice Hall, 1982.

[25] A. N. Tikhonov and V. Y. Arsenin, Solutions of lll-Posed Problems.
Washington D.C.: V.H. Winston & Sons, John Wiley & Sons, 1977.

REFERENCES

[I] J. Park and I. W. Sandberg, "Universal approximation using radial-basis-
function networks," Neural Computation, vol. 3, no. 2, pp. 246-257,
1991.

1388

