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SUMMARY

In this paper we study the partial pole assignment problem for the quadratic pencil by output feedback
control where the output matrix is also a designing parameter. In addition, the input matrix is set to
be the transpose of the output matrix. Under certain assumption, we give a solution to this partial
pole assignment problem in which the unwanted eigenvalues are moved to desired values and all other
eigenpairs remain unchanged. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Vibrating structures with feedback controls such as bridges, buildings, airplanes and automo-
biles, generated by �nite-element methods, are most often modelled in a system of second-
order di�erential equations

M �q(t) +Dq̇(t) + Kq(t)=Bu(t) (1)

where M;D and K are symmetric matrices with M being non-singular, which represent mass,
damping and sti�ness matrices, respectively. The time-dependent variable q(t)∈Rn×1 is the
position vector, B∈Rn×m is the full rank control feedback matrix and u(t)∈Rm×1 is the
control vector. In addition, the output or measurement vector y(t)∈Rr×1 is given by

y(t)=Cq(t) (2)
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where C is a real r× n output matrix. In discussing the feedback control, we usually assume
that the control vector u(t) is de�ned by the control law

u(t)=Fy(t) +Gẏ(t) (3)

where F;G ∈Rm×r are output feedback gain matrices.
It is known that the open-loop system (1) gives rise to an open-loop quadratic pencil

P(�)= �2M +�D+K which has 2n eigenvalues, say {�j}2nj=1 (counted with multiplicity). It is
clear that the set {�j}2nj=1 is closed under complex conjugation, that is, if � is an eigenvalue
of the pencil P(�), then so is ��. Substituting (2) and (3) into (1) yields

M �q(t) + (D − BGC)q̇(t) + (K − BFC)q(t)=0 (4)

Likewise, the closed-loop system (4) is related to a closed-loop quadratic pencil Pc(�)= �2M+
�(D−BGC)+(K−BFC). Let {�j}kj=1 ⊂�(P) be closed under complex conjugation and {�j}kj=1
be a new set of complex conjugate numbers. Hereafter, �(Q) denotes the spectrum of the
pencil Q or the matrix Q. In control theory, it is a natural question to �nd output feedback
gain matrices F and G such that the spectrum �(Pc)= {{�j}kj=1; {�j}2nj=k+1}. In other words,
one would like to modify the original open-loop system (1) by output feedback control so
that eigenvalues {�j}kj=1 of P are replaced by {�j}kj=1 and the remaining spectrum of P are
unchanged. This problem is called the partial pole assignment by output feedback control.
Before proceeding our discussion, we would like to make some remarks on this partial

pole assignment problem. In the extreme case where the output matrix C is non-singular,
this problem can be solved by techniques developed in Reference [1] (single-input) or [2]
(multiple-input) (see also References [3, 4]). In fact, in this situation the problem is equiv-
alent to the pole assignment problem by state feedback control. Practically, we often have
rank(C)¡n. For this case, the techniques in References [1, 2] are not applicable. It should be
mentioned that orthogonality relations for the quadratic pencil P(�) play essential roles in the
aforementioned papers. But these relations do not work well in the output feedback case. In
order to attack this partial pole assignment problem by output feedback control, we therefore
consider B and C as design variables as well. Moreover, to reduce the numbers of design
parameters, it is desirable to set C=BT. Namely, the input and output devices are placed at
the same location.
On the other hand, it is easily seen that the eigenvectors of the quadratic pencil deter-

mine the shape of the response for the associated second-order system. Therefore, in deal-
ing with the partial pole assignment problem, we are interested in not only keeping the
wanted eigenvalues but preserving the associated eigenvectors. This is achievable by means of
orthogonality relations for P(�) when we consider the state feedback control (see References
[1, 2]). However, this is not easy to get in the case of output feedback control with the rank
of the output matrix less than n.
Another issue being taken into account is that in real applications we may only need to

change a small number of unwanted eigenvalues which is far less than the size of the matrix.
Consequently, we hope that the rank of the input design or the output design is comparable to
the number of unwanted eigenvalues. In the realization of the control system, this requirement
corresponds to the fact that we only have to measure a handful of output data. This is indeed
favourable in practice.
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In view of the previous remarks, we propose the following partial pole assignment problem
using feedback designs (PPAPFD) in this paper.

Problem formulation (PPAPFD)
Assume that P(�)= �2M +�D+K is a symmetric quadratic open-loop pencil with eigenpairs
{(�j; yj)}2nj=1, where M is non-singular. Let {�j}kj=1 be a set of complex conjugate numbers,
where k�n. Then one would like to design a control feedback matrix B and �nd output gain
matrices F and G such that the closed-loop pencil

Pc(�)= �2M + �(D − BGBT) + (K − BFBT) (5)

possesses eigenpairs {(�j; xj)}kj=1; {(�j; yj)}2nj=k+1, where xj is a priori determined from yj with-
out actually computing the kernel of Pc(�j), for j=1; : : : ; 2n.

Our work is based on a recent article by Carvalho et al. [5] where the authors inves-
tigate the model correction problem for the second-order system. We want to emphasize
that the model correction focuses on tuning up the analytic model so that the experimen-
tal and theoretical results are as close as possible. Therefore, it is necessary to preserve
the symmetric structure of the system in the model correction problem. That is, all cor-
rected mass, damping and sti�ness matrices are symmetric. The pole assignment problem
has a di�erent philosophy. Its main point is to modify the system by placing suitable con-
trollers and designing appropriate control laws. Also, it can be seen as a way of chang-
ing the dynamical behaviour of the system after the model correction process. One of its
well-known applications is to stabilize the system. Thus, the closed-loop pencil (5) is not
required to be a symmetric one, i.e. F and G are not necessarily symmetric matrices. Hav-
ing this concept in mind, in this paper we aim to develop a method to solve the PPAPFD
when the unwanted and assigned modes satisfy certain condition (see the condition (C) in
Section 2).
Previously, a version of symmetric partial eigenstructure assignment problem with feed-

back design has been studied in the literature [6, 7] in which they use the eigenstructure
assignment idea to perform the model correction. It is not di�cult to see that eigenvectors
for the closed-loop pencil can not be arbitrarily selected. Thus, in our proposed problem,
we do not attempt to assign eigenvectors for Pc. Instead, we would like to keep all wanted
eigenvectors and give an explicit description of eigenvectors related to assigned eigenval-
ues. It should be remarked that the methods presented in References [6, 7] neither preserve
the wanted eigenpairs nor provide detailed information about eigenvectors associated to as-
signed eigenvalues. A closed related partial eigenstructure assignment problem for second-
order systems by state feedback control were considered in Reference [8] in which the
input matrix B is also a design parameter. For other eigenstructure assignment problems
for second-order systems with �xed input matrix, we referred readers to Reference [9] and
references therein.
This paper is organized as follows. In Section 2, we develop a method to solve the

PPAPFD when the unwanted and assigned modes satisfy the condition (C). In Section 3,
the condition (C) is discussed in further detail and a necessary and su�cient condition to
(C) is given under some generic assumptions. In Section 4, we provide some numerical
testing results.

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:967–979
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2. SOLUTION TO THE PPAPFD

In this section we will develop a method to solve the PPAPFD under a suitable condition.
Unlike the approach used in Reference [5] where the unwanted eigenvalue is replaced by a
new value one by one, in this paper we assign all unwanted eigenvalues to new values in
one step. To begin, we assume as before that P(�)= �2M + �D+K is a symmetric quadratic
pencil and M is non-singular and let �(P)= {�j}2nj=1. Assume that {�j}kj=1 are the unwanted
eigenvalues which are closed under complex conjugation and will be replaced by a set of
complex conjugate numbers {�j}kj=1. Therefore, there exist two matrices �k ; Yk ∈Rk×k such
that �(�k)= {�j}kj=1 and

MYk�2k +DYk�k + KYk =0 (6)

From now on, a matrix pair (J; V ) is called an eigenmatrix pair of P if it satis�es

MVJ 2 +DVJ + KV =0

In this paper, in order to focus on the pole assignment problem, we will not discuss the
theoretical or numerical issue of the quadratic eigenvalue problem in detail. The interested
reader is referred to a nice survey article [10]. Nevertheless, we would like to provide a
possible scenario to compute the eigenmatrix pair (�k ; Yk) based on a Schur basis. To this
end, we linearize the quadratic pencil P(�). Let us introduce two 2n× 2n matrices

A=

[
0 In

K D

]
and B=

[
In 0

0 −M

]
(7)

Then the quadratic eigenvalue problem P(�)u=0 is equivalent to the generalized eigenvalue
problem Av= �Bv, where

v=

[
u

�u

]

Using a QZ-algorithm, we can compute two orthogonal matrices Q; Z ∈R2n×2n such that

QTAZ =

[
R11 R12

0 R22

]
and QTBZ =

[
S11 S12

0 S22

]
(8)

where R11 ∈Rk×k , R22 ∈R(2n−k)×(2n−k) are quasi-upper-triangular and S11 ∈Rk×k ; S22 ∈
R(2n−k)×(2n−k) are upper-triangular. We now write

Z =
[
Z11 Z12
Z21 Z22

]
and Q=

[
Q11 Q12

Q21 Q22

]
(9)

where Z11; Z21; Q11; Q21 ∈Rn×k . In view of (7) – (9), we have that[
Z21

KZ11 +DZ21

]
=

[
Q11R11

Q21R11

]
and

[
Z11

−MZ21

]
=

[
Q11S11

Q21S11

]
(10)
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We note that S11 is non-singular since M¿0. Then it follows from (10) that

KZ11 +DZ11(S−1
11 R11) +MZ11(S

−1
11 R11)

2 =0 (11)

Now let Z11 =YkTK with Y Tk Yk = Ik (Schur basis), where Tk ∈Rk×k is non-singular upper-
triangular. Then (11) becomes

MYk�2k +DYk�k + KYk =0

where �k =Tk(S−1
11 R11)T

−1
k is quasi-upper-triangular, i.e. a Schur form. Without loss of gen-

erality, we assume that �k is non-singular, equivalently, all eigenvalues {�j}kj=1 are non-zero.
It is not di�cult to see that this property can always be achieved by shifting the eigenvalues
of P(�) (see Reference [1]).
The following condition is crucial in our approach to solve the PPAPFD. We assume that

there exists Ek ∈Rk×k such that Ik − Ek�k is non-singular and {�j}kj=1
are eigenvalues of the matrix pair (�k − Ek�−T

k �k ; Ik − Ek�k)
(C)

where �k =Y Tk KYk and �k =Y
T
k MYk . It turns out that condition (C) serves as a criterion of

solving the PPAPFD when we intend to replace {�j}kj=1 by {�j}kj=1. It should be noted that
the invertibility of Ik −Ek�k guarantees that the matrix pair (�k −Ek�−T

k �k ; Ik −Ek�k) is not
a singular pair. That is, the condition (C) implies that

det(�(Ik − Ek�k)− (�k − Ek�−T
k �k))= c	

k
j=1(�− �j) for some c �=0

At the �rst look, condition (C) seems arti�cial and hard to verify. Fortunately, in some
generic case, we can derive an easy su�cient condition on (�k ; Yk) such that (C) is satis�ed
for almost all {�j}kj=1 and Ek can be easily constructed. We will discuss the condition (C) in
further detail in the next section. With the condition (C), we now can prove the following
theorem.

Theorem 2.1
Assume that {�j}kj=1 is a set of complex conjugate numbers such that condition (C) holds
with some real matrix Ek . De�ne

M̃ =M −MYkEkY Tk M

D̃=D+MYk�kHkY Tk K + KYkHk�
T
k Y

T
k M

K̃ =K − KYkHkY Tk K

where Hk =�−1
k Ek�

−T
k . Then the real quadratic pencil P̃(�)= �

2M̃+�D̃+K̃ has the following
properties:

(i) �(P̃)= (�(P) \ {�j}kj=1)∪ {�j}kj=1.
(ii) If (
; Z) is any eigenmatrix pair of P(�) satisfying �(
)∩�(�k)= ∅, then (
; Z) is

also an eigenmatrix pair of P̃(�), i.e.

M̃Z
2 + D̃Z
+ K̃Z =0

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:967–979
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Proof
(i) Since (�k ; Yk) satis�es MYk�2k +DYk�k + KYk =0, we have that

P(�)Yk =(�2M + �D+ K)Yk =(MYk(� + �k) +DYk)(�− �k) (12)

where �= �Ik . Now combining (12), the relation

det(In + RS)=det(Im + SR) for R∈Cn×m and S ∈Cm×n (13)

and the condition (C), we obtain that

det(P̃(�)) = det(�2M̃ + �D̃+ K̃)

= det(P(�)− �2MYkEkY Tk M + �KYkHk�Tk Y
T
k M + �MYk�kHkY Tk K

−KYkHkY Tk K)

= det(P(�) + (DYk +MYk(� + �k))�kHk(Y Tk K − ��Tk Y Tk M))

= det(P(�) + P(�)Yk(�− �k)−1�kHk(Y Tk K − ��Tk Y Tk M))

= det(P(�)) det(Ik + (�− �k)−1�kHk(�k − ��Tk�k))

= det(P(�)){	kj=1(�− �j)}−1det(�(Ik − �kHk�Tk�k)− (�k − �kHk�k))

= det(P(�)){	kj=1(�− �j)}−1det(�(Ik − Ek�k)− (�k − Ek�−T
k �k))

= det(P(�)){	kj=1(�− �j)}−1{c 	kj=1(�− �j)}

for some constant c �=0. In the above computations, we remind the reader that Ek =�kHk�Tk .
Therefore, P̃(�) has the same eigenvalues as P(�), except that {�j}kj=1 are substituted by
{�j}kj=1.
(ii) Since (�k ; Yk) and (
; Z) are eigenmatrix pairs of P, we get that

�Tk Y
T
k MZ


2 + �Tk Y
T
k DZ
+�

T
k Y

T
k KZ =0

(�Tk )
2Y Tk MZ
+�

T
k Y

T
k DZ
+ Y

T
k KZ
= 0

Eliminating the common term in these two equalities gives

(�Tk Y
T
k MZ
− Y Tk KZ)
− �Tk (�Tk Y Tk MZ
− Y Tk KZ)=0

which immediately leads to

�Tk Y
T
k MZ
=Y

T
k KZ (14)

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:967–979
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whenever �(
)∩�(�k)= ∅. By virtue of (14), we have that

M̃Z
2 + D̃Z
+ K̃Z

=MZ
2 +DZ
+ KZ −MYkEkY Tk MZ
2 +MYk�kHkY Tk KZ
+ KYkHk�Tk Y Tk MZ


−KYkHkY Tk KZ

= −MYk�kHk�Tk Y Tk MZ
2 +MYk�kHkY Tk KZ
+ KYkHk�Tk Y Tk MZ
− KYkHkY Tk KZ

= −MYk�kHk(�Tk Y Tk MZ
− Y Tk KZ)
 + KYkHk(�Tk Y Tk MZ
− Y Tk KZ)

=0

Theorem 2.1 implies that the unwanted eigenvalues {�j}kj=1 of P(�) are replaced by {�j}kj=1
in P̃(�). Moreover, all wanted eigenpairs {(�j; yj)}2nj=k+1 of P(�) remain as eigenpairs of P̃(�).
Next we want to investigate the relationship between the eigenvectors of P̃(�) associated with
{�j}kj=1 and the unwanted eigenvectors {yj}kj=1 of P(�).
Theorem 2.2
Assume that (C) is satis�ed with a suitable Ek . Let

�k := (Ik − Ek�k)−1(�k − Ek�−T
k �k)

then (�k ; Yk) is an eigenmatrix pair of P̃(�), i.e.

M̃Yk�2k + D̃Yk�k + K̃Yk =0

Proof
By virtue of MYk�2k +DYk�k + KYk =0, we can derive that

DYk�k + KYk(Hk�Tk�k�k + Ik −Hk�k)

=DYk�k + (−MYk�2k −DYk�k)(Hk�Tk�k�k + Ik −Hk�k)

= −MYk�2k(Hk�Tk�k�k + Ik −Hk�k) +DYk(�k − �kHk�Tk�k�k − �k +�kHk�k)

= −MYk�2k(Hk�Tk�k�k + Ik −Hk�k) +DYk((Ik − Ek�k)�k − (�k − Ek�−T
k �k))

= −MYk�2k(Hk�Tk�k�k + Ik −Hk�k) (15)

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:967–979
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It follows from (15) that

M̃Yk�2k + D̃Yk�k + K̃Yk

=(M −MYkEkY Tk M)Yk�2k + (D+MYk�kHkY Tk K + KYkHk�Tk Y Tk M)Yk�k
+(K − KYkHkY Tk K)Yk

=MYk(�2k − Ek�k�2k +�kHk�k�k) +DYk�k + KYk(Hk�Tk�k�k + Ik −Hk�k)

=MYk(�2k − Ek�k�2k +�kHk�k�k − �2kHk�Tk�k�k − �2k +�2kHk�k)

=MYk(((Ik − Ek�k)�k − (�k − Ek�−T
k �k))�k +�k((Ik − Ek�k)�k − (�k − Ek�−T

k �k))

=0

Therefore, if �k is diagonalizable, i.e.

diag(�1; : : : ; �k)=Q−1
k �kQk for some non-singular matrix Qk ∈Ck×k (16)

then xj=YkQkej is an eigenvector of P̃(�j) for 16j6k, where ej is the jth column of the
identity matrix Ik .
Now, to solve the PPAPFD, we need to convert the quadratic pencil P̃(�) into the closed-

loop pencil Pc(�) as in (5) with appropriate B, F and G. In view of (13) and the invertibility
of (Ik − Ek�k), we can see that

det(In −MYkEkY Tk )=det(Ik − Ek�k) �=0
i.e. In −MYkEkY Tk is invertible. Now the inverse of In −MYkEkY Tk is given by the Sherman–
Morrison–Woodbury formula

(In −MYkEkY Tk )−1 = In +MYkEk(Ik −�kEk)−1Y Tk
Notice that Ik−�kEk is invertible. To get Pc(�), we set Pc(�)= (In−MYkEkY Tk )−1P̃(�). Hence,
using DYk = −MYk�k − KYk�−1

k , we have that

Pc(�) = (In −MYkEkY Tk )−1(�2M̃ + �D̃+ K̃)

= �2M + �(In +MYkEk(Ik −�kEk)−1Y Tk )(D+MYk�kHkY Tk K + KYkHk�Tk Y Tk M)

+ (In +MYkEk(Ik −�kEk)−1Y Tk )(K − KYkHkY Tk K)

= �2M + �[D+MYkEk(Ik −�kEk)−1(−�Tk Y Tk M − �−T
k Y

T
k K) +MYk�kHkY

T
k K

+MYkEk(Ik −�kEk)−1�k�kHkY Tk K + KYkHk�Tk Y Tk M

+MYkEk(Ik −�kEk)−1�kHk�Tk Y Tk M ] + [K +MYkEk(Ik −�kEk)−1Y Tk K

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:967–979
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−KYkHkY Tk K −MYkEk(Ik −�kEk)−1�kHkY Tk K]

= �2M + �(D − BGBT) + (K − BFBT)

where

B=[MYk; KYk]

G=

[
Ek(Ik −�kEk)−1(Ik −�kHk)�Tk Ek(Ik −�kEk)−1(�−T

k −�k�kHk)− �kHk
−Hk�Tk 0

]
(17)

and

F =

[
0 Ek(Ik −�kEk)−1(�kHk − Ik)
0 Hk

]
(18)

In summary, we have proved the following theorem which provides a solution to the PPAPFD.

Theorem 2.3
Let {(�j; yj)}kj=1 eigenpairs of the open-loop pencil P(�) with �k and Yk de�ned in (6) and �k
being non-singular, where k¡n=2. Assume that {�j}kj=1 is a set of complex conjugate numbers
satisfying condition (C) with an appropriate matrix Ek . Then, by choosing the control matrix
B=[MYk; KYk] and gain matrices G, F as in (17), (18), the closed-loop pencil Pc(�)= �2M+
�(D − BGBT) + (K − BFBT) has eigenpairs {(�j; xj)}kj=1 ∪ {(�j; yj)}2nj=k+1, where xj=YkQkej
provided that Q−1

k �kQk =diag(�1; : : : ; �k).

Remark 2.4
The assumption of k¡n=2 ensures that rank(B)¡n. In the next section we will see that under
some generic condition �k is always diagonalizable by choosing suitable Ek .

3. DISCUSSION OF THE CONDITION (C)

In this section we would like to discuss the condition (C) in further detail. Our goal is to
establish an equivalent condition of (C) under some assumptions on the unwanted eigenmatrix
pair (�k ; Yk), where �k is assumed to be non-singular.

Theorem 3.1
Let �k and �k − �−1

k �
−T
k �k be non-singular matrices. Then the set of complex conjugate

numbers {�j}kj=1 satis�es condition (C) if and only if �k − �−1
k �

−T
k �k is non-singular for

some �k ∈Rk×k with �(�k)= {�j}kj=1.
Proof
We �rst prove the necessity. Let {�j}kj=1 satisfy (C) with a matrix Ek . Since �k is non-
singular, we set Ek =Ek�−1

k for some Ek ∈Rk×k , i.e. Ek�k =Ek . Let

�k := (Ik − Ek)−1(�k − Ek�−1
k �

−T
k �k)

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:967–979
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then we have that �(�k)= {�j}kj=1 and

Ek(�k −�−1
k �

−T
k �k)=�k − �k

which leads to

�k −�−1
k �

−T
k �k =(I − Ek)−1(�k −�−1

k �
−T
k �k)

Therefore, �k −�−1
k �

−T
k �k is non-singular.

Next we prove the su�ciency. Assume that there exists �k ∈Rk×k with �(�k)= {�j}kj=1
such that �k −�−1

k �
−T
k �k is non-singular. De�ne

Ek =(�k − �k)(�k −�−1
k �

−T
k �k)

−1

Then it is easily seen that

Ik − Ek =(�k −�−1
k �

−T
k �k)(�k −�−1

k �
−T
k �k)

−1

and thus Ik−Ek is non-singular. Now it follows from (19) that (Ik−Ek)−1(�k−Ek�−1
k �

−T
k �k)

=�k which immediately implies that {�j}kj=1 are eigenvalues of the matrix pair
(�k − Ek�−1

k �
−T
k �k ; Ik − Ek). Finally, we set Ek =Ek�−1

k and condition (C) is satis�ed.

In practice, it is enough to derive a su�cient condition such that (C) is satis�ed. The
advantage of doing this is that we can remove the non-singularity assumption of �k , which
is clearly not satis�ed if Yk is singular.

Theorem 3.2
Assume that �k�k − �−T

k �k is non-singular. Then the set of complex conjugate numbers
{�j}kj=1 satis�es condition (C) if �k�k − �−T

k �k is non-singular for some �k ∈Rk×k with
�(�k)= {�j}kj=1.
Proof
The arguments are similar as above. Assume that there exists �k ∈Rk×k with �(�k)= {�j}kj=1
such that �k�k − �−T

k �k is non-singular. De�ne

Ek =(�k − �k)(�k�k − �−T
k �k)

−1 (19)

Then we get that

(Ik − Ek�k)�k =(�k − Ek�−T
k �k)

Therefore, to guarantee that (C) holds, it remains to show that Ik − Ek�k is invertible. It is
clear that Ik −Ek�k is non-singular if and only if Ik −�kEk is non-singular. Now we get from
(19) that

Ik −�kEk =(�k�k − �−T
k �k)(�k�k − �−T

k �k)
−1
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Hence, Ik −�kEk is non-singular since �k�k −�−T
k �k is non-singular by the assumption. This

ends the proof.

In view of Theorem 3.2, we conclude that if �k�k − �−T
k �k is non-singular, then the

condition (C) is satis�ed for almost all complex conjugate numbers {�j}kj=1. Moreover, the
matrix Ek in (C) is explicitly given by (19) whenever �k�k − �−T

k �k is non-singular. Most
importantly, those non-singular conditions can be easily veri�ed in numerical computation.
Note that the matrix �k =(Ik − Ek�k)−1(�k − Ek�−T

k �k) in Theorem 2.2 is equal to �k .
Thus, if �k is diagonalizable, then so is �k . We also want to point out that the choice of
assigned eigenvector xj satisfying Pc(�j)xj=0 is clearly not unique when k¿1. It depends
on the choice of the non-singular matrix Qk in (16). This brings up the issue of robustness
in this partial pole assignment problem, which can be solved by using the method developed
in Reference [2]. We leave this issue to the serious readers.

4. NUMERICAL SIMULATION

In this section, we present some numerical simulation results. For testing purposes, we take
a set of pseudo simulation data M; D; K which is modi�ed from the real data used by
the Boeing Company. The matrices M , D and K are all symmetric with M ∈R42×42 being
positive de�nite. Therefore, the total number of eigenvalues (counting with multiplicity) of
P(�) is 84. Now we let {�j}7j=1 = {�1; ��1; �2; ��2; �5; �6; �7} be a set of unwanted eigenvalues
and {�j}7j=1 = {�1; ��1; �2; ��2; �5; �6; �7} be a set of prescribed eigenvalues (see Table I). Their
speci�c values are given as follows.
We now solve the PPAPFD with these two sets of data {�j}7j=1 and {�j}7j=1 as in

Theorem 2.3. We �rst check that {�j}7j=1 and {�j}7j=1 satisfy the condition (C) with Ek
explicitly computed from (19). Here we simply choose �k and �k real Jordan forms. All
computations are performed in Matlab version 6.0 on a Linux machine with machine precision
eps=2:2× 10−16. Let {�̃j}7j=1 be the computed eigenvalues of Pc(�)= �2M +�(D−BGBT)+
(K−BFBT) which are ordered in terms of {�j}7j=1. Likewise, let {x̃j=Y7Q7ej}7j=1 be the associ-
ated eigenvectors as described in Theorem 2.3. The relative errors of assigned eigenvalues and
the corresponding residuals are given in Tables II and III, respectively. Norms of the control
matrix B, and the gain matrices G and F are given in Table IV. Next we denote {�̃j; ỹj}84j=8 the

Table I. Unwanted and prescribed eigenvalues.

j �j �j

1 −9:819235e − 04 + 2:775119e − 01i −1:326514e + 00 + 2:536428e + 00i
2 −9:819235e − 04 − 2:775119e − 01i −1:326514e + 00 − 2:536428e + 00i
3 +1:120362e − 01 + 2:394095e + 00i −2:036517e + 00 + 1:453622e + 00i
4 +1:120362e − 01 − 2:394095e + 00i −2:036517e + 00 − 1:453622e + 00i
5 +4:030805e + 00 −3:125759e + 00
6 +1:959541e + 00 −2:987625e + 00
7 −1:596075e + 00 −1:523467e + 00

Copyright ? 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 12:967–979



978 W.-W. LIN AND J.-N. WANG

Table II. Relative errors of assigned eigenvalues.

j |�j − �̃j|=|�j|
1 4:22959668964e − 11
3 4:7104164755e − 12
5 4:02219199887e − 13
6 3:01747588698e − 14
7 5:23263838572e − 14

Table III. Residuals of ‖Pc(�̃j)x̃j‖2.

j ‖Pc(�̃j)x̃j‖2
1 3:44917870585e − 08
3 2:26316356349e − 08
5 9:95346232690e − 08
6 5:05701556690e − 09
7 3:65885394330e − 09

Table IV. Norms of control matrix B and gain matrices G, F .

‖B‖2 2:19956925250e + 01
‖G‖2 1:74315183490e + 05
‖F‖2 2:88768974594e + 08

computed remaining eigenpairs of Pc(�). Then we obtain that

max

{
|�j − �̃j|

|�j| ; j=8; : : : ; 84

}
=5:49195428538e − 11

and

max{‖Pc(�̃j)ỹj‖2; j=8; : : : ; 84}=1:287576721e − 11

5. CONCLUSION

In this paper we propose a method to solve the partial pole assignment problem by output feed-
back control with feedback designs for the symmetric quadratic pencil P(�)= �2M + �D+K .
Under a suitable condition on the unwanted eigenpairs and the prescribed values (the condi-
tion (C)), we can design control matrix B and �nd gain matrices G, F such that the unwanted
eigenvalues are moved to prescribed values and the wanted eigenpairs remain unchanged in
the closed loop-pencil Pc(�)= �2M + �(D − BGBT) + (K − BFBT). Also, the eigenvectors of
Pc(�) associated with the prescribed values are given explicitly without calculating the kernel
of Pc. The novelty of our approach is that we can make change of eigenvalues in one step
and the condition (C) can be veri�ed quite easily. Moreover, the condition (C) is satis�ed for
almost all prescribed values when the unwanted eigenpairs satisfy some generic assumptions.
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For the usual partial pole assignment problem by output feedback, the input and output
matrices are in general �xed. However, it seems very di�cult to relocate unwanted eigenvalues
to desired values while keeping all wanted eigenstructure unchanged with �xing input and
output matrices. To our knowledge, there is no result in this direction. Even though the
input and output matrices in our result are determined by the unwanted eigenvectors, we
believe that this is just a minor trade-o� in achieving a better goal, namely, reassigning the
unwanted eigenvalues and keeping the wanted eigenstructure. In addition, if the number of
target unwanted eigenvalues is far less than the size of the system, so is the rank of the input
(or output) matrix in our method. Furthermore, the output matrix is taken to be the transpose
of the input matrix. In practice, these two advantages correspond to the fact that we do not
need to put too many actuators and sensors on the structure and, most importantly, these two
devices can be placed at the same positions.
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