
Abstract. A problem of allocation of measurements for a linear calibration
process is considered in this article. It is assumed that a total of N mea-
surements are made some of which may be measurements on two distinct
standards, while the remaining measurements are on m different unknown
specimens. We discuss allocation of the N measurements for the two stan-
dards and m unknown specimens based on A-optimality criterion, which is
applied to asymptotic variances of maximum likelihood estimators for the
true values of unknown specimens. It can be shown that the optimal allo-
cation depends on the true values of unknown specimens. Hence, the user
may resort to locally or Bayesian A-optimal measurement designs. Some
practical solution is presented. Furthermore, the impact of prior on the
allocation is also discussed.

Key words: Calibration model, A-optimality criterion, measurement design,
Bayesian design.

1 Introduction

A measurement process is typically subject to errors which are generally
classified as systematic, random and a combination of both. Random errors
are defined to have a zero expected value and systematic errors are defined to
be due to biases in the measurement process. It is very common that the
instrument is considered to have a linear systematic error in which the
measured value of an unknown specimen (‘‘unknown’’ for short) is described
by the model

yi ¼ aþ bsþ �i; ð1:1Þ
where a and b are parameters of the systematic error; s represents the true
value of the unknown being measured; and �i represents the random error.
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Since ‘‘standards’’ have known true values, the errors associated with the
measurement process are observed whenever a standard is measured.
Therefore, the known standards are always used to estimate parameters of the
errors.

The calibration problem for estimation procedure has been extensively
studied. The main results can be found in Fuller (1987) and Brown (1993).
Literature pertaining to calibration problems involving allocation of the
measurements appears to begin with Pepper (1973). He discussed measure-
ment designs for the process described by an additive model of the form
yi ¼ sþ ðbi þ giÞ; where the quantity ðbi þ giÞ represents the random error.
bi’s arise from a random walk process and gi’s are identical and independent
normal random variables with common mean 0 and variance r2

g. Perng and
Tong (1977) considered the linear calibration model of (1.1). They presented a
sequential procedure, observing either standard or unknown at each time, for
optimal allocation of measurements for interval estimation of one single
unknown so that coverage probability is maximized. More recently, Liao,
Taylor and Iyer (2000) discussed optimum balanced designs for the simple
additive model yi ¼ sþ ei, where ei’s arise from a first order autoregressive
process (AR(1)).

As in many practical situations, the linear calibration model of (1.1) is
required to estimate the actual concentration of an analyte in a specimen for a
given response in various measurement processes. One of the examples de-
scribed in Hunter and Lamboy (1981) is given below.

Example 1.1. A chemist wants to establish a calibration line to use in
measuring the amount of molybdenum in specimens sent to an analytical
laboratory. Table 1.1 is the real data.

Figure 1.1. gives a plot of the known amount of molybdenum against the
measured amount of molybdenum, which is quite linear on this scale.

We thus consider the linear calibration model of (1.1) with random errors
being assumed to be identical and independent normal random variables with
common mean 0 and variance r2. Note that the normality of the random
errors is in practice a reasonable assumption. It is well known that variance of
LSE (least square estimator) of slope parameter in the simple regression
model is minimized by putting equal proportion of trials at the two end points
of the design region. See Atkinson and Donev (1992). Therefore, for both
practical and theoretical considerations, we focus on the optimal allocation of
N measurements for two standards and m unknowns in this study. The fol-
lowing example of a practical situation provides a setting to motivate this
study.

Table 1.1. The real data for the calibration process of the amount of molybdenum

The known amount of molybdenum 1.0 1.0 2.0 2.0 3.0 3.0 4.0 4.0 5.0 5.0
The measured amount of molybdenum 1.8 1.6 3.1 2.6 3.6 3.4 4.9 4.2 6.0 5.9
The known amount of molybdenum 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 10.0 10.0
The measured amount of molybdenum 6.8 6.9 8.2 7.3 8.8 8.5 9.5 9.5 10.6 10.6
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Example 1.2 A chemistry laboratory may be requested to analyze water
samples from different sources. The small quantity of some toxic substance
like cadmium in the water samples is highly concerned. Suppose for the used
measurement instrument AAS (Atomic Absorption Spectroscopy), a chemist
knows that the relationship between s, the actual amount of a toxic substance
(concentration of cadmium) present in water samples and yi, the measured
value (absorption) is given by the regression function described by equation
(1.1). Typically, a set of standard solutions with predetermined concentra-
tions can be prepared in order to estimate the parameters associated with the
errors of measurement process. Before conducting the measurements, the
chemist needs a ‘‘good’’ approach to allocating standards and unknown
specimens from different sources within a fixed total number of measure-
ments.

In the next section, we formulate the problem of interest. In Section 3, we
present maximum likelihood estimation for the parameters in model (1.1).
Section 4 provides some practical locally A-optimal measurement designs.
Section 5 investigates Bayesian A-optimal measurement designs and the im-
pact of prior on the designs.

2 The problem of interest

Let the number of measurements on two distinct standards S0 and S1 be
denoted by a0 and a1, respectively, and the number of measurements on
unknown Uj is denoted by nj, for j ¼ 1; 2; . . . ;m. Thus, the total number of
measurements is N ¼ a0 þ a1 þ

Pm
j¼1 nj: Moreover, let x0 and x1 be the

known true values of standards S0 and S1, respectively, and sj denote the true
value of unknown Uj, for j ¼ 1; 2; . . . ;m. Define indicator functions dSk

i and
d

Uj
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Fig. 1.1. The known amount of molybdenum versus the measured amount of molybdenum. The
points represent the measured values, the solid line is the linear calibration model estimated by
least square estimation
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dSk
i ¼

1 if k 2 f0; 1g and observation i is of standard Sk;
0 otherwise,

�

and

dUj

i ¼
1 if j 2 f1; 2; . . . ;mg and observation i is of unknown Uj;
0 otherwise.

�

Then, model (1.1) can be rewritten as

yi ¼ aþ bðdS0
i x0 þ dS1

i x1 þ
Xm

j¼1
d

Uj
i sjÞ þ �i; for i ¼ 1; 2; . . . ;N : ð2:1Þ

The random errors �i’s are now assumed to be independent and identically
distributed with Nð0; r2Þ. This paper is concerned with obtaining optimal
allocation of S0, S1, U1, U2; . . . ;Um such that s1, s2; . . . ; sm can be estimated
most efficiently. In particular, we consider A-optimality criterion according to
which the average asymptotic variance of MLEs of sj’s is minimized.

3 Maximum likelihood estimation

The log-likelihood function corresponding to the observed data of (2.1) is
given by

l¼�N
2

logð2pÞ�N
2

logðr2Þ� 1

2r2

XN

i¼1
½yi� a�bðdS0

i x0þ dS1
i x1þ

Xm

j¼1
dUj

i sjÞ�2;

ð3:1Þ
from which the following likelihood estimators are derived.

â ¼ �y � b̂�x; ð3:2Þ

b̂ ¼

XN

i¼1
dS0

i ðyi � �yÞðx0 � �xÞ þ
XN

i¼1
dS1

i ðyi � �yÞðx1 � �xÞ

a0ðx0 � �xÞ2 þ a1ðx1 � �xÞ2
; ð3:3Þ

ŝj ¼
�yj � â

b̂
; for j ¼ 1; 2; . . . ;m; ð3:4Þ

where �y ¼ 1
a0þa1

ð
XN

i¼1
dS0

i yi þ
XN

i¼1
dS1

i yiÞ; �x ¼ a0x0þa1x1
a0þa1

and �yj ¼
1

nj

XN

i¼1
dUj

i yi; for

j ¼ 1; 2; . . . ;m:
Clearly, the MLE for sj given in (3.4) is the well known classical estimator

computed from â of (3.2) and b̂ of (3.3), which only depend on the observed
data of S0 and S1.

Computing the second derivatives of log-likelihood function (3.1) with
respect to parameters a, b, s1, s2; . . . ; sm, r2 and taking expectation, we can
obtain the Fisher information matrix. By using the standard properties of
partitioned matrices (Graybill, 1983), we then invert the Fisher information
to obtain the asymptotic covariance matrix of MLEs for sj’s, which are of
primary interest, as follows.

160 T.-Y Lin and C.-T. Liao



VarðŝÞ ¼ fvjkg; j ¼ 1; 2; . . . ;m; k ¼ 1; 2; . . . ;m;

where ŝ ¼ ½ŝ1; ŝ2; . . . ; ŝm�0 and

vjk ¼
r2

b2
1
nj
þ a0ðx0�sjÞ2þa1ðx1�sjÞ2

a0a1ðx0�x1Þ2

h i
if j=k,

r2

b2

a0ðx0�sjÞðx0�skÞþa1ðx1�sjÞðx1�skÞ
a0a1ðx0�x1Þ2

h i
if j 6=k.

8
<

:
ð3:5Þ

The details of the derivation are given in Appendix.

4 Locally A-optimal measurement design

It is easy to see that an explicit expression for the trace of covariance matrix
VarðŝÞ is given by

Trace½VarðŝÞ� ¼ r2

b2

Xm

j¼1

1

nj
þ 1

a1

Xm

j¼1

ðx0 � sjÞ2

ðx0 � x1Þ2
þ 1

a0

Xm

j¼1

ðx1 � sjÞ2

ðx0 � x1Þ2

" #

:

Let h0 ¼
Pm

j¼1
ðx0�sjÞ2

ðx0�x1Þ2
and h1 ¼

Pm
j¼1

ðx1�sjÞ2

ðx0�x1Þ2
: Also let b0 ¼ a0=N , b1 ¼ a1=N

and rj ¼ nj=N , for j ¼ 1; 2; . . . ;m. To obtain A-optimal measurement designs
for estimating sj’s, we need to minimize the following objective function

f ðb0; b1; r1; r2; . . . ; rm; h0; h1Þ ¼
h1
b0
þ h0

b1
þ
Xm

j¼1

1

rj
; ð4:1Þ

subject to the constraint

b0 þ b1 þ
Xm

j¼1
rj ¼ 1: ð4:2Þ

For given values of h0 and h1, by using a Lagrange multiplier, we have the
following optimal allocation of measurements for the standards and un-
knowns

b�0 ¼
ffiffiffiffiffi
h1
p

ffiffiffiffiffi
h0
p
þ

ffiffiffiffiffi
h1
p
þ m

;

b�1 ¼
ffiffiffiffiffi
h0
p

ffiffiffiffiffi
h0
p
þ

ffiffiffiffiffi
h1
p
þ m

and

r�j ¼
1

ffiffiffiffiffi
h0
p
þ

ffiffiffiffiffi
h1
p
þ m

; for j ¼ 1; 2; . . . ;m:

Clearly, the values of b�0, b�1, r�1, r�2; . . . ; r�m depend on parameters s1, s2,. . ., sm.
Hence, the problem of allocation cannot be solved unless one has prior infor-
mation on these parameters. We first consider the following strategy so as to
obtain a locally A-optimal measurement design. In practice, according to
knowledge of the user, it may be possible to designate standards S0 and S1 such
that the range ½x0; x1� is large enough to cover the true values of unknowns. Then
a very natural estimate for sj is the average of x0 and x1, i.e. letting
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sj ¼
x0 þ x1

2
; for j ¼ 1; 2; . . . ;m: ð4:3Þ

Substituting the values of (4.3) in h0 and h1, we have h0 ¼ h1 ¼ m=4. Thus, for
fixed m, the values of b�0, b�1 and r�j can be determined. Table 4.1 displays some
locally A-optimal measurement designs based on this strategy. Note that we
use b� to denote both b�0 and b�1 in the table since their values are equal.

To evaluate how good the locally A-optimal designs of Table 4.1 are in
estimating the true values of unknowns, the following simulation study is
carried out. In the simulation study, we consider the two cases that m ¼ 1 and
m ¼ 2. The values of parameters are set as follows. x0 ¼ 0, x1 ¼ 1, a ¼ 0:2,
b ¼ 0:4 and r ¼ 0:1; N ¼ 20, 40, 60, 80, 100; for the case that m ¼ 1, s1 ranges
from 0.1 to 1.5 in steps of 0.2; for the case that m ¼ 2, the pair of values
ðs1; s2Þ range from 0.25 to 1.5 in steps of 0.2. Since the classical estimator of sj
does not have a finite expectation or a finite variance, the median and
interquartile range (IQR) of the estimated sj’s are reported from 5000 sim-
ulated data sets for each given parameter combination. Table 4.2 displays the
simulation results for the case that m ¼ 1.

It has shown that the locally A-optimal measurement design performs
very satisfactory accuracy in estimation, based on the reported medians, for
all the cases considered even the value of s1 occurs outside the range ½x0; x1�.
But it may only perform great precision in estimation, based on the reported
IQRs, for the large sample size cases with N � 40. Notice that the minimum

Table 4.1. The locally A-optimal measurement designs for sj ¼ ðx0 þ x1Þ=2, for j ¼ 1; 2; . . . ;m;
and 1 � m � 5

m b� r�j

1 0.250 0.500
2 0.207 0.293
3 0.183 0.211
4 0.167 0.167
5 0.155 0.138

Table 4.2. Simulation results for the case that m ¼ 1

s1 N ¼ 20 N ¼ 40 N ¼ 60 N ¼ 80 N ¼ 100

0.1 Median 0.1002 0.1014 0.0991 0.1004 0.1002
IQR 0.1720 0.1262 0.1003 0.0868 0.0775

0.3 Median 0.3002 0.2996 0.2991 0.3011 0.3002
IQR 0.1586 0.1082 0.0896 0.0778 0.0716

0.5 Median 0.4995 0.5000 0.4987 0.5006 0.5016
IQR 0.1517 0.1080 0.0869 0.0759 0.0673

0.7 Median 0.7003 0.7010 0.6985 0.6994 0.7003
IQR 0.1578 0.1132 0.0931 0.0796 0.0711

0.9 Median 0.9019 0.8965 0.8991 0.9011 0.8990
IQR 0.1747 0.1226 0.1007 0.0881 0.0779

1.1 Median 1.1023 1.0981 1.1036 1.1027 1.0998
IQR 0.1954 0.1392 0.1173 0.0989 0.0896

1.3 Median 1.3019 1.3023 1.3004 1.3001 1.3005
IQR 0.2325 0.1663 0.1320 0.1142 0.1037

1.5 Median 1.5024 1.4972 1.4979 1.4993 1.5016
IQR 0.2697 0.1824 0.1484 0.1281 0.1202
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IQR occurs at s1 ¼ 0:5 for any N , this is because that the used design is the
locally A-optimal design for s1 ¼ 0:5. However, for any given N , the design
proposed is likely to be robust to the value of s1 provided it is not much larger
than x1. Therefore, when there is no prior information available on the true
value of unknown, the design proposed can be a practical choice. Similar
results can be found for the case that m ¼ 2 in Table 4.3.

5. Bayesian A-optimal measurement design

It is well known that optimal designs for non-linear models like model (2.1)
depend on the values of unknown parameters. In this section, instead of
locally A-optimal designs, a prior for s1, s2, . . ., sm will be incorporated into
the objective function of (4.1) to yield Bayesian A-optimal designs. We refer
Atkinson and Donev (1992) for a general theory regarding the Bayesian de-
sign.

It is assumed that sj’s are uncorrelated random variables with common
and known mean xs and variance s2s . Notice that only the first and second
moments of sj’s are required, there is no specified distribution. Then the
objective function for the allocation obtained from taking expectation of (4.1)
over this prior is given by

Eh0;h1 ½ f ðb0; b1; r1; r2; . . . ; rm; h0; h1Þ� ¼
m½ðx1 � xsÞ2 þ s2s �

b0ðx0 � x1Þ2

þ m½ðx0 � xsÞ2 þ s2s �
b1ðx0 � x1Þ2

þ
Xm

j¼1

1

rj:

Similarly, under the constraint of (4.2), we have the following optimal allo-
cation of measurements for the standards and unknowns

b�0 ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0�xsÞ2þs2s
ðx1�xsÞ2þs2s

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðx0�x1Þ2

ðx1�xsÞ2þs2s

r

þ 1

;

b�1 ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�xsÞ2þs2s
ðx0�xsÞ2þs2s

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðx0�x1Þ2

ðx0�xsÞ2þs2s

r

þ 1

and

r�j ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m½ðx0�xsÞ2þs2s �
ðx0�x1Þ2

r

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m½ðx1�xsÞ2þs2s �
ðx0�x1Þ2

r

þ m

; for j ¼ 1; 2; . . . ;m:

To investigate how the prior affects the allocation, we calculate b�0, b�1 and r�j
for some given values of xs and ss. Without loss of generality, let x0 ¼ 0 and
x1 ¼ 1. The results are displayed in Table 5.1.

It is of interest to see that the allocation of standards S0 and S1 is highly
related to xs. For a fixed ss, the value of b�0 (b�1) increases as the distance
between xs and x0 (x1) decreases. This is fairly reasonable because the user
would like to give more weight to the standard whose value may be closer to
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the true values of unknowns. Another interesting result is that the value of r�j
decreases as ss increases. This implies that when the variation of unknowns
gets large, the precision in estimation of systematic errors can become more
desirable.

6. Concluding remarks

The results discussed in Sections 4 and 5 can be easily extended to the case
that a cost constraint is considered in the measurement process. Suppose that
each measurement of standards S0 and S1 cost c0 and c1 dollars, respectively,
and each measurement of any unknowns costs c dollars. Moreover, the total
cost is assumed to be budgeted within B dollars. The problem thus turns out
to be in determination of a0, a1 and nj, for j ¼ 1; 2; . . . ;m, such that the
objective function

f ða0; a1; n1; n2; . . . ; nm; h0; h1Þ ¼
h1
a0
þ h0

a1
þ
Xm

j¼1

1

nj
;

is minimized subject to the constraint

Table 5.1. Bayesian A-optimal measurement designs for xs being from 0.1 to 1.7 in steps of 0.2; ss

from 0.1 to 0.5 in steps of 0.2; and 1 � m � 3

xs ss m b�0 b�1 r�j xs ss b�0 b�1 r�j xs ss b�0 b�1 r�j

0.1 0.1 1 0.442 0.069 0.489 0.3 0.1 0.349 0.156 0.494 0.5 0.1 0.252 0.252 0.495
2 0.368 0.057 0.287 0.290 0.130 0.290 0.209 0.209 0.291
3 0.326 0.051 0.208 0.257 0.115 0.210 0.185 0.185 0.210

0.3 1 0.419 0.140 0.442 0.3 0.348 0.194 0.457 0.3 0.269 0.269 0.462
2 0.354 0.118 0.264 0.293 0.163 0.272 0.226 0.226 0.274
3 0.317 0.106 0.193 0.261 0.145 0.198 0.201 0.201 0.199

0.5 1 0.405 0.201 0.394 0.5 0.352 0.239 0.409 0.5 0.293 0.293 0.414
2 0.349 0.173 0.239 0.301 0.204 0.247 0.250 0.250 0.250
3 0.315 0.156 0.176 0.271 0.184 0.182 0.225 0.225 0.184

0.7 0.1 1 0.156 0.349 0.494 0.9 0.1 0.069 0.442 0.489 1.1 0.1 0.063 0.492 0.445
2 0.130 0.290 0.290 0.057 0.368 0.287 0.053 0.415 0.266
3 0.115 0.257 0.210 0.051 0.326 0.208 0.047 0.371 0.194

0.3 1 0.194 0.348 0.457 0.3 0.140 0.419 0.442 0.3 0.129 0.464 0.407
2 0.163 0.293 0.272 0.118 0.354 0.264 0.110 0.397 0.246
3 0.145 0.261 0.198 0.106 0.317 0.193 0.099 0.358 0.181

0.5 1 0.239 0.352 0.409 0.5 0.201 0.405 0.394 0.5 0.188 0.445 0.368
2 0.204 0.301 0.247 0.173 0.349 0.239 0.163 0.386 0.226
3 0.184 0.271 0.182 0.156 0.315 0.176 0.148 0.350 0.167

1.3 0.1 1 0.121 0.498 0.382 1.5 0.1 0.169 0.499 0.332 1.7 0.1 0.207 0.499 0.293
2 0.104 0.430 0.233 0.149 0.439 0.206 0.185 0.445 0.185
3 0.094 0.389 0.172 0.136 0.401 0.154 0.171 0.411 0.139

0.3 1 0.154 0.484 0.363 0.3 0.187 0.491 0.321 0.3 0.218 0.495 0.287
2 0.134 0.421 0.223 0.165 0.434 0.200 0.195 0.442 0.181
3 0.122 0.382 0.165 0.152 0.398 0.150 0.180 0.409 0.137

0.5 1 0.196 0.468 0.336 0.5 0.215 0.481 0.304 0.5 0.237 0.488 0.275
2 0.172 0.411 0.209 0.191 0.427 0.191 0.213 0.438 0.175
3 0.157 0.376 0.156 0.176 0.393 0.144 0.197 0.406 0.132
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c0a0 þ c1a1 þ c
Xm

j¼1
nj � B:

Similarly, we can obtain the following optimal allocation for the budget being
exactly equal to B dollars.

a�0 ¼
B
ffiffiffiffiffi
h1
p

ffiffiffiffiffi
c0
p ð

ffiffiffiffiffiffiffiffiffi
c1h0
p

þ
ffiffiffiffiffiffiffiffiffi
c0h1
p

þ m
ffiffiffi
c
p Þ

;

a�1 ¼
B
ffiffiffiffiffi
h0
p

ffiffiffiffiffi
c1
p ð

ffiffiffiffiffiffiffiffiffi
c1h0
p

þ
ffiffiffiffiffiffiffiffiffi
c0h1
p

þ m
ffiffiffi
c
p Þ

and

n�j ¼
B

ffiffiffi
c
p ð

ffiffiffiffiffiffiffiffiffi
c1h0
p

þ
ffiffiffiffiffiffiffiffiffi
c0h1
p

þ m
ffiffiffi
c
p Þ

; for j ¼ 1; 2; . . . ;m:

In practice, a0, a1 and nj can be taken to be the largest integers less than or
equal to a�0, a�1 and n�j , respectively. Obviously, the optimal allocation still
depends on s1, s2; . . . ; sm. Therefore, the user still needs to use locally or
Bayesian A-optimal measurements designs.

In this paper, we investigate construction of A-optimal measurement de-
signs under the assumption that measurement errors are independent and
have a homogenous variance in the linear calibration process. It is not
uncommon to encounter situations where the measurements are serially
correlated (Liao et al. 2000) or the variance of the measurement depends on
its true value (Rocke and Lorenzato 1995). Certainly, the optimal allocation
problem for the linear calibration process involving heterogeneous variances
or correlated errors can become more complicated. We are currently inves-
tigating this interesting issue.

Appendix

The derivation of Equations (3.2), (3.3), (3.4) and (3.5)

After differentiating the log-likelihood of (3.1) with respect to a, b and sj, for
j ¼ 1; 2; . . . ;m, we have the following.

XN

i¼1
yi � N â� a0x0 þ a1x1 þ

Xm

j¼1
njŝj

 !

b̂ ¼ 0; ðA:1Þ

x0
XN

i¼1
dS0

i yi þ x1
XN

i¼1
dS1

i yi þ
Xm

j¼1
nj �yjŝj

 !

� a0x0 þ a1x1 þ
Xm

j¼1
njŝj

 !

â

� a0x20 þ a1x21 þ
Xm

j¼1
njŝ

2
j

 !

b̂ ¼ 0; ðA:2Þ
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nj�yj � njâ� njŝjb̂ ¼ 0; for j ¼ 1; 2; . . . ;m: ðA:3Þ
Clearly, Equation (3.4) results from (A.3). Then, we substitute (A.3) in (A.1)
and (A.2) to yield

ða0 þ a1Þâþ ða0x0 þ a1x1Þb̂ ¼
XN

i¼1
dS0

i yi þ
XN

i¼1
dS1

i yi; ðA:4Þ

ða0x0 þ a1x1Þâþ ða0x20 þ a1x21Þb̂ ¼ x0
XN

i¼1
dS0

i yi þ x1
XN

i¼1
dS1

i yi: ðA:5Þ

Finally, solving (A.4) and (A.5), we have Equations (3.2) and (3.3). More-
over, the expectation of the second derivatives of the log-likelihood are given
by

�E½@2l
@a2�¼

1
r2N ; �E½ @2l

@a@b�¼ 1
r2 ða0x0þa1x1þ

Pm
j¼1njsjÞ;

�E½ @2l
@a@sj
�¼ 1

r2ðnjbÞ; �E½ @2l
@a@r2�¼0;

�E½@2l
@b2�¼ 1

r2 ða0x20þa1x21þ
Pm

j¼1njs2j Þ; �E½ @2l
@b@sj
�¼ 1

r2 ðnjbsjÞ;
�E½ @2l

@b@r2�¼0; �E½@2l
@s2j
�¼ 1

r2ðnjb
2Þ;

�E½ @2l
@sj@r2�¼0; �E½ @2l

@ðr2Þ2�¼
N
2r4 :

These elements constitute the Fisher information matrix. Then Equation (3.5)
follows by some algebra calculations.
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