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Abstract

We consider the inverse problem, in two and three dimensions, of identifying elastic crack
bedded in an inhomogeneous anisotropic elastic medium using point sources. The observa
is given by the near-field measurements of the outgoing Green’s function for the related sta
system. We give a reconstruction algorithm for this inverse problem.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we consider the inverse problem of identifying cracks from the near
measurements of the outgoing Green’s function for the stationary elasticity system
inhomogeneous anisotropic medium inR

n. Throughout the paper, we considern = 2 or 3.
This is a sequel to our earlier paper [15] in which we dealt with the same problem by
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boundary measurements for the static system. Similar to the result in [15], our focu
is also on the reconstruction issue.

The inverse problem is described as follows. We put sources and receivers along
nected, closed curve (n = 2) or connected, closed surface (n = 3) which is large enough t
include all inhomogeneities and cracks of the probed region. Each source on the c
surface induces a scattered field due to the inhomogeneities and the cracks. The s
field is then recorded by receivers on the same curve or surface. Suppose that we k
the information on the probed medium expect for the elastic cracks. The inverse prob
to reconstruct the cracks from these measurements. A related inverse problem for a
equation was considered in [7].

The solution of the inverse problem requires a full understanding of the relate
rect problem which is the existence and uniqueness of the outgoing Green’s funct
the inhomogeneous anisotropic elasticity system. As usual, we assume that the m
is homogeneous outside of a large ball. However, unlike most of the literature on
tic scattering, we assume that the homogeneous part is stillanisotropic. Even the direc
problem in this case is quite difficult given that we are considering the full anisot
elastic system. Our method for obtaining the outgoing Green’s function and its prop
is to prove the existence and uniqueness in appropriate spaces of the scattering so
the exterior of cracks for the inhomogeneous anisotropic elasticity system. To chara
the scattering solution, we need to impose certain radiation conditions at infinity.
the medium is anisotropic outside of a large domain, the classical Sommerfeld–Kup
radiation conditions are not applicable in this case. For the homogeneous anisotrop
ticity system in two and three dimensions, Natroshvili [19,20] established the gener
Sommerfeld–Kupradze radiation conditions by analyzing the radiation pattern of th
cillation equations under some restrictions on the slowness curves. Here we will im
the same restrictions on these curves and adopt the radiation conditions derived
and [20].

In proving the existence and uniqueness of the scattering solution, we assume t
unique continuation propertyholds for the anisotropic elasticity system considered in
paper. It should be noted that the unique continuation property for general aniso
elasticity systems is still an open problem. Nonetheless, in two dimensions, the u
continuation property has been proved for anisotropic elasticity with Lipschitz coeffic
under some generic conditions [16,17]. We remark that if we assume the unique co
tion property then the Runge approximation property is valid. The latter plays an imp
role in reconstructing the cracks. Combining the unique continuation property and t
diation conditions, we can prove the uniqueness of the scattering solution. We then
the existence of the scattering solution by a Fredholm-type theorem, which is inspi
Lax and Phillips’ work [13].

In this paper we will only consider “insulating” cracks which means that the trac
vanishes on the cracks. The scattering solution is generated by the source term. T
outgoing Green’s function is the Schwartz kernel of the map from the source term
scattering solution. We will first establish the scattering solution with the source te
L2

comp, i.e., compactly supportedL2 functions. However, for the purpose of studying t
inverse problem, we need to allow the source term to be in a more general space,

the dual space ofH 1

comp (see the definition in Section 3).
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Our strategy for identifying cracks from the near-field measurements of the out
Green’s function at a fixed energy have two main steps. Firstly, we determine the Diri
to-Neumann map for the stationary system from the near-field of the outgoing G
function at a fixed energy. Secondly, using this Dirichlet-to-Neumann map, we can
the method developed in [15] to identify cracks which are treated as buried in a
anisotropic body.

There is an extensive literature investigating the crack determination problem by b
ary measurements. We refer to a recent survey article [3] and references there fo
developments. The inverse scattering problem from a crack for acoustic waves was
in [1] and [11]. Extending techniques in those two papers to elastic waves were dev
in [2] and [12], respectively. The elastic medium considered in [2] and [12] is homogen
and isotropic.

The plan of this paper is as follows. In Section 2, we will describe the radiation
ditions derived in Natroshvili’s papers [19] and [20]. In Section 3, we prove the lim
absorption principle for the inhomogeneous anisotropic elasticity system inR

n based on
the recent work [18]. Then the limiting absorption principle will be used to establish
existence of the scattering solution in the whole space. In Section 4, we prove the ex
and uniqueness of the scattering problem in the presence of cracks. The inverse p
of determining cracks is discussed in Section 5.

2. Preliminaries

Let C = (Cpqrs) be a homogeneous elastic tensor satisfying the symmetry proper

Cpqrs = Cqprs = Crspq ∀p,q, r, s (2.1)

and the strong convexity condition, i.e., there exists aδ > 0 such that

CE · E � δ|E|2 (2.2)

for any symmetric matrixE = (Ers), where

(CE)pq =
∑
rs

CpqrsErs and A · B =
∑
pq

ApqBpq for matricesA,B.

Here and below, unless otherwise indicated, all Roman indices excepti andn are set to
be from 1 ton, wheren = 2 or 3. We reservei for the imaginary number

√−1. Given
R � ω > 0, define the matrix differential operator

L(D,ω) = L(D) + ω2I,

whereL(D) = (Lpr(D)) with

Lpr(D) =
∑

Cpqrs∂q∂s . (2.3)

qs
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The symbol ofL(D,ω) is given by(ω2I − L(ξ)) =: L(ξ,ω) with L(ξ) = (Lpr(ξ)) and

Lpr(ξ) =
∑
qs

Cpqrsξqξs .

Let φ(ξ,ω) be the common denominator of entries ofL−1(ξ,ω). For the isotropic case,
is not hard to compute that

φ(ξ,ω) = c0
(|ξ |2 − ω2(λ + 2µ)−1)(|ξ |2 − ω2µ−1) (2.4)

for some constantc0. The formula (2.4) is valid forn = 2 or 3. Since we will focus on th
“genuinely” anisotropic case in this paper, we assume that

φ(ξ,ω) = detL(ξ,ω).

Using the spherical coordinatesξ = rθ with r � 0 andθ ∈ S
n−1, we get that

φ(ξ,ω) = φ
(
rθ,ω2) = det

(
ω2 − r2L(θ)

) = (−1)ndetL(θ)det
(
r2 − ω2L−1(θ)

)
.

Note thatL−1(θ) exists for allθ ∈ S
n−1 because of the strong convexity condition (2.

Now we suppose that there existsn functionsk1(θ), . . . , kn(θ) with

0< δ1 < k1(θ) < · · · < kn(θ) < δ2 ∀θ ∈ S
n−1 (2.5)

such that

φ(ξ,ω) = (−1)ndetL(θ)

n∏
j=1

(
r2 − ω2k2

j (θ)
)
.

Let the surface (or curve)Sj be defined by{(r, θ): r = ωkj (θ)}. Obviously,φ(ξ,ω) van-
ishes on the curveSj . We now assume that

S2, . . . , Sn are convex. (2.6)

Notice that the convexity ofS1 is also assumed in [19] and [20]. However, this assump
is redundant. The convexity ofS1 is a well-known property in the theory of anisotrop
elastic waves (see [5] for detailed arguments). From (2.5) we can see that∇φ(ξ,ω) �= 0
on Sj for all j . Furthermore, it follows from (2.6) that for anyx �= 0 there exists a uniqu
point ξj onSj such that the unit outer normal vectorϑ(ξj ) of Sj at ξj is parallel tox, i.e.,
ϑ(ξj ) ‖ x. Sinceφ(−ξ,ω) = φ(ξ,ω), the normal vectorϑ(−ξj ) is equal to−ϑ(ξj ). In
fact, in terms ofφ(ξ,ω), the unit normal vectorϑ(ξj ) is given by

(
j
)

j ∇φ(ξj ,ω)

ϑ ξ = (−1) |∇φ(ξj ,ω)| .
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Based on conditions (2.5) and (2.6), Natroshvili constructed fundamental solu
for L(D,ω) by considering the limits ofΓ (x, τε) as±ε → 0, whereτε = ω + iε and

L(D,τε)Γ (x, τε) = (
L(D) + τ2

ε I
)
Γ (x, τε) = δ(x)I.

In fact, by the light of Fourier transform,Γ (x, τε) is given by

Γ (x, τε) = 1

(2π)n

∫
Rn

L−1(ξ, τε)e
ixξ dξ = 1

(2π)n

∫
Rn

φ−1(ξ, τε)L
∗(ξ, τε)e

ixξ dξ,

whereL(ξ, τε) = (τ2
ε − L(ξ)) andL∗(ξ, τε) is the adjoint of the matrixL(ξ, τε), i.e., the

transpose of the cofactor ofL(ξ, τε). It is easy to see that the matrixΓ (x, τε) ∈ C∞(Rn \
{0}) and, together with all its derivatives, decay exponentially in|x| as|x| → ∞. Here we
only consider the outgoing fundamental solution, denoted byΓ (x,ω), corresponding to
the limit of Γ (x, τε) as+ε → 0. It was proved in [19] and [20] that the limit

lim+ε→0
Γ (x, τε) = Γ (x,ω)

exist for all x �= 0 and the limit exists uniformly in|x| > a > 0. On the other hand, fo
sufficiently large|x|, we have the following asymptotic formula

Γ (x,ω) =
∑
j

|x|−(n−1)/2Rje
ixξj + O

(|x|−(n+1)/2), (2.7)

whereξj ∈ Sj with ϑ(ξj ) ‖ x and

Rj (η) := Rj

(
ξj (η)

) = (−1)j
cn√ℵ(ξ j )|∇φ(ξj ,ω)|L

∗(ξj ,ω
)
,

whereη = x/|x|, cn is a constant depending onn, andℵ(ξ j ) is the Gaussian curvature
Sj at ξj . Furthermore, for anyy in a compact set and any multi-indicesα,β, we have tha

∂α
x ∂β

y Γ (x − y,ω) =
∑
j

|x|−(n−1)/2Rj (η)
(
ξj

)α(−ξj
)β

ei(x−y)ξj

+ O
(|x|−(n+1)/2) (2.8)

as|x| → ∞.
Now we are ready the radiation condition for the anisotropic elasticity systemL(D,ω).

Let the functionu(x) be C1 for large |x|, then u(x) is said to satisfy thegeneralized
Sommerfeld–Kupradze(outgoing) radiation conditionsif{

u(x) = ∑
j u(j)(x), u(j) = O(|x|−(n−1)/2),

(2.9)

∂lu

(j)(x) − iξ
j
l u(j)(x) = O(|x|−(n+1)/2), j, l = 1, . . . , n,
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hold, whereξj ∈ Sj satisfiesϑ(ξj ) ‖ x. Whenu(x) is a vector or matrix function, w
say thatu(x) satisfies (2.9) if each component ofu satisfies (2.9). It is easy to see th
Γ (x,ω) satisfies the radiation conditions (2.9). Similar to the isotropic case, a functu

in R
n \ O satisfying (2.9) has an integral representation formula, whereO is an open

bounded smooth domain. More precisely, letu ∈ H 2
loc(R

n \ O) ∩ C1(Rn \ O) satisfy the
radiation conditions (2.9) andL(D,ω)u be compactly supported, then

u(x) =
∫

Rn\O
Γ (x − y,ω)L(Dy,ω)u(y)dy +

∫
∂O

{
Γ (x − y,ω)

[
T

(
Dy,η(y)

)
u(y)

]
− [

T
(
Dy,η(y)

)
Γ (x − y,ω)

]t
u(y)

}
dS ∀x ∈ R

n \ O (2.10)

and

u(x) =
∫
Rn

Γ (x − y,ω)L(Dy,ω)u(y)dy ∀x ∈ R
n

if O = ∅, whereT (D,η) is the boundary traction operator defined by

(
T (D,η)

)
pr

=
∑
qs

Cpqrsηq∂s

with η = [η1, . . . , ηn]t being the unit outer normal of∂O (see [19] and [20]).

3. The scattering problem in the whole space

In this section we would like to discuss the scattering problem for the inhomoge
anisotropic elasticity system in the whole space. We aim to solve the following scat
problem {

Lu + ω2u = h ∈ L2
comp(R

n) in R
n,

u satisfies the radiation conditions(2.9),
(3.1)

where

Lu = div
(
C(x)∇u

)
.

Throughout the paper, we assume that the elastic tensorC(x) = (Cpqrs(x)) ∈ C1(Rn) sat-
isfies the full symmetry properties
Cpqrs(x) = Cqprs(x) = Crspq(x) ∀p,q, r, s andx ∈ R
n (3.2)
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and the strong convexity condition, i.e., there exists aδ̃ > 0 such that for allx ∈ R
n and

symmetric matrixE

C(x)E · E � δ̃|E|2. (3.3)

Moreover, there exists aR > 0 such thatC(x) = C for |x| > R, whereC is a homogeneou
anisotropic elastic tensor. As mentioned in the Introduction, we suppose that the u
continuation property holds for anyH 2

loc(R
n) solutionu(x) of Lu + ω2u = 0.

We now formulate (3.1) in a weak sense. To this end, let us introduce a weighted S
space. Let� = (1+ |x|2)−d/2 with d > 1/2 and the weighted inner product

〈f,g〉H1,−d (Rn) = 〈�f,�g〉 + 〈�∇f,�∇g〉 for f,g ∈ H 1
loc

(
R

n
)
.

Denote

H 1,−d
(
R

n
) = completion ofH 1(

R
n
)

with respect to‖ · ‖H1,−d (Rn) = 〈· , ·〉1/2
H1,−d (Rn)

.

Definition 3.1. A functionu ∈ H 1,−d(Rn) which isC1 smooth for sufficiently large|x| is
called a scattering solution of (3.1) ifu satisfies the radiation conditions (2.9) and

∀ψ(x) ∈ C∞
0

(
R

n
)
, −F(u,ψ) + ω2〈u,ψ〉 = 〈h,ψ〉.

Here the sesquilinear formF(·, ·) is defined by

F(u, v) =
∫
Rn

∑
pqrs

Cpqrs(x)∂sur∂qvp dx =
∫
Rn

∑
pq

σpq∂qvp dx

=
∫
Rn

C(x)ε(u) · ε(v)dx,

whereε(u)pq = (1/2)(∂qup + ∂puq) is known as the strain tensor.

We will prove the existence of a scattering solution to (3.1) by the limiting abs
tion principle. To establish the limiting absorption principle, we first prove the unique
whose proof relies heavily on the radiation conditions and the unique continuation
erty.

Theorem 3.2. There exists at most one solution to(3.1).

Proof. It suffices show that a homogeneous solution of (3.1) is trivial, namely, any sol
u to (3.1) withh = 0 must be zero. First of all, we show that a solutionu of (3.1) with

h = 0 decays at a rate of|x|−(n+1)/2 at infinity. The same phenomenon was proved for



598 G. Nakamura et al. / Advances in Applied Mathematics 34 (2005) 591–615

nts

3.5)
ult,

prove

be
the homogeneous anisotropic elasticity system in [19] and [20]. Sinceh = 0, in light of
Green’s formula, we have∫

SR′

{
T

(
D,η(x)

)
u(x) · u(x) − u(x) · T (

D,η(x)
)
u(x)

}
dS = 0 ∀R′ > R, (3.4)

whereSR′ = {|x| = R′} andη = x/|x|. With the identity (3.4) at hand, the same argume
given in [19, Lemma 12] and [20, Lemma 4.1] provide the proof ofu = O(|x|−(n+1)/2) as
|x| → ∞.

The decaying property ofu clearly implies

u(x) = o
(|x|−(n−1)/2) as|x| → ∞.

Let χ(x) = χ(|x|) ∈ C∞(Rn) satisfy

χ(x) =
{

0 in |x| � R,

1 in |x| > 3R/2,

and setv(x) := χ(x)u(x). Then it is readily seen thatv(x) ∈ C∞(Rn) satisfies

v(x) = o
(|x|−(n−1)/2) as|x| → ∞ (3.5)

and

L(D,ω) = (
L(D) + ω2I

)
v(x) = g(x),

where supp(g) ⊆ {|x| � 3R/2}. Define the differential operatorL∗(D,ω) with symbol
L∗(ξ,ω). It is readily seen that

L∗(D,ω)L(D,ω)v = φ(D,ω)v = L∗(D,ω)g =: g̃,

whereφ(D,ω) is the differential operator (scalar) with symbolφ(ξ,ω). Likewise, we have
supp(g̃) ⊆ {|x| � 3R/2}. Having conditions (2.5), (2.6) and the asymptotic behavior (
in mind, we now apply Littman’s result [14], which is a generalization of Rellich’s res
to conclude that

u(x) = v(x) = 0 in
{|x| > 3R/2

}
.

Now using the unique continuation property, we get thatu(x) ≡ 0 in R
n. �

Having obtained the uniqueness result, we can use the same method in [18] to
the limiting absorption principle for the operatorL in R

n. In [18], the limiting absorption
principle forL with Lipschitz elastic tensor inR2 were established. The method can

extended toR3 without essential modifications.
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Theorem 3.3 (Limiting absorption principle).Let C ⊃ Q+ := (ω0,ω1) × i(0, ε), where
0< ω0 < ω1 andε > 0. Assumeh ∈ L2

comp(R
n). Then the map

R(·) :Q+ → H 1,−d(Ω)

defined byR(z)h = (L+ z)−1h is uniformly continuous.

By virtue of the limiting absorption principle, the solution of (3.1) is now given by

u = (
L+ ω2I

)−1
h := lim+ε→0

(
L+ (

ω2 + iε
)
I
)−1

h, (3.6)

where the limit exists inH 1,−d(Rn). SinceC(x) ∈ C1(Rn), in view of the elliptic regularity
theorem (see [6] for example), we have thatu(x) ∈ H 2

loc(R
n).

4. The scattering problem in the presence of cracks

In this section we will face our target problem—the scattering problem in the ext
of the crack. Since the present paper is a continuation of [15], we will follow the nota
used there. To describe the crack, we assume thatΣ̃ ⊂ R

n is a C2 closed Jordan curv
(n = 2) or closed connected surface (n = 3) andΣ ⊂ Σ̃ is an open curve or surface. Wh
n = 3 we suppose that the boundary∂Σ of Σ is C2. HereΣ will be considered as a crac
We assume thatΣ ⊂ BR , namely, the crack lies in the inhomogeneous part. We can
several number of cracks. For this case our theory also works without any essential c
Let Ω− be the open subset ofR

n with boundaryΣ̃ andΩ+ := R
n \Ω−. The trace operato

from Ω± to Σ̃ is denoted byγ±, respectively. The direction of the unit normalν to Σ̃ is
directed intoΩ+.

We now introduce two Sobolev spacesHk(Σ) and Ḣ k(Σ), which are subspaces
Hk(Σ̃), defined by

Hk(Σ) = Hk
(
Σ̃

)∣∣
Σ

and

u ∈ Ḣ k
(
Σ

)
iff u ∈ Hk

(
Σ̃

)
and supp(u) ⊆ Σ,

respectively. To deal with the exterior problem, we also need a weighted Sobolev sp
the cracked domainΩ := R

n \ Σ

H 1,−d(Ω) := {
u ∈ D′(

R
n
)
: u± := u|Ω± , whereu− ∈ H 1(

R
n
)∣∣

Ω− , u+ ∈ H 1,−d(Ω+);

[u] := γ+u+ − γ−u− = 0 onΣ̃ \ Σ
}
,

where‖u‖H1,−d (Ω) := ‖u−‖H1(Ω−) + ‖u+‖H1,−d (Ω+) andH 1,−d(Ω+) := H 1,−d(Rn)|Ω+ .

Also, we define
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H 1(Ω) := {
u ∈ D′(

R
n
)
: u± := u|Ω± , whereu− ∈ H 1(Ω−), u+ ∈ H 1(Ω+);
[u] := γ+u+ − γ−u− = 0 onΣ̃ \ Σ

}
and

H 1
comp(Ω) := {

u ∈ H 1(Ω) and supp(u) is compact
}
.

Now we consider the scattering problem in the exterior of the crack
Lv + ω2v = f in Ω,

T (D,ν)v = 0 onΣ,

v satisfies the radiation conditions(2.9),

(4.1)

where f ∈ L2
comp(Ω) and the traction operatorT is defined in terms ofC(x) and

T (D,ν)v = 0 is interpreted asT (D,ν)v = γ−T (D,ν)v = γ+T (D,ν)v = 0. In the weak
formulation, solving (4.1) is equivalent to findingv ∈ H 1,−d(Ω) such that{−FΩ(v,ψ) + ω2〈v,ψ〉 = 〈f,ψ〉 ∀ψ ∈ H 1

comp(Ω),

v satisfies the radiation conditions(2.9),
(4.2)

where

FΩ(v,ψ) =
∫
Ω

C(x)ε(v) · ε(ψ)dx.

Note that by the standard elliptic regularity theorem,v possesses enough smoothnes
make sense of the radiation conditions. Also, the conditionT (D,ν)v|Σ = 0 is implicitly
enforced in (4.2). The task now is to prove the uniqueness and existence ofv to (4.2). We
begin with the uniqueness.

Theorem 4.1. There exists at most one solution to(4.2).

Proof. The proof of this theorem is similar to that of Theorem 3.2. We will show th
f = 0 thenv = 0 in Ω . ChoosingR̃ > R and using Green’s formula given in [15] (see t
formula (A.1) there) overBR̃ \ Σ , we can derive that

0=
∫

BR̃\Σ

{
v
(
L+ ω2)v − v

(
L+ ω2

)
v
}

dx =
∫

BR̃\Σ

{
vLv − vLv

}
dx

=
∫ {

T (D,η)v(x) · v(x) − v(x) · T (D,η)v(x)
}

dS −
∫ [

T (D,ν)v
]
γ+v dS
SR̃ Σ
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already
−
∫
Σ

γ−T (D,ν)v
[
v
]
dS +

∫
Σ

[
T (D,ν)v

]
γ+v dS

+
∫
Σ

γ−T (D,ν)v[v]dS. (4.3)

Here we want to remark that the traction operatorT is defined in terms of the inhomog
neous elastic tensorC(x), which is homogeneous onΓR̃ for all R̃ > R. Taking advantage
of T (D,ν)v = 0 onΣ , we obtain from (4.3) that∫

SR̃

{
T (D,η)v(x) · v(x) − v(x) · T (D,η)v(x)

}
dS = 0,

which is the same integral as (3.4). Using the arguments in [19, Lemma 12] an
Lemma 4.1] again, we havev = O(|x|−(n+1)/2) as |x| → ∞. Now combining Littman’s
theorem and the unique continuation property, we conclude thatv = 0 in Ω . �

We now turn our attention to the existence of (4.2). The line of argument is to redu
exterior scattering problem to an interior problem. The idea is due to Lax and Phillips
Let Uh(x) ∈ H 1,−d(Rn) be the solution of (3.1) with right-hand sideh ∈ L2

comp(R
n) and

supp(h) ⊂ BR1 for someR1 > 0. Define

V (x) = Uh(x) − ϕ(x)W(x),

whereϕ(x) ∈ C∞
0 (Rn) equals 1 in a neighborhood ofΣ and zero inRn \ BR1. Then we

can deduce that

LV + ω2V = h − (
L+ ω2)(ϕW).

Therefore,V is a scattering solution of (4.2) ifW solves{
f = h − (L+ ω2)(ϕW) in BR1 \ Σ,

T (D,ν)Uh = T (D,ν)W onΣ, W = 0 onSR1.
(4.4)

Note that the problem (4.4) is interpreted in the weak sense.
The idea now is to relateW to h. There are many ways to do this. Here we chooseW

to be the solution of{
LW = 0 in BR1 \ Σ,

T (D,ν)W = T (D,ν)Uh onΣ, W = 0 onSR1.
(4.5)

As usual, (4.5) is understood in the weak sense. The well-posedness of (4.5) was

proved in [15] and we have thatW ∈ H 1(BR1 \ Σ), where
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H 1(BR1 \ Σ
) := {

u ∈ D′(BR1): u± := u|Ω± , whereu− ∈ H 1(Ω−), u+ ∈ H 1(BR1 \ Ω−
);

[u] := γ+u+ − γ−u− = 0 onΣ̃ \ Σ
}
.

It is easy to see that the mapQ :h → (L + ω2)(ϕW) is linear and determined by th
compositions

h → Uh → T (D,ν)Uh|Σ → W → (
L+ ω2)(ϕW). (4.6)

We observe that(
L+ ω2)(ϕW) = ϕLW + [L, ϕ]W + ω2ϕ = [L, ϕ]W + ω2ϕW,

where[L, ϕ] is the commutator ofL andϕ. It should be noted that[L, ϕ] contains only
first derivatives. Recall thatUh ∈ H 2

loc(R
n). Thus, the spaces associated with the comp

tions (4.6) are

L2(BR1) → H 2(BR1) ↪→ H 1(BR1) → H−1/2(Σ) → H 1(BR1 \ Σ
) → L2(BR1).

From the compact embedding property ofH 2(BR1) ↪→ H 1(BR1), we get:Q :L2(BR1) →
L2(BR1) is compact. In turn, it remains to solve the Fredholm-type equation inL2(BR1)

(I − Q)h = f. (4.7)

Therefore, to complete the proof of existence, we only need to show the injectiv
(I − Q).

So if f = 0, thenV solves (4.2) with homogeneous data. By virtue of Theorem
we have thatV ≡ 0 in Ω and therefore,Uh = ϕW in BR1 \ Σ . Sinceϕ(x) is 1 nearΣ ,
Uh = W nearΣ , namely,W is H 2 nearΣ . It turns outW solves

LW = 0 in BR1, W = 0 onSR1.

Consequently,W is trivial and henceh = f + (L + ω2)(ϕW) = 0 in BR1. Sinceh ∈
L2

comp(R
n) and supp(h) ⊂ BR1, we haveh ≡ 0. Thus, we have shown that

Theorem 4.2. There exists a solution to(4.2).

5. Inverse problem

This section is devoted to the study of the inverse problem. We first precisely form
the inverse problem we have in mind. Letvf be the scattering solution of (4.1) forf ∈
L2

comp(Ω). We can write

vf (x) = Gf (x) :=
∫

GΣ(x,y,ω)f (y)dy,
Ω
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whereGΣ(x,y,ω) is called the outgoing Green’s function. It is clear that the inte
operatorG mapsL2

comp(Ω) to H 1,−d(Ω). In this paper we consider the following inver
problem

Inverse Problem. Identify Σ from GΣ(x,y,ω) for x, y ∈ SR at a fixedω > 0.

As stated in the introduction, we are concerned with giving reconstruction formula
this inverse problem. A reconstruction algorithm of our method will be given at the e
this section.

5.1. Near-field measurements to the Dirichlet-to-Neumann map

The first step in our method for this inverse problem is to convert the near-field mea
ment at a fixed energy to the Dirichlet-to-Neumann map, or the displacement-to-tr
map, onSR . In order to do so, we would like to extend the mapping property ofG. More
precisely, we will show thatG mapsH−1

comp,Σ(Ω) to H 1,−d(Ω), where

H−1
comp,Σ(Ω) := {

u ∈ (
H 1

comp(Ω)
)∗: supp(u) is compact and supp(u) ∩ Σ = ∅}

.

The proof of this fact is based on the following a priori estimate.

Lemma 5.1. Letu ∈ H 1,−d(Ω) satisfyT (D,ν)u = 0 onΣ , the radiation conditions(2.9),
andf := (L+ ω2)u ∈ (H 1

comp(Ω))∗. Then there exists a constantc > 0 such that

‖u‖H1,−d (Ω) � c
(‖f ‖(H1

comp(Ω))∗ + ‖u‖L2,−d (Ω)

)
, (5.1)

where‖u‖2
L2,−d (Ω)

= ∫
Ω

|ρu|2 dx.

Proof. This lemma can be proved by straightforward computations. Indeed, letχ(r) ∈
C∞

0 (R) with 0� χ � 1 satisfy

χ(r) =
{

1 r � 1,

0 r � 2,

and defineχε(r) = χ(εr). In what follows we denote|x| = r . It is readily seen tha
(1+ r2)−dχε(r)

2u ∈ H 1
comp(Ω). Therefore, using the weak formulation we have that

〈
f,

(
1+ r2)−d

χ2
ε u

〉 = −
∫
Ω

C(x)ε(u) · ε((1+ r2)−d
χ2

ε u
)
dx

+
∫
Ω

ω2u · (1+ r2)−d
χ2

ε udx. (5.2)
We now treat the first term on the right side of (5.2). Observe that
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he
C(x)ε(u) · ε((1+ r2)−d
χ2

ε u
)

= C(x)ε(u) · ((1+ r2)−d/2
χε

)
ε
((

1+ r2)−d/2
χεu

)
+C(x)ε(u) · 1

2

[
∇((

1+ r2)−d/2
χε

) ⊗ (
1+ r2)−d/2

χεu

+ (
1+ r2)−d/2

χεu ⊗ ∇((
1+ r2)−d/2

χε

)]
= C(x)ε

((
1+ r2)−d/2

χεu
) · ε((1+ r2)−d/2

χεu
)

−C(x)

{
1

2

[∇((
1+ r2)−d/2

χε

) ⊗ u + u ⊗ ∇((
1+ r2)−d/2

χε

)]}
×

{(
1+ r2)−d/2

χεε(u) + 1

2

[∇((
1+ r2)−d/2

χε

) ⊗ u + u ⊗ ∇((
1+ r2)−d/2

χε

)]}
+C(x)ε(u) · 1

2

[
∇((

1+ r2)−d/2
χε

) ⊗ (
1+ r2)−d/2

χεu

+ (
1+ r2)−d/2

χεu ⊗ ∇((
1+ r2)−d/2

χε

)]
. (5.3)

In view of the strong convexity condition and Korn’s inequality, we get that∫
Ω

C(x)ε
((

1+ r2)−d/2
χεu

) · ε((1+ r2)−d/2
χεu

)
dx

� c1

∫
Ω

∣∣∇((
1+ r2)−d/2

χεu
)∣∣2 dx − c2

∫
Ω

(
1+ r2)−d

χ2
ε |u|2 dx (5.4)

for some positive constantsc1 andc2. It should be noted that Korn’s inequality holds in t
cracked domainΩ because of our assumptions onΣ . It is useful to compute

∇((
1+ r2)−d/2

χεu
) = u ⊗ ∇((

1+ r2)−d/2
χε

) + (
1+ r2)−d/2

χε∇u (5.5)

and

∇((
1+ r2)−d/2

χε

) = −d
(
1+ r2)−d/2−1

xχε + (
1+ r2)−d/2∇χε. (5.6)

On the other hand, we can see that∣∣〈f,
(
1+ r2)−d

χ2
ε u

〉∣∣ � ‖f ‖(H1
comp(Ω))∗

∥∥(
1+ r2)−d

χ2
ε u

∥∥
H1(Ω)

. (5.7)

To obtain the estimate (5.1)–(5.7), use the inequality

1
|ab| � ε̃|a|2 +
4ε̃

|b|2 (5.8)
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for small constant̃ε > 0, and letε → 0. Note that all terms containing∇χε will tend to
zero asε → 0. �

Now we can prove that

Theorem 5.2. There exists one and only one scattering solution of(4.1) for any f ∈
H−1

comp,Σ(Ω).

Proof. The uniqueness has been shown in Section 4. So we focus on the existenc
easy to see thatH−1

comp,Σ(Ω) ⊂ H−1
comp(R

n). Thus, if f ∈ H−1
comp,Σ(Ω), then there exist a

sequence of functionsfj ∈ L2
comp(Ω) such that

fj → f in
(
H 1

comp(Ω)
)∗

.

Denotevj ∈ H 1,−d(Ω) be the scattering solution of (4.1) associated withfj . Note thatvj

exists from the results in Section 4.�
Claim. supj ‖vj‖H1,−d (Ω) < ∞.

We assume the claim for this moment. Observe that the embeddingH 1,−d(Ω) →
L2,−d ′

(Ω) is compact for any 1/2< d < d ′. To see why this is true, we use the usual R
lich’s theorem forH 1(Ω−) and the compact embedding result for the weighted Sob
spaceH 1,−d(Ω+) in [4]. Therefore, there existv ∈ L2,−d ′

(Ω) and a subsequence of{vj },
still denoted by{vj }, such that

‖vj − v‖
L2,−d′

(Ω)
→ 0.

By the a priori estimate (5.1), we see that{vj } is a Cauchy sequence inH 1,−d ′
(Ω). So,

v ∈ H 1,−d ′
(Ω) andvj → v in H 1,−d ′

(Ω). To verify thatv is a scattering solution, w
recall the weak formulation forvj

−FΩ(vj ,ψ) + ω2〈vj ,ψ〉 = 〈fj ,ψ〉 ∀ψ ∈ H 1
comp(Ω).

Takingj → ∞ yields thatv satisfies

−FΩ(v,ψ) + ω2〈v,ψ〉 = 〈f,ψ〉 ∀ψ ∈ H 1
comp(Ω).

It remains to show thatv satisfies the radiation conditions (2.9). To this end, we choo
cut-off functionϕ ∈ C∞(Rn) such that{

0 |x| < R′,

ϕ(x) =

1 |x| > R′ + 1,
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whereR′ > 0 is large enough so thatBR ∪ ⋃
j supp(fj ) ⊂ BR′ . Note that

⋃
j supp(fj ) is

a bounded set. We now have that

ϕvj =
∫
Rn

Γ (x − y,ω)gj (y)dy,

wheregj (y) := gj (vj ,∇vj ,∇ϕ,∇2ϕ)(y) is supported inK := {R′ � |x| � R′ + 1} and
gj → g in L2(K). Therefore, lettingj → ∞, we get that

ϕv =
∫
Rn

Γ (x − y,ω)g(y)dy,

which implies thatv satisfies the radiation conditions.
To complete the proof, we need to prove the claim. Assume the claim is

namely, there exist a subsequence{vj } such that limj ‖vj‖H1,−d (Ω) = ∞. Set wj =
vj /‖vj‖H1,−d (Ω) and thus‖wj‖H1,−d (Ω) = 1. Using the compactness theorem, we can
a subsequence of{wj }, denoted by{wj } as usual, such thatwj → w in L2,−d ′

(Ω) and
w ∈ L2,−d ′

(Ω) for 1/2< d < d ′. By same arguments as above, we get thatw ∈ H 1,−d ′
(Ω)

andw is a radiation solution with zero source term (sincefj/‖vj‖H1,−d (Ω) → 0). By the
uniqueness,w ≡ 0 and we have the contradiction.�

We are ready to show that the Dirichlet-to-Neumann map onSR can be constructed b
the measurementsGΣ(x,y,ω) for all x, y ∈ SR and one fixedω > 0. Similar arguments
are also used in [10] (or [8]). Define the Dirichlet-to-Neumann mapΛΣ :H 1/2(SR) →
H−1/2(SR) by

ΛΣ(g) = T (D,η)v|SR
,

wherev is the solution of 
(L+ ω2)v = 0 in BR \ Σ,

T (D,ν)v = 0 onΣ,

v = g ∈ H 1/2(SR) onSR.

(5.9)

To make sure thatΛΣ is well defined, we assume that the boundary value problem
with g = 0 has only trivial solution. On the other hand, letve be the solution of

(L + ω2)ve = 0 in R
n \ BR,

ve = g onSR,

ve satisfies the radiation conditions,

whereL denotes the operatorL with homogeneous elastic tensorC (see (2.3)). Define
Λe(g) = T (D,η)ve|SR
.
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from

So we
Now giveng ∈ H 1/2(SR), we can defineMg ∈ H−1
comp,Σ(Ω) by

〈Mg,φ〉 = 〈g,φ|SR
〉 ∀φ ∈ H 1

comp(Ω).

Let vg be the scattering solution of (4.1) with the source term−Mg . Define

Ψg = vg|SR
.

Formally,Ψg is given by

Ψg(x) = −
∫
Ω

GΣ(x, y,ω)Mg(y)dy = −
∫
SR

GΣ(x, y,ω)g(y)dSR, x ∈ SR.

The following lemma plays a key role in constructing the Dirichlet-to-Neumann map
the near-field measurement.

Lemma 5.3.

(i) ΛΣ − Λe : H 1/2(SR) → H−1/2(SR) is injective.
(ii ) (ΛΣ − Λe)Ψ = I .

Proof. (i) This is an easy consequence of the uniqueness for the scattering solution.
aim to prove (ii). From the definition ofvg , we obtain that

〈g,φ|SR
〉 = 〈Mg,φ〉 =

∫
Ω

(
C(x)ε(vg) · ε(φ) − ω2vgφ

)
dx

=
( ∫

BR\Σ
+

∫
Rn\BR

)(
C(x)ε(vg) · ε(φ) − ω2vgφ

)
dx

= 〈
ΛΣ(vg|SR

),φ|SR

〉 − 〈
Λe(vg|SR

),φ|SR

〉
= 〈(

ΛΣ − Λe
)
Ψg,φ|SR

〉
. (5.10)

In deriving (5.10), we have used the variational formulations ofΛΣ andΛe. �
It is clear thatΨ is determined byGΣ(x,y,ω) for all x, y,∈ SR . Therefore, in view of

Lemma 5.3, we can constructΛΣ by near-field measurementsGΣ(x,y,ω) for x, y ∈ SR

using the formula

e −1
ΛΣ = Λ − Ψ . (5.11)
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5.2. Identifying the crack from the Dirichlet-to-Neumann map

Having the Dirichlet-to-Neumann mapΛΣ , we now want to constructΣ from it. For
this part of inverse problem, we will use the same ideas as in [15].

To begin, letr := {r(t) ∈ BR: 0 � t � 1} be a non-selfintersecting continuous cu
joining r(0), r(1) ∈ Γ with r(t) ∈ BR for 0< t < 1. This curver is called a needle. Defin

T (r,Σ) := sup
{
t : 0< t < 1, r(s) /∈ Σ for 0< s < t

}
.

Physically,T (r,Σ) can be interpreted as the first hitting time of the needler to Σ . It is
clear that ifT (r,Σ) = 1 then the needler does not touch the crackΣ . For any given
needler , we would like to find a characterization ofT (r,Σ). To do so, we define th
indicator functionI (t, r) by

I (t, r) := lim
j→∞

〈
gj , (Λ∅ − ΛΣ)gj

〉
, (5.12)

whereΛ∅ is the Dirichlet-to-Neumann map in the absence of cracks. The Dirichlet dagj

requires further explanations. Assume thatω2 is not a Dirichlet eigenvalue ofL in BR . Let
vj ∈ H 1(BR) (j ∈ N) satisfy

{
(L+ ω2)vj = 0 in BR,

vj → G(·, r(t)) (j → ∞) in H 1
loc(BR \ rt ),

(5.13)

wherert : = {r(s): 0< s � t}. Here the distributionG(·, x0) in x0 ∈ BR satisfies(
L+ ω2)G(·, x0) + δ

(
x − x0)b = 0

and (
G

(·, x0) − E
(·, x0)b)

x0∈BR
is bounded inH 1(BR),

where 0�= b ∈ C and the distributionE(x,x0) in x0 ∈ R
n satisfies(

LC(x0) + ω2)E(
x, x0) + δ

(
x − x0)I = 0.

Note thatC(x0) is a homogeneous elastic tensor withC(x) = C(x0) for all x ∈ R
n. The

existence ofvj is guaranteed by the Runge approximation property which is an easy
sequence of the unique continuation property. The existence ofG(·, x0) can be proved by
the same method in [8] or [9]. Now the Dirichlet datagj is given by
gj = vj |SR
.
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To further study the indicator functionI (t, r), we would like to rewrite it in an integra
form containing the so-calledreflected solutiondefined as follows. Letuj ∈ H 1(BR \ Σ)

be the solution of 
(L+ ω2)uj = 0 in BR \ Σ,

T (D,ν)uj = 0 onΣ,

uj = gj onSR

andwj = uj − vj ∈ H 1(BR \ Σ), then we can show that

Lemma 5.4 (Reflected solution).If rt ∩ Σ = ∅, thenwj → w in H 1(BR \ Σ) and w ∈
H 1(BR \ Σ) satisfies

(L+ ω2)w = 0 in BR \ Σ,

T (D,ν)w = −T (D,ν)G(·, r(t)) onΣ,

w = 0 onSR.

(5.14)

Lemma 5.4 can be proved in the same way as in [15, Lemma 3.1]. With the refl
solutionw, we can give another form of the indicator functionI (t, r).

Lemma 5.5. Assumert ∩ Σ = ∅. Then we have

I (t, r) =
∫

BR\Σ
σ(w) · ε(w)

dx − ω2
∫

BR\Σ
|w|2 dx. (5.15)

Proof. In view of Lemma 5.4 and the definition ofI (t, r), it suffices to show that

〈
gj , (Λ∅ − ΛΣ)gj

〉 = ∫
B\Σ

σ(wj ) · ε(wj

)
dx − ω2

∫
BR\Σ

|wj |2 dx. (5.16)

The derivation of (5.16) is based on Green’s formula (A.1) in [15]. By means of Gre
formula and boundary conditions, we have that∫

B\Σ
σ(wj ) · ε(wj

)
dx

=
∫

BR\Σ
σ(uj − vj ) · ε(uj − vj

)
dx

=
∫

σ(uj ) · ε(uj − vj

)
dx −

∫
σ(vj ) · ε(uj − vj

)
dx
BR\Σ BR\Σ
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= −
∫

BR\Σ
Luj · (uj − vj

) + 〈
T (D,η)uj , (uj − vj )

〉 − ∫
BR\Σ

σ(vj ) · ε(uj − vj

)
dx

= ω2
∫

BR\Σ
uj · (uj − vj

)
dx −

∫
BR\Σ

σ(vj ) · ε(uj

)
dx +

∫
BR\Σ

σ(vj ) · ε(vj

)
dx

= ω2
∫

BR\Σ
uj · (uj − vj

)
dx −

∫
BR\Σ

ε(vj ) · σ (
uj

)
dx +

∫
BR\Σ

ε(vj ) · σ (
vj

)
dx

= ω2
∫

BR\Σ
uj · (uj − vj

)
dx +

∫
BR\Σ

vj ·Luj dx − 〈
vj |SR

, T (D,η)uj |SR

〉

−
∫

BR\Σ
vj ·Lvj dx + 〈

vj |SR
, T (D,ν)vj |SR

〉

= ω2
∫

BR\Σ
uj · (uj − vj

)
dx − ω2

∫
BR\Σ

vj · (uj − vj

)
dx + 〈

gj , (Λ∅ − ΛΣ)gj

〉

= ω2
∫

BR\Σ
|wj |2 dx + 〈

gj , (Λ∅ − ΛΣ)gj

〉

and (5.16) follows. �
With the help of the expression (5.15) ofI (t, r), we want to show that

Theorem 5.6. If r(T (r,Σ)) ∈ Σ , then|I (t, r)| → ∞ as t → T (r,Σ).

In view of Theorem 5.6, we can construct the crackΣ by examining the behavior o
I (t, r). On the other hand, using (5.12) we can determine the indicator functionI (t, r) by
the Dirichlet-to-Neumann map.

Theorem 5.6 can be proved in the same way as in [15] where the authors trea
static case (ω = 0). The heart of the method in [15] lies in analyzing the singularity of
reflected solution at the tip of the needle. Now letw0 be the reflected solution correspon
ing toω = 0, i.e., 

Lw0 = 0 in BR \ Σ,

T (D,ν)w0 = −T (D,ν)G0(·, r(t)) onΣ,

w0 = 0 onSR,

(5.17)

where the distributionG0(·, x0) satisfies( ) ( )

LG0 ·, x0 + δ x − x0 b = 0
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and (
G0

(·, x0) − E0
(·, x0)b)

x0∈Ω
is bounded inH 1(Ω), (5.18)

where the distributionE0(x, x0) in x0 ∈ R
n satisfies

LC(x0)E0
(
x, x0) + δ

(
x − x0)I = 0. (5.19)

Sincew andw0 have the same singularity at the tip of the needle, we argue that in ana
the blow-up behavior ofI (t, r) we can replacew by w0 in (5.15). Our aim now is to justify
this claim rigorously.

To begin, we want to show that

Lemma 5.7. There exists a constantc > 0 such that forrt ∩ Σ = ∅ we have∫
BR\Σ

|w0|2 dx < c. (5.20)

This lemma indicates that theL2 norm ofw0 overBR \ Σ stays bounded as the tip
the needle approaching the crack.

It suffices to prove Lemma 5.7 as the tip of the needle is sufficiently close to the c
To this end, letx0 = r(t) ∈ BR \ Σ anda = x(T (r,Σ)). Assume thatx0 is sufficiently
close toa. In other words, letBε(a) be an open ball of radius 0< ε � 1 centered ata,
thenx0 ∈ Bε(a). In order to prove (5.20), we would like to know the behavior ofw0 in
Bε(a). Now we assume thatε is so small thatB2ε(a) ∩ Σ =: Σε ⊂ Σ . Without loss of
generality, we supposex0 ∈ Ω−. SinceΣ ∈ C2, we can find a domainΩε− with ∂Ωε− ∈ C2

such that(B2ε(a) ∩ Ω−) ⊂ Ωε− ⊂ Ω− andΣε ⊂ ∂Ωε− (choosingε smaller if necessary)
Let w̃− ∈ H 1(Ωε−) be the solution of


Lw̃− = 0 in Ωε−,

T (D,ν)w̃− = −T (D,ν)G0(·, x0) onΣε,

w̃− = 0 on∂Ωε− \ Σε.

(5.21)

We now claim that

Lemma 5.8.
∫
Ωε− |w̃−|2 dx < c < ∞ asx0 → a.

Proof. We adopt arguments in [7] to our case here. Letv be the solution of
Lv = w̃− in Ωε−,

T (D,ν)v = 0 onΣε,

v = 0 on∂Ωε− \ Σε.
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The standard elliptic regularity theorem implies that

‖v‖H2(Ωε−) � c
∥∥w̃−

∥∥
L2(Ωε−)

for some constantc > 0. By the light of the Sobolev embedding theorem, we have tha∣∣v(x) − v(y)
∣∣ � c|x − y|1/2

∥∥w̃−
∥∥

L2(Ωε−)
, ∀x, y ∈ Ωε− and

‖v‖L∞(Ωε−) � c
∥∥w̃−

∥∥
L2(Ωε−)

. (5.22)

Using Green’s formula, we obtain∫
Ωε−

∣∣w̃−
∣∣2 dx =

∫
Ωε−

Lv · w̃− dx =
∫

Ωε−

(
Lv · w̃− − v ·Lw̃−

)
dx

=
∫
Σε

v · T (D,ν)G0
(
x, x0)dSx

=
∫
Σε

(
v(x) − v

(
x0)) · T (D,ν)G0

(
x, x0)dSx

+ v
(
x0) ·

∫
Σε

T (D,ν)G0
(
x, x0)dSx. (5.23)

On the other hand, we note that

LG0
(
x, x0) = 0

for x ∈ B2ε(a) ∩ Ω+, therefore,

v
(
x0) ·

∫
Σε

T (D,ν)G0
(
x, x0)dSx = −v

(
x0) ·

∫
∂B2ε(a)∩Ω+

T (D,ν)G0
(
x, x0)dSx. (5.24)

Substituting (5.24) into (5.23) and taking advantage of (5.22), we have that

∥∥w̃−
∥∥2

L2(Ωε−)
=

∫
Ωε−

∣∣w̃−
∣∣2 dx

� c

{∫
Σε

∣∣x − x0
∣∣1/2∣∣T (D,ν)G0

(
x, x0)∣∣dSx

+
∫ ∣∣T (D,ν)G0

(
x, x0)∣∣dSx

}∥∥w̃−
∥∥

L2(Ωε−)
. (5.25)
∂B2ε(a)∩Ω+
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In view of (5.18) and the singularity ofE0(x, x0), we deduce that∫
Σε

∣∣x − x0
∣∣1/2∣∣T (D,ν)G0

(
x, x0)∣∣dSx +

∫
∂B2ε(a)∩Ω+

∣∣T (D,ν)G0
(
x, x0)∣∣dSx � c, (5.26)

where c is a uniform constant asx0 → a. This lemma now follows from (5.25
and (5.26). �

We are now ready to prove Lemma 5.7.

Proof of Lemma 5.7. Define

w̃0 :=
{

G0(x, x0) for x ∈ B2ε(a) ∩ Ω+,

w̃− for x ∈ B2ε(a) ∩ Ω−.

Recall thatx0 ∈ Bε(a) ∩ Ω−. So we have

Lw̃0 = 0 in B2ε(a) \ Σε

and ∫
B2ε(a)\Σε

∣∣w̃0
∣∣2 dx < c asx0 → a. (5.27)

Let ψ(x) ∈ C∞
0 (Rn) be a cut-off function with supp(ψ) ⊂ B2ε(a) andψ = 1 on Bε(a).

Thenw′
0 := w0 − ψw̃0 satisfies

Lw′
0 = −div(C(x)(w̃0 ⊗ ∇ψ)) − (C(x)∇w̃0)∇ψ =: F in BR \ Σ,

T (D,ν)w′
0 = −T (D,ν)(G0(x, x0) − ψG0(x, x0)) onΣ,

w′
0 = 0 onBR.

(5.28)

Note thatF = 0 in Bε(a) \ Σ andT (D,ν)(G(x, x0) − ψG0(x, x0)) = 0 onBε(a) ∩ Σ .
It is readily seen that‖F‖L2(BR\Σ) and‖T (D,ν)(G0(x, x0) − ψG0(x, x0))‖H−1/2(Σ) are
uniformly bounded asx0 → a. Therefore, by the regularity theorem for (5.28), we h
that ∥∥w′

0

∥∥
H1(BR\Σ)

< c < ∞

uniformly asx0 → a, which immediately gives∥∥w′
0

∥∥
L2(BR\Σ)

< c asx0 → a. (5.29)
Now the estimate (5.20) is an easy consequence of (5.27) and (5.29).�
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Now we are able to complete the proof of Theorem 5.6.

Proof of Theorem 5.6. Let w′′ = w − w0, thenw′′ satisfies
(L+ ω2)w′′ = −ω2w0 in BR \ Σ,

T (D,ν)w′′ = −T (D,ν)(G(·, r(t)) − G0(·, r(t))) onΣ,

w′′ = 0 onSR.

(5.30)

It is not hard to check thatG(·, r(t)) − G0(·, r(t)) ∈ H 2
loc(R

n). Moreover, Lemma 5.7
implies thatω2w0 ∈ L2(BR \ Σ) uniformly asx0 → a. Therefore, the elliptic estimat
for (5.30) leads to

‖w − w0‖H1(BR\Σ) = ∥∥w′′∥∥
H1(BR\Σ)

< c uniformly asx0 → a (5.31)

for somec > 0. Note that

σ(w) · ε(w) = σ(w0) · ε(w0
) + σ(w0) · ε(w − w0

) + σ(w − w0) · ε(w0
)

+ σ(w − w0) · ε(w − w0
)

= C(x)ε(w0) · ε(w0
) + ε(w0) · C(x)ε

(
w − w0

) + C(x)ε(w − w0) · ε(w0
)

+ C(x)ε(w − w0) · ε(w − w0
)
. (5.32)

By the strong convexity condition and the inequality (5.8) with 0< ε̃ < δ̃/4, we get
from (5.32) that

σ(w) · ε(w)
>

δ̃

2

∣∣ε(w0)
∣∣2 −

(
1

2ε̃
‖C‖L∞(BR) + δ̃

)∣∣ε(w − w0)
∣∣2. (5.33)

In view of (5.20), (5.31) and (5.33), analyzing the blow-up behavior ofI (t, r) is equivalent
to estimating ∫

BR\Σ

∣∣ε(w0)
∣∣2 dx

asx0 → a. It was shown in [15] that∫
BR\Σ

∣∣ε(w0)
∣∣2 dx → ∞ whenx0 → a.

So Theorem 5.6 is proved.�

We now summarize the reconstruction algorithm of our method.
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Reconstruction Algorithm.

Step 1. Compute the Dirichlet-to-NeumannΛΣ map onSR fromGΣ(x,y,ω) for all x, y ∈
SR using the formula (5.11).

Step 2. Given a needler = {r(t): 0� t � 1} and constructvj satisfying (5.13).

Step 3. Computegj = vj |SR
and evaluate the indicator functionI (t, r) := limj→∞〈gj ,

(Λ∅ − ΛΣ)gj 〉.
Step 4. Increaset and search fort where|I (r, t)| becomes very large. Denote thist by
ta(r,Σ).

Step 5. Choose many needlesr and repeat all previous steps. Draw some surfaceΣa which
is close enough to the pointsta(r,Σ) for theser . Σa gives an approximation ofΣ .
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