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Abstract

We consider the inverse problem, in two and three dimensions, of identifying elastic cracks em-
bedded in an inhomogeneous anisotropic elastic medium using point sources. The observable data
is given by the near-field measurements of the outgoing Green'’s function for the related stationary
system. We give a reconstruction algorithm for this inverse problem.

0 2004 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the inverse problem of identifying cracks from the near-field
measurements of the outgoing Green’s function for the stationary elasticity system with
inhomogeneous anisotropic mediumRf. Throughout the paper, we consides 2 or 3.

This is a sequel to our earlier paper [15] in which we dealt with the same problem by using
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boundary measurements for the static system. Similar to the result in [15], our focus here
is also on the reconstruction issue.

The inverse problem is described as follows. We put sources and receivers along a con-
nected, closed curve & 2) or connected, closed surfaee= 3) which is large enough to
include all inhomogeneities and cracks of the probed region. Each source on the curve or
surface induces a scattered field due to the inhomogeneities and the cracks. The scattered
field is then recorded by receivers on the same curve or surface. Suppose that we know all
the information on the probed medium expect for the elastic cracks. The inverse problem is
to reconstruct the cracks from these measurements. A related inverse problem for a scalar
equation was considered in [7].

The solution of the inverse problem requires a full understanding of the related di-
rect problem which is the existence and uniqueness of the outgoing Green'’s function for
the inhomogeneous anisotropic elasticity system. As usual, we assume that the medium
is homogeneous outside of a large ball. However, unlike most of the literature on elas-
tic scattering, we assume that the homogeneous part iesifbtropic Even the direct
problem in this case is quite difficult given that we are considering the full anisotropic
elastic system. Our method for obtaining the outgoing Green’s function and its properties
is to prove the existence and uniqueness in appropriate spaces of the scattering solution in
the exterior of cracks for the inhomogeneous anisotropic elasticity system. To characterize
the scattering solution, we need to impose certain radiation conditions at infinity. Since
the medium is anisotropic outside of a large domain, the classical Sommerfeld—Kupradze
radiation conditions are not applicable in this case. For the homogeneous anisotropic elas-
ticity system in two and three dimensions, Natroshvili [19,20] established the generalized
Sommerfeld—Kupradze radiation conditions by analyzing the radiation pattern of the os-
cillation equations under some restrictions on the slowness curves. Here we will impose
the same restrictions on these curves and adopt the radiation conditions derived in [19]
and [20].

In proving the existence and uniqueness of the scattering solution, we assume that the
unique continuation propertolds for the anisotropic elasticity system considered in the
paper. It should be noted that the unique continuation property for general anisotropic
elasticity systems is still an open problem. Nonetheless, in two dimensions, the unique
continuation property has been proved for anisotropic elasticity with Lipschitz coefficients
under some generic conditions [16,17]. We remark that if we assume the unique continua-
tion property then the Runge approximation property is valid. The latter plays an important
role in reconstructing the cracks. Combining the unique continuation property and the ra-
diation conditions, we can prove the uniqueness of the scattering solution. We then show
the existence of the scattering solution by a Fredholm-type theorem, which is inspired by
Lax and Phillips’ work [13].

In this paper we will only consider “insulating” cracks which means that the traction
vanishes on the cracks. The scattering solution is generated by the source term. Thus the
outgoing Green'’s function is the Schwartz kernel of the map from the source term to the
scattering solution. We will first establish the scattering solution with the source term in
L%omp, i.e., compactly supporteti? functions. However, for the purpose of studying the
inverse problem, we need to allow the source term to be in a more general space, namely
the dual space oHClomp (see the definition in Section 3).
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Our strategy for identifying cracks from the near-field measurements of the outgoing
Green’s function at a fixed energy have two main steps. Firstly, we determine the Dirichlet-
to-Neumann map for the stationary system from the near-field of the outgoing Green’s
function at a fixed energy. Secondly, using this Dirichlet-to-Neumann map, we can apply
the method developed in [15] to identify cracks which are treated as buried in a finite
anisotropic body.

There is an extensive literature investigating the crack determination problem by bound-
ary measurements. We refer to a recent survey article [3] and references there for other
developments. The inverse scattering problem from a crack for acoustic waves was studied
in [1] and [11]. Extending techniques in those two papers to elastic waves were developed
in [2] and [12], respectively. The elastic medium considered in [2] and [12] is homogeneous
and isotropic.

The plan of this paper is as follows. In Section 2, we will describe the radiation con-
ditions derived in Natroshvili's papers [19] and [20]. In Section 3, we prove the limiting
absorption principle for the inhomogeneous anisotropic elasticity systé®f ased on
the recent work [18]. Then the limiting absorption principle will be used to establish the
existence of the scattering solution in the whole space. In Section 4, we prove the existence
and uniqueness of the scattering problem in the presence of cracks. The inverse problem
of determining cracks is discussed in Section 5.

2. Preliminaries
Let C = (C,qrs) be a homogeneous elastic tensor satisfying the symmetry properties
Cpgrs =Cqprs =Crspg  YD.q. 1,5 (2.1)
and the strong convexity condition, i.e., there exisis=a0 such that
CE - E >§|E|? (2.2)
for any symmetric matrix = (E,), where

(CE),,q:ZC,,q,SE,S and A-B:ZA,,qB,,q for matricesA, B.
rs prq

Here and below, unless otherwise indicated, all Roman indices ex@equtn are set to
be from 1 ton, wheren = 2 or 3. We reserve for the imaginary numbex/—1. Given
R > w > 0, define the matrix differential operator

L(D,») = L(D) + o?I,

whereL(D) = (L,,(D)) with

Lpr(D) =" Cpgrsdy0y. (2.3)
qs
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The symbol ofL (D, w) is given by(a)zl — L(&)) =: L(§, w) with L(§) = (L ,-(§)) and

Lpr (5) = Z Cpqrsgqgs-

qs

Let ¢ (£, w) be the common denominator of entrieslof (&, w). For the isotropic case, it
is not hard to compute that

¢ E, ) =co(lE]? — ?(h + 2007 ) (1612 — 0®uY) (2.9)

for some constanty. The formula (2.4) is valid forn = 2 or 3. Since we will focus on the
“genuinely” anisotropic case in this paper, we assume that

¢ (¢, w) =detL(§, o).
Using the spherical coordinatés= r6 with » > 0 andg € S"~1, we get that
P E, 0) =¢(ro, 0?) = def{w? — r2L(9)) = (-1)"detL(@)detr? — w?L~1(9)).

Note thatZ=1(0) exists for allo € S"~* because of the strong convexity condition (2.2).
Now we suppose that there exigtéunctionsk1(0), ..., k,(6) with

O0<81<ki(®) <-- <ky(0) <8y VoSt (2.5)

such that

¢ (& w) = (=1)"detL®) [ [(* - 0?k5(0)).

j=1

Let the surface (or curvey; be defined by{(r, 6): r = wk;(#)}. Obviously,¢ (&, w) van-
ishes on the curvs;. We now assume that

S2, ..., S, are convex (2.6)

Notice that the convexity of; is also assumed in [19] and [20]. However, this assumption
is redundant. The convexity df; is a well-known property in the theory of anisotropic
elastic waves (see [5] for detailed arguments). From (2.5) we can se®diatw) # 0

on S; forall j. Furthermore, it follows from (2.6) that for any+# O there exists a unique
point&/ on S; such that the unit outer normal vectd(£/) of S; até&/ is parallel tox, i.e.,

D (E7) || x. Sincep(—&, w) = ¢ (£, w), the normal vectop (—£7) is equal to—9 (£/). In
fact, in terms ofp (£, w), the unit normal vectos (¢/) is given by

ICIGRD

D7) = (-1 : )
()=« )|V¢>(é‘f,w)|



G. Nakamura et al. / Advances in Applied Mathematics 34 (2005) 591-615 595

Based on conditions (2.5) and (2.6), Natroshvili constructed fundamental solutions
for L(D, w) by considering the limits of (x, ,) as+e¢ — 0, wherer, = w + ie and

L(D,te)I"(x,7) = (L(D) + t21) " (x, 7:) = 8(x)1.

In fact, by the light of Fourier transfornd; (x, t.) is given by

/ L7YE, to)e™ dt =

Rn

I'(x, 1) =

/ ¢ HE, T LH(E, T)e™ dE,

(2m)" (2"

whereL (&, 1) = (rg2 — L(&)) andL*(&, t.) is the adjoint of the matridX.(¢, 1.), i.e., the
transpose of the cofactor @f(¢, 7). It is easy to see that the matriX(x, t.) € C°(R" \
{0}) and, together with all its derivatives, decay exponentiallyciras|x| — oco. Here we
only consider the outgoing fundamental solution, denoted iy, w), corresponding to
the limit of I"(x, t.) as+¢ — 0. It was proved in [19] and [20] that the limit

lim I'(x,t) =T (x,w)
+e—0

exist for all x £ 0 and the limit exists uniformly inx| > a > 0. On the other hand, for
sufficiently large|x|, we have the following asymptotic formula

I'x,w)= Z lxl—(n—l)/ZRjeixsf + 0(|x|—(n+1)/2)’ (2.7)
J

where¢/ e S; with 9 (£/) || x and

L*(¢, o).

J
R;(n) = R; (87 (m) = JWW«MS! )|

Whereq =x/|x|, ¢, is a constant depending anandX(£/) is the Gaussian curvature of
S; at&/. Furthermore, for any in a compact set and any multi-indicesg, we have that

Bgaff(x —y,w) = Z |x|—(n—l)/2Rj (n)(g.i)“(_g)_-/')ﬂei(x—y)éj
J

+ O (x|~ TV (2.8)

as|x| — oo.

Now we are ready the radiation condition for the anisotropic elasticity syst@mw).
Let the functionu(x) be C? for large |x|, thenu(x) is said to satisfy theeneralized
Sommerfeld—KupradZeutgoing radiation conditionsf

u@x) =3 ;u ), u¥ = O(jx|~=D/2y,

' o (2.9)
o (x) —ig/uD (x) = O(x|~"*V/2), =1, n,
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hold, where¢/ € S; satisfies?(£/) || x. Whenu(x) is a vector or matrix function, we
say thatu(x) satisfies (2.9) if each component ofsatisfies (2.9). It is easy to see that
I' (x, ) satisfies the radiation conditions (2.9). Similar to the isotropic case, a function
in R* \ O satisfying (2.9) has an integral representation formula, whres an open
bounded smooth domain. More precisely,det H2 (R" \ 0) N C1(R" \ 0) satisfy the
radiation conditions (2.9) antd(D, w)u be compactly supported, then

u(x) = / F(x—y,w)L(Dy,w)u(y)dy+/{F(x—y,w)[T(Dy,n(y))u(y)]
R\ O 20
—[T(Dy, n) T (x =y, a))]tu(y)} dS VxeR"\ O (2.10)

and

u(x) :fF(x —y,0)L(Dy,w)u(y)dy VxeR"
RVL

if O =0, whereT (D, n) is the boundary traction operator defined by

(T(D,m), Zcpqmnq
with n = [n1, ..., n,]" being the unit outer normal &fO (see [19] and [20]).

3. Thescattering problem in the whole space

In this section we would like to discuss the scattering problem for the inhomogeneous
anisotropic elasticity system in the whole space. We aim to solve the following scattering
problem

2 _ 2 ;
{Lu—l—w u=heLm®R") inR", (3.0)

u satisfies the radiation conditio®.9),

where
Lu =div(C(x)Vu).

Throughout the paper, we assume that the elastic t&he0r= (C 4,5 (x)) € CYR") sat-
isfies the full symmetry properties

Cpgrs(x) = Cgprs(x) = Crspqg(x) Vp,q,r1,s andx € R" (3.2)



G. Nakamura et al. / Advances in Applied Mathematics 34 (2005) 591-615 597

and the strong convexity condition, i.e., there exists=a0 such that for allk € R” and
symmetric matrixt

C(x)E-E >$5|EJ°. (3.3)

Moreover, there exists & > 0 such thatC (x) = C for |x| > R, whereC is a homogeneous
anisotropic elastic tensor. As mentioned in the Introduction, we suppose that the unique
continuation property holds for a2 (R") solutionu(x) of Lu + w?u = 0.

We now formulate (3.1) in a weak sense. To this end, let us introduce a weighted Sobolev
space. Leb = (1+ |x|?)~4/?2 with d > 1/2 and the weighted inner product

(f. 8) gr-a@n = (0f. 08) + @V f.0Vg) for f.g e Hg(R").
Denote

1/2

H4(R") = completion of H*(R") with respect td| - || y1-agn = (-, ) Frhmd (-

Definition 3.1. A functionu € H%~4(R") which is C* smooth for sufficiently largeéx| is
called a scattering solution of (3.1)ufsatisfies the radiation conditions (2.9) and

VY (x) € CO(R"),  —F(u, ¥) + o?(u, ¥) = (h, ¥).
Here the sesquilinear form(-, -) is defined by

F(u,v):/ZCpqu(x)asurfmdx=/Zqu%dx

Rn pqrs Rn prq

=fcunw»35m,

]Rn
wheree (1) pq = (1/2)(d4u, + 9,u4) is known as the strain tensor.

We will prove the existence of a scattering solution to (3.1) by the limiting absorp-
tion principle. To establish the limiting absorption principle, we first prove the uniqueness
whose proof relies heavily on the radiation conditions and the unique continuation prop-
erty.

Theorem 3.2. There exists at most one solution(81).
Proof. It suffices show that a homogeneous solution of (3.1) is trivial, namely, any solution

u to (3.1) with 2 = 0 must be zero. First of all, we show that a solutioof (3.1) with
h = 0 decays at a rate gk|~"+tD/2 at infinity. The same phenomenon was proved for
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the homogeneous anisotropic elasticity system in [19] and [20]. Sired, in light of
Green's formula, we have

/{T(D, n())u(x) - u(x) —u(x) - T(D,n(x))u(x)}dS=0 VR >R, (3.4)
Spr
whereSg = {|x| = R’} andn = x/|x|. With the identity (3.4) at hand, the same arguments
given in [19, Lemma 12] and [20, Lemma 4.1] provide the proai ef O (|x|~"*+1/2) as
|x] — oo.
The decaying property of clearly implies
u(x) = 0(|x|7(”7l)/2) as|x| — oo.

Let x (x) = x(|x]) € C*°(R") satisfy

) = 0 injx|] <R,
XY= 1 ingxl > 3R/2,

and set(x) := x (x)u(x). Then it is readily seen that(x) € C*°(R") satisfies
v(x) =o(lx|7"7V/2) as|x| — oo (3.5)
and
L(D,w) = (L(D) + &I )v(x) = g (x),

where suppg) C {|x| < 3R/2}. Define the differential operatat*(D, w) with symbol
L*(&, w). Itis readily seen that

L*(D,w)L(D,w)v=¢(D,w)v=L*"(D,w)g =: g,

whereg (D, w) is the differential operator (scalar) with symlglé, »). Likewise, we have
supp @) C {|x| < 3R/2}. Having conditions (2.5), (2.6) and the asymptotic behavior (3.5)
in mind, we now apply Littman’s result [14], which is a generalization of Rellich’s result,
to conclude that

u(x)=v(x)=0 in {|x| > 3R/2}.
Now using the unique continuation property, we getthad) =0 inR". O
Having obtained the uniqueness result, we can use the same method in [18] to prove
the limiting absorption principle for the operatdrin R”. In [18], the limiting absorption

principle for £ with Lipschitz elastic tensor ifR? were established. The method can be
extended td&R3 without essential modifications.
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Theorem 3.3 (Limiting absorption principle)Let C > O := (wo, w1) x i(0, &), where
0 < wp < w1 ande > 0. Assume: € Lgomp(]R"). Then the map

R(): Q- HY (%)
defined byR (z)h = (L + z)~1h is uniformly continuous.
By virtue of the limiting absorption principle, the solution of (3.1) is now given by

u= (C—i—a)zl)_lh = Jrlim0(£+(w2+is)l)_1h, (3.6)
£—>

where the limit exists it -~ (R"). SinceC (x) € C1(R"), in view of the elliptic regularity
theorem (see [6] for example), we have théat) € H,%C(R”).

4. The scattering problem in the presence of cracks

In this section we will face our target problem—the scattering problem in the exterior
of the crack. Since the present paper is a continuation of [15], we will follow the notations
used there. To describe the crack, we assumeXhatR” is a C? closed Jordan curve
(n = 2) or closed connected surfage=£ 3) and>' C Sisan open curve or surface. When
n = 3 we suppose that the boundar¥ of ¥ is C2. Here X will be considered as a crack.
We assume thaX' C Bg, hamely, the crack lies in the inhomogeneous part. We can have
several number of cracks. For this case our theory also works without any essential change.
Let £2_ be the open subset Bf with boundary® ands2, := R"\ £2_. The trace operator
from 221 to X is denoted by, respectively. The direction of the unit normato X is
directed into$2, .

We now introduce two Sobolev spacé (X) and H¥(X), which are subspaces of
H*(X), defined by

HY(2) = H"(5)|,
and
ue HY(X) iff ue H*(Z) and suppu) C X,

respectively. To deal with the exterior problem, we also need a weighted Sobolev space in
the cracked domaif :=R" \ ¥

HY(2) = {u e D' (R"): uy :=ulq,, whereu_ e H*(R")|, , us € H»9(2);

o

[u]l :=yiuy —y_u_ :Ooni\f},

where||ul| y1-a(g) = lu-llgio ) + lutllgr-ao,) andHE~4(2,) == HE4R")| o, .
Also, we define
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HY2) = {ue®' (R"): us :=ulo,, whereu_ € H'(2_), uy € HY(24);

[l :==ysuy —y_u_=00nX\ Z‘}
and
Hiome($2) == {u € H'(£2) and supgu) is compad}.
Now we consider the scattering problem in the exterior of the crack

Lv+o?v=f ing,
T(D,v)v=0 onXx, (4.1)
v satisfies the radiation condition2.9),

where f € Lgomp(sz) and the traction operatol is defined in terms ofC(x) and
T(D,v)v=_0sinterpreted ag (D, v)v=y_T(D,v)v =y, T(D,v)v =0. In the weak
formulation, solving (4.1) is equivalent to findinge H1~¢(£2) such that

{ —Fo, )+ o, ) = (f,¥) V¥ € Hiomp($2),

. o o (4.2)
v satisfies the radiation condition2.9),

where

Fo(v, y) =/c<x>e<v)-%dx.

2

Note that by the standard elliptic regularity theoranpossesses enough smoothness to
make sense of the radiation conditions. Also, the condilioP, v)v|x = 0 is implicitly
enforced in (4.2). The task now is to prove the uniqueness and existende ¢4.2). We
begin with the uniqueness.

Theorem 4.1. There exists at most one solution(tb?2).
Proof. The proof of this theorem is similar to that of Theorem 3.2. We will show that if

f=0thenv=0in £2. Choosiﬂgﬁ > R and using Green'’s formula given in [15] (see the
formula (A.1) there) oveBj \ X', we can derive that

0= / {ﬁ(£+w2)v—v(£+w2)v}dx= / {5£v—v5}dx
BR\X BR\¥

= /{T(D, mvx) - v(x) —v(x)-T(D, n)v(x)} das — f[T(D, U)v]y+17 ds

Si X
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—/y,T(D,v)v[ﬁ]dS+/[T(D,v)v]y+vdS
b b

—I—/)/_T(D,v)v[v]dS. (4.3)
z

Here we want to remark that the traction operdtas defined in terms of the inhomoge-
neous elastic tens@ (x), which is homogeneous aff; for all R > R. Taking advantage
of T(D,v)v =0 onX, we obtain from (4.3) that

/{T(D, V() - v(x) —v(x) - T(D, Mu(x)}dS =0,

Sg

which is the same integral as (3.4). Using the arguments in [19, Lemma 12] and [20,
Lemma 4.1] again, we have= O (|x|~"*+1/2) as|x| - co. Now combining Littman’s
theorem and the unique continuation property, we concludevthad in 2. O

We now turn our attention to the existence of (4.2). The line of argument is to reduce the
exterior scattering problem to an interior problem. The idea is due to Lax and Phillips [13].
Let Uy (x) € H-~4(R") be the solution of (3.1) with right-hand sidec L2,,(R") and
supph) C B, for someR; > 0. Define

V(x) =Unx) — o) W(x),

wheregp(x) € C3°(R") equals 1 in a neighborhood af and zero inR”" \ Bg,. Then we
can deduce that

LV +0?V =h — (L + o?)(@W).

Therefore,V is a scattering solution of (4.2) W solves

:f:h —(L+w?)(eW) inBg,\ T, (4.4)

T(D,v)U,=T(D,v)W onxX, W=0 onSg,.

Note that the problem (4.4) is interpreted in the weak sense.
The idea now is to relat® to 4. There are many ways to do this. Here we chobse
to be the solution of

{zw:o in Bg, \ X, (4.5)

T(D,v)W=T(D,v)U, onxX, W =0 onSg,.

As usual, (4.5) is understood in the weak sense. The well-posedness of (4.5) was already
proved in [15] and we have thd € H(Bg, \ ¥), where
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HY(Bp,\ T) := {u € ©'(Bg,): us :=ulg,, whereu_ € H*(2_), uy € H*(Bg, \ 2°);
[u]l:=ysuy —y_u_=0 onE \ f}.

It is easy to see that the map:h — (£ + w?)(¢W) is linear and determined by the
compositions

h— Uy — T(D,v)Upls — W — (L + o?)(@W). (4.6)
We observe that
(L + &) (W) = pLW + [L, p]W + 029 = [L, 9]W + 0?pW,

where[L, ¢] is the commutator of andg. It should be noted thdiL, ¢] contains only
first derivatives. Recall thdt), € ngc(R"). Thus, the spaces associated with the composi-
tions (4.6) are

L?(Bg,) — H*(Bg,) = HY(Bg,) — H Y2(2) — HY(Bg, \ T) — L?(Bg,).

From the compact embedding propertyff(Bg,) — H'(Bg,), we get:Q : L?(Bg,) —
L2(BR1) is compact. In turn, it remains to solve the Fredholm-type equatidﬁ{rBRl)

(I—Qh="f. (4.7)

Therefore, to complete the proof of existence, we only need to show the injectivity of
(I = Q).

So if f =0, thenV solves (4.2) with homogeneous data. By virtue of Theorem 4.1,
we have that/ = 0 in £2 and thereforelJ, = ¢W in Bg, \ X. Sinceg(x) is 1 nearX,
U, = W nearX, namely,W is H? nearX. It turns outW solves

LW =0 inBg,, W =0 onSg,.

ConsequentlyW is trivial and hencer = f + (£ + 0?) (W) =0 in Bg,. Sinceh €
Lgomp(R") and supph) C Bg,, we haveh = 0. Thus, we have shown that

Theorem 4.2. There exists a solution @.2).

5. Inverse problem

This section is devoted to the study of the inverse problem. We first precisely formulate
the inverse problem we have in mind. Let be the scattering solution of (4.1) fgi e
LZomp(£2). We can write

V() =G f(x):= / Gz(x,y,w)f(y)dy,

2



G. Nakamura et al. / Advances in Applied Mathematics 34 (2005) 591-615 603

where Gy (x, y, w) is called the outgoing Green’s function. It is clear that the integral
operatorg mapsLZ,,,($2) to H-~4(£2). In this paper we consider the following inverse
problem

Inverse Problem. Identify X from G 5 (x, y, w) for x, y € Sy at a fixedw > 0.

As stated in the introduction, we are concerned with giving reconstruction formulas for
this inverse problem. A reconstruction algorithm of our method will be given at the end of
this section.

5.1. Near-field measurements to the Dirichlet-to-Neumann map

The first step in our method for this inverse problem is to convert the near-field measure-
ment at a fixed energy to the Dirichlet-to-Neumann map, or the displacement-to-traction
map, onSg. In order to do so, we would like to extend the mapping property.dfiore
precisely, we will show tha mapch*O}an(.Q) to H1=4(£2), where

Hc‘ofnpz(s?) ={ue (Hclomp(s?))*: suppu) is compact and sugp) N X = ¢}.
The proof of this fact is based on the following a priori estimate.

Lemmab.1. Letu € HL~4(£2) satisfyT (D, v)u = 0 on X, the radiation condition$2.9),
and f := (£ + o®)u € (Hgomp($2))*. Then there exists a constant- 0 such that

]

el a-ag2y < (Lf g myn + 1l L2-ac))- (5.1)

wherelu(|?,_, o = [o loul?dx.

Proof. This lemma can be proved by straightforward computations. Indeeg,(tte
Cy°(R) with 0 < x < 1 satisfy

") 1 r<1i,
r) =
X 0 r=2,

and definey.(r) = x(er). In what follows we denotéx| = r. It is readily seen that
A+r) 4y (Nue Hclomp(Q). Therefore, using the weak formulation we have that

(£ (142 2u) = - / C)ew) - ((1+r?) ™ x2a) dx
2
+/a)2u 1+ rz)fdxgzﬁ dx. (5.2)
2

We now treat the first term on the right side of (5.2). Observe that
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C)e@w) - e((1+r2) " y2i)
=C@)e) - (L+r2) xe)e((1+rd) P xeit)
+C()ew) - %[V((l +r2) 7y @ (14 1)) Py
+(1+72) Py v((1+ rz)“”zxg)]
= C@e((L+rD) P xeu) - (1 +r2) " ?xeid)

~C (I ) e uo V() )]
x {(1—}— rz)_d/zxgs(ﬁ) + %[V((1+ rz)_d/zxg) Qu+u®V((1+ rz)_d/z)(s)]}

1 _ .
+C@ew) - 5[ V((1+r2)Px) @ (141 Py

—d)2

+(1+7?) Xgﬁ®V((1+r2)_d/2Xg)]. (5.3)

In view of the strong convexity condition and Korn'’s inequality, we get that

/ Ce((1+ rz)_d/zxgu) ce((1+ rz)_d/z)(gﬁ) dx
2

201/|V((1~|—r2)_d/2)(8u)‘2dx —02/(1+r2)_d)(82|u|2dx (5.4)
2 2

for some positive constantg andcs. It should be noted that Korn's inequality holds in the
cracked domain2 because of our assumptions &n It is useful to compute

d/2 d/2

V((1+ r2)7 xgu) =uQ® V((1+ r2)7 )(8) + (1+ rz)fd/z)(gVu (5.5)

and

—dj2-1

V((l—l—rz)_d/zxs) = —d(1+r2) Xxe + (1+r2)_d/2VXg. (5.6)

On the other hand, we can see that

(£, (142 x2u)| <1 £) 2y | (1+ r?) " x2u| o) 6.7

To obtain the estimate (5.1)—(5.7), use the inequality

5 1
lab| < &lal? + Elblz (5.8)
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for small constant > 0, and lete — 0. Note that all terms containing x. will tend to
zeroaxs — 0. 0O

Now we can prove that

Theorem 5.2. There exists one and only one scattering solutior{4ot) for any f €
Hl ().

comp X

Proof. The uniqueness has been shown in Section 4. So we focus on the existence. It is
easy to see that om ):(9) C Hiomp@®R™). Thus, if f € Comp):(Q) then there exist a
sequence of functlonﬁj € Lcomp(.Q) such that

fi— f in (Hclomp(sz))*.

Denotev; € H 1.-d(£2) be the scattering solution of (4.1) associated vfithNote thaty;
exists from the results in Section 40

Claim. sup; [1vjll gr-a(gy < oo.

We assume the claim for this moment. Observe that the embedding (£2) —
L2~9(£2) is compact for any A2 < d < d'. To see why this is true, we use the usual Rel-
lich’s theorem forH1(£2_) and the compact embedding result for the weighted Sobolev
spaceH>~?(£2,) in [4]. Therefore, there exist e L%~ ($2) and a subsequence ff;},
still denoted by{v,}, such that

||U] - v”LZ.—d’(Q) — 0.

By the a priori estimate (5.1), we see tia}} is a Cauchy sequence ml—(22). So,
ve H=4(2) andv; — vin H~4(£2). To verify thatv is a scattering solution, we
recall the weak formulation for;

—FQ(UJJP)'HU U/»W f]»w VWE omp(Q)
Taking j — oo yields thatv satisfies
—Fo.¥) +0?(v. ) = (£, ¥) Y € Hiomy(82).

It remains to show thai satisfies the radiation conditions (2.9). To this end, we choose a
cut-off functiong € C*°(R") such that

0 |x|<R,

(p(x):{l x| > R +1,
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whereR’ > 0 is large enough so thditg U (J; supf(f;) C Bg . Note that J; supp(f;) is
a bounded set. We now have that

wvj=/1“(x—y7w)gj(y)dy,
Rn

whereg;(y) := g;(v;, Vvj, Vo, V2¢)(y) is supported ink := {R’ < |x] < R’ + 1} and
gj — gin L?(K). Therefore, lettingi — oo, we get that

¢v=/1“(x—y,w)g(y)dy,
RV!

which implies that satisfies the radiation conditions.

To complete the proof, we need to prove the claim. Assume the claim is false,
namely, there exist a subsequenigg} such that lim |lv;ll 14y = c0. Setw; =
v /llvjll gi-agy and thusjw; || y1.-4(o) = 1. Using the compactness theorem, we can find
a subsequence dfv;}, denoted by(w;} as usual, such that; — w in L>~¢(22) and
we L2=4(2)for1/2 < d < d’. By same arguments as above, we getihatH 7 (2)
andw is a radiation solution with zero source term (sinGé||v;ll y1-«(g) — 0). By the
uniguenessyw = 0 and we have the contradictiono

We are ready to show that the Dirichlet-to-Neumann mag gian be constructed by
the measurementG s (x, y, w) for all x, y € Sg and one fixed» > 0. Similar arguments
are also used in [10] (or [8]). Define the Dirichlet-to-Neumann raap: HY?(Sg) —
H~Y2(Sg) by

Ax(g) =T(D,n)v|sg,
wherev is the solution of

(L+wHv=0 inBg\ZX,
T(D,v)v=0 onXx, (5.9)
v=ge HY2(Sg) onSk.

To make sure thatt 5 is well defined, we assume that the boundary value problem (5.9)
with ¢ = 0 has only trivial solution. On the other hand, #étbe the solution of

(L+w?v*=0 inR"\ Bg,
v =g onSg,
v¢ satisfies the radiation conditians

whereL denotes the operatdr with homogeneous elastic tengdr(see (2.3)). Define

A(g) =T (D, mv]|sy.
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Now giveng € HY/2(Sg), we can definé, e H&)}npz(Q) by

(Mg, ) = (2, Blsy) Vo € Homp(2).
Let v, be the scattering solution of (4.1) with the source ter,. Define
Vg =vglsp-
Formally,¥ ¢ is given by
Ye(x) = —/Gx(x,y,w)Mg(y)dy= —/Gz(x,y,w)g(y) dSg, xeSk.
Q2 SR

The following lemma plays a key role in constructing the Dirichlet-to-Neumann map from
the near-field measurement.

Lemmab.3.

(i) Ax — A°: HY2(Sg) — H~1/2(SR) is injective.
(i) (Ag — AP =1.

Proof. (i) This is an easy consequence of the uniqueness for the scattering solution. So we
aim to prove (ii). From the definition af,, we obtain that

(g, Plsg) = (M, ¢) = f (C(x)e(vg) - £() — w?ve)

([ + [ )ewsu @) - oo

Br\>Y R"\Bgr
= (A (glse). Blse) — (A (0glse). Blsi)
(Ax — A)Wg, lsy). (5.10)

In deriving (5.10), we have used the variational formulationgdgfandA¢. 0O

It is clear that¥ is determined by x (x, y, w) for all x, y, € Sg. Therefore, in view of
Lemma 5.3, we can construdty by near-field measurementsys (x, y, w) for x, y € Sg
using the formula

Ay =A° -1 (5.11)
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5.2. Identifying the crack from the Dirichlet-to-Neumann map

Having the Dirichlet-to-Neumann map s, we now want to construct from it. For
this part of inverse problem, we will use the same ideas as in [15].

To begin, letr := {r(r) € Bg: 0<t < 1} be a non-selfintersecting continuous curve
joining r(0), r(1) € I" with r(¢) € Bg for 0 < ¢t < 1. This curver is called a needle. Define

T(r,X):= Sup{t: O<r<1 r(s)¢Xfor0O<s < t}.
Physically,T (r, ¥) can be interpreted as the first hitting time of the needie X. It is
clear that if7(r, ¥) = 1 then the needle does not touch the crack. For any given

needler, we would like to find a characterization @f(r, ). To do so, we define the
indicator function/ (¢, r) by

I(t,r) = jli_)moo<g.,~, (Ag— Ax)g;), (5.12)

whereAy is the Dirichlet-to-Neumann map in the absence of cracks. The Dirichlegdata
requires further explanations. Assume thats not a Dirichlet eigenvalue af in Bg. Let
v; € HY(Bg) (j € N) satisfy

2\. . H
{(E—l—a))v]—o in Bg, (5.13)

vj = G(,r(®) (j = 00) in Hg(Br\ 1),
wherer,: = {r(s): 0 <s <1t}. Here the distributiorG (-, x°) in x° € By satisfies
(£+0?)G (2% +8(x —x%)bp=0
and
(G(-2°%) = E(.2%)0)

is bounded inHY(Bg),

XOGBR
where 0+ b € C and the distributiorE (x, x%) in x0 € R” satisfies
(‘CC(XO) + a)z)E(x, xo) +8(x — xO)I =0.

Note thatC (x%) is a homogeneous elastic tensor witlix) = C(x) for all x € R*. The
existence ob; is guaranteed by the Runge approximation property which is an easy con-
sequence of the unique continuation property. The existenc&-0k%) can be proved by

the same method in [8] or [9]. Now the Dirichlet datais given by

8j =Vjlsg-
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To further study the indicator functioh(z, r), we would like to rewrite it in an inte_gral
form containing the so-calleflected solutiomefined as follows. Lei; € HY(Br\ )
be the solution of

(L+0®u;=0 inBg\Z,
T(D,v)u; =0 onXx,
uj=4g;j onSg

andw; =u; —v; € HY(Bg \ X), then we can show that

Lemma 5.4 (Reflected solution)lf r, N X =@, thenw; — w in H1(Bg \ ¥) andw €
HY(Bg \ X) satisfies

(L+0>Hw=0 inBp\ZX,
T(D,v)w=-T(D,v)G(-,r(t)) onX, (5.14)
w=0 onSg.

Lemma 5.4 can be proved in the same way as in [15, Lemma 3.1]. With the reflected
solutionw, we can give another form of the indicator functib(i, r).

Lemma5.5. Assume, N X = . Then we have
I(t,r) = / o(w) - e(W) dx — w? / |w|? dx. (5.15)
BR\X Br\X
Proof. In view of Lemma 5.4 and the definition &z, r), it suffices to show that
(g, (Ap— Ax)g)) = f o(w;) - e(w7) dx — w? / lw;|?dx. (5.16)
B\X BR\Z

The derivation of (5.16) is based on Green’s formula (A.1) in [15]. By means of Green’s
formula and boundary conditions, we have that

/ o(wj) - s(uTj)dx

B\Y

= [ ot - el - ) e

Br\X

= [ owpcla-m)ar- [ ow el -7)d

Br\X Br\X
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= [ g @) @ =)= [ ol — ) d

BR\f BR\E

= [ @-ma- [ owp et [ ow)e@m)a
BR\X BR\X BR\X

= [uwm-md- [ ewp ot [ ew ofm)d
BR\X BR\X BR\Y

=’ / uj - (i — vj) dv + / vj - Lujdx —(vjlse. T(D. 1) jlse)
Be\T Bo\E

— / vj - Lvjdr + (vjlsg. T(D, v)vjlsg)

BR\Z
=’ / uj - (it — o7) dr — / vj - (7 — 77) dr + (g, (Ag — Ax)g;)
BR\X Br\T

= o? / lwj|?dx +(g;, (Ag — Ax)g;)
Br\Z

and (5.16) follows. O
With the help of the expression (5.15) bft, r), we want to show that
Theorem 5.6. If r(T(r, X)) € X, then|I (¢, r)| — oo ast — T(r, X).

In view of Theorem 5.6, we can construct the cra€kby examining the behavior of
I(z,r). On the other hand, using (5.12) we can determine the indicator funktion) by
the Dirichlet-to-Neumann map.

Theorem 5.6 can be proved in the same way as in [15] where the authors treated the
static cased) = 0). The heart of the method in [15] lies in analyzing the singularity of the
reflected solution at the tip of the needle. Nowdetbe the reflected solution correspond-
ingtow =0, i.e.,

Lwo=0 inBgp\X,
T(D,v)wg=—-T(D,v)Go(-,r(t)) onX, (5.17)
wo=0 onSg,

where the distributiorGo(-, x°) satisfies

.CGo(-, xo) + B(x — xo)b =0
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and
(Go(-.x°) — Eo(. x°)b) o, is bounded inH*(£2), (5.18)
where the distributiorEo(x, x0) in x0 € R” satisfies
L0y Eo(x, x%) +8(x —x°) 1 =0. (5.19)

Sincew andwg have the same singularity at the tip of the needle, we argue that in analyzing
the blow-up behavior of (¢, r) we can replaca by wg in (5.15). Our aim now is to justify
this claim rigorously.

To begin, we want to show that

Lemma 5.7. There exists a constant- 0 such that for, N ¥ = @ we have

f lwol?dx < c. (5.20)

BR\Z

This lemma indicates that the? norm of wg over Bg \ ~ stays bounded as the tip of
the needle approaching the crack.

It suffices to prove Lemma 5.7 as the tip of the needle is sufficiently close to the crack.
To this end, letr® = r(1r) € Bg \ ¥ anda = x(T(r, X)). Assume that? is sufficiently
close toa. In other words, letB.(a) be an open ball of radius @ ¢ « 1 centered at,
thenx® € B.(a). In order to prove (5.20), we would like to know the behaviorugf in
B:(a). Now we assume that is so small thatBy; (a) N ¥ =: ¥, C ¥. Without loss of
generality, we suppose’ € £2_. SinceX e C?, we can find a domaif® with 32¢ € C2
such that(B.(a) N 2_) C 2% Cc 2_ and X, C 9£2¢ (choosings smaller if necessary).

Let w_ € H1(£2¢) be the solution of

Lw_=0 in°%,
T(D,v)i_ =—T(D,v)Go(-,x% onZX, (5.21)
w_=0 0ondR\X,.

We now claim that

Lemma58. [ |W_|2dx < ¢ < o0 asx?— a.
Proof. We adopt arguments in [7] to our case here. bt the solution of
;Cv == 17}7 |n Qia

T(D,v)v=0 onXx,,
v=0 o0ndNt\X,.
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The standard elliptic regularity theorem implies that
0l rzgoe ) < cf| - ”LZ(Qi)
for some constant > 0. By the light of the Sobolev embedding theorem, we have that
‘v(x) - v(y)‘ <clx — yll/zH w_ HLZ(QE)’ Vx,ye £2° and
lvllLe(ee) < CHiB* ”LZ(Qi)' (5.22)

Using Green’s formula, we obtain

/|m_|2dx=/zv.§_dx=/(.cvi__v.cﬁ_)dx
i i Q°f

:/v -T(D,v)Go(x, x%) dS,
b8

= /(v(x) — v(xo)) -T(D, v)ao(x,xo) dsy

e

+v(xo)~/T(D,v)50(x,x0) ds,. (5.23)
e

On the other hand, we note that
EGo(x, xo) =0
for x € Bo.(a) N 24, therefore,
v(xo) . / T (D, v)(_}o(x,xo) ds, = —v(xo) . / T (D, v)ao(x,xo) ds,. (5.24)
>R 3B (a)N24
Substituting (5.24) into (5.23) and taking advantage of (5.22), we have that

~ |2 ~ |2
[ Fae, = [ 13- P
Q°

< c{/’x —xo‘l/z‘T(D, U)Go(x,xo)’ ds,
Xe

n / |T(D,v)ao(x,xo)|de}Hw_”Lz(m). (5.25)

0 B2: (a)NS$24
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In view of (5.18) and the singularity dfo(x, x%), we deduce that
/|x —x0|1/2|T(D, U)Go(x,x0)| ds, + / |T(D, v)éo(x,xo)|de <c¢, (5.26)
Xe 0B (a)N24

where ¢ is a uniform constant as® — 4. This lemma now follows from (5.25)
and (5.26). O

We are now ready to prove Lemma 5.7.

Proof of Lemmab5.7. Define

= ._{Go(x,xo) for x € Bas(a) N 24,
Lo for x € Bpe(a) N 2_.

Recall thatx® € B, (a) N £2_. So we have
Liio=0 inBo(a)\ X,
and
/ |ﬁ)'o|2dx <c asx’>a. (5.27)
B (a)\ X,

Let ¥ (x) € C°(R") be a cut-off function with supl) C Bz:(a) andy = 1 on Bg(a).
Thenwg := wo — ¥ wo satisfies

Lw)y=—div(C(x)(o ® Vi) — (C(x)VBo)Vy = F in Bg\ X,
T(D,v)wy=—T(D,v)(Go(x, x°) — ¥ Go(x,x%) onZX, (5.28)
wy=0 OnBg.

Note thatF =0 in B.(a) \ ¥ andT (D, v)(G(x, x%) — ¥ Go(x,x%)) =0 onB.(a) N X.

Itis readily seen that F || ;2 5,.\ 5 and [ T (D, v)(Go(x, x0) = ¥ Golx, x0) I 51125, are
uniformly bounded as® — a. Therefore, by the regularity theorem for (5.28), we have
that

Hw(S”Hl(BR\f) <<

uniformly asx® — a, which immediately gives
¢ asx’—>a. (5.29)

” w6||L2(BR\f) <

Now the estimate (5.20) is an easy consequence of (5.27) and (5129).
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Now we are able to complete the proof of Theorem 5.6.
Proof of Theorem 5.6. Let w” = w — wo, thenw” satisfies

(L + 0w’ = —w?wg in B\ Z,
T(D,v)w”" =—=T(D,v)(G(,r(t)) — Go(-,r(?))) onx, (5.30)
w”=0 onSg.

It is not hard to check thaG&,r(t)) — Go(-,r(t)) € H,%C(IR{"). Moreover, Lemma 5.7
implies thatw?wg € L2(Bg \ X) uniformly asx® — a. Therefore, the elliptic estimate
for (5.30) leads to

lw — woll g2 g\ 5) = [ w//”Hl(BR\f) <c uniformly asx® — a (5.31)
for somec > 0. Note that
o(w) - 8(@) = o (wp) - 8(@0) + o (wo) - £(w — wo) 4+ o (w — wo) - e(wo)
+ o (w — wo) - £(w — wo)

= C(x)e(wo) - £(Wo) + &(wo) - C(x)e(w — wo) + C(x)e(w — wo) - &(wWo)
+ C(x)e(w — wp) - s(w — wo). (5.32)

By the strong convexity condition and the inequality (5.8) with<@ < §/4, we get
from (5.32) that

|CllL(Bg) + 5) le(w — wo)|2. (5.33)

8 1
o(w) - s(w) > §|8(wo)|2 — <2—§|

In view of (5.20), (5.31) and (5.33), analyzing the blow-up behavidr(efr) is equivalent
to estimating

/ | (wo) | dx
BR\Z

asx% — a. It was shown in [15] that

f |8(w0)|2dx — oo whenx® - q.
Br\Z

So Theorem 5.6 is proved.O

We now summarize the reconstruction algorithm of our method.
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Reconstruction Algorithm.

Step 1. Compute the Dirichlet-to-Neumantiy map onSg fromG s (x, y, w) forall x, y €
Sg using the formula (5.11).

Step 2. Given a needle = {r(¢): 0< ¢ < 1} and construct; satisfying (5.13).

Step 3. Computeg; = vj|s, and evaluate the indicator functidiiz, r) := lim;_ (g},
(Ag— Ax)gj).

Step 4. Increaser and search for where|I(r, t)| becomes very large. Denote thidy
ty(r, X).

Step 5. Choose many needlesand repeat all previous steps. Draw some surfgcevhich
is close enough to the pointg(r, X) for theser. X, gives an approximation af'.
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