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Adaptive Decentralized Control of Robot Manipulators
Driven by Current-Fed Induction Motors

Su-Hau Hsu and Li-Chen Fu

Abstract—In this paper, an adaptive decentralized control schemewith a
rotor-flux observer is proposed for the tracking control of robot manipula-
tors actuated by current-fed induction motors. To cope with all parametric
uncertainties in the electromechanical systems, an adaptive law is designed
so that all the signals of closed-loop systems are bounded, and the tracking
errors in position, velocity and rotor fluxes converge to a residual set.

Index Terms—Adaptive control, decentralized control, induction mo-
tors, manipulators.

I. INTRODUCTION

Due to their simple structures, high reliability, high power output,
and low cost, induction motors are widely adopted in industrial ap-
plications. However, if induction motors are utilized as actuators for
servo applications in robot manipulators, it is difficult to achieve high-
performancemanipulation actuation owing to the unavailability ofmea-
surement of the rotor flux and parametric uncertainty [6], [7]. Because
of important advances in power electronics, induction motors have re-
cently been successfully operated in the current-command mode [2].
Then, one decentralized control approach for robot manipulators driven
by current-fed induction motors has been proposed [4]. Although this
approach only requires simple hardware for implementation due to
its decentralization nature, it is applied without any parametric un-
certainties of electromechanical systems, which is not convenient in
practical applications. This paper proposes an adaptive decentralized
control scheme for the tracking control of robot manipulators actuated
by current-fed induction motors to overcome such a problem.

This paper is organized as follows. Section II shows the dynamic
model of a robot manipulator driven by current-fed induction motors.
In Section III, the adaptive decentralized control scheme is developed.
Section IV presents numerical studies on the first three-joint dynamics
of a robot, PUMA 560, driven by current-fed induction motors. Finally,
some concluding remarks are stated in Section V.

II. PROBLEM STATEMENT

Under the usual assumptions, such as linearity of the magnetic
circuits, and equal inductances with negligible iron losses, for a general
n-link rigid manipulator driven by current-fed induction motors, the
dynamic model is derived as follows [4]:

D(q)q̇ + C(q, q̇)q̇ + g(q) = τm + d(t, q, q̇) (1a)

ψ̇i 1 = −aiψi 1 − np,ing ,i q̇iψi 2 +miaiui 1 (1b)

ψ̇i 2 = −aiψi 2 + np,ing ,i q̇iψi 1 +miaiui 2 (1c)

where t ∈ [0,∞) denotes time, q = [q1, . . . , qn ]
T and q̇ = [q̇1,

. . . , q̇n ]
T ∈ Rn are the joint position and velocity of the robot manipu-
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lator, respectively, ψi 1 and ψi 2 ∈ R are the robot fluxes of the ith in-
ductionmotor, ui 1 and ui 2 ∈ R are the current inputs of the ith induc-
tion motor, D(q) ∈ Rn×n is the inertial matrix, C(q, q̇)q̇ ∈ Rn is the
vector of the Coriolis and centrifugal force, g(q) ∈ Rn is the vector due
to the gravitational force, andd(t, q, q̇) ∈ Rn is the friction input vector.
Letng ,i , np ,i , Rr,i , Lr,i andmi ∈ R, i ∈ {1, . . . , n}, denote the speed
ratio, poles number, rotor resistance, rotor inductance andmutual induc-
tance of the ith inductionmotor, respectively, such that ai ≡ Rr,i /Lr,i ,
and µi ≡ np,imi/Lr,i . In (1a), τm = [τm ,1, . . . , τm ,n ]

T ∈ Rn with
τm ,i = ng ,iµi [ψi 1ui 2 − ψi 2ui 1], is the vector of torque input.
This dynamic model has properties that will be used in the controller
design [8].

P1) The matrix D(q) is symmetric positive-definite and sat-
isfies µdI ≤ D(q) ≤ µD I, ∀q ∈ Rn , for some constants
µd , µD > 0.

P2) The matrix C(q, q̇) satisfies ‖C(q, q̇)‖2 ≤ µC ‖q̇‖2, ∀q, q̇ ∈
Rn , for some constant µC > 0.

P3) The vector g(q) satisfies ‖g(q)‖2 ≤ µG , ∀q ∈ Rn , for some
constant µG > 0.

P4) The matrix Ḋ(q)− 2C(q, q̇) is skew-symmetric.
Let qd : [0,∞) → Rn such that qd (t) for all t ≥ 0 denotes

the desired joint position trajectory of robot manipulators, and let
Ψd ,i : [0,∞) → R, i ∈ {1, . . . , n}, such thatΨd ,i (t) for all t ≥ 0, i ∈
{1, . . . , n}, is the desired trajectory of the rotor flux modulus of the
ith induction motor. In this study, an adaptive decentralized control
scheme is designed such that the joints of robot manipulators and rotor
fluxes in the square modulus of each induction motor follow the desired
profiles.

III. ADAPTIVE CONTROLLER DESIGN

For robot manipulators, the tracking position error is defined as
e ≡ q − qd , and an auxiliary signal is defined s ≡ ė+Λe, where the
matrix Λ = diag(λ1, . . . , λn ) > 0. From (1a), we have

ė = −Λe+ s (2a)

D(q)ṡ = −C(q, q̇)s+ τm − v(t, q, q̇) (2b)

where the vector

v(t, q, q̇) =D(q)(q̇d +Λė) + C(q, q̇)(q̇d +Λe)

+ g(q)− d(t, q, q̇) (3)

is the disturbance in (2b). For induction motors, the tracking error
of rotor fluxes is defined as eψ ,i (t) ≡ ψ2

i 1(t) + ψ2
i 2(t)−Ψd ,i (t), i ∈

{1, . . . , n}. Some technical assumptions are employed as follows.
A1) The signal qd ( · ) and the time derivatives q̇d ( · ), q̇d ( · ) are all

bounded time-varying signals.
A2) The friction input in (1) satisfies d(t, q, q̇) =

[d1(t, q1, q̇1), . . . , dn (t, qn , q̇n )]
T with |di (t, qi , q̇i )| ≤

di 1 + di 2|qi |+ di 3|q̇i |, for all t ≥ 0, qi , q̇i ∈ R, for some
constants di 1, di 2, and di 3 ≥ 0, i ∈ {1, . . . , n}.

A3) The pole number of each induction motor is given.
A4) The signalΨd ,i ( · ), i ∈ {1, . . . , n}, and their derivatives are all

bounded. Further, the signalΨd ,i ( · ), i ∈ {1, . . . , n}, satisfies
Ψd ,i (0) ≥ 0 and Ψd ,i (t) > 0 for all t ≥ 0.

A5) The parameter ai > 1.5 (Ω/H), i ∈ {1, . . . , n}.
A6) The parameters Rr,i , Lr,i and m,i , i ∈ {1, . . . , n}, are un-

known but bounded byRr,i,max ≥ Rr,i , 0 < Lr,i,min ≤ Lr,i ,
andmi,max ≥ mi where the constants Rr,i,max, Lr,i ,min, and
mi,max > 0 are known.

A7) ψi 1(0), ψi 2(0), i ∈ {1, . . . , n} are given.
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Remark 1: If an estimation of the bounds of those parameters of the
induction motors is available, assumption (A6) is easy to satisfy. Thus,
it is estimated that ai ≤ ai,max ≡ Rr,i,max/Lr,i,min, µi ≤ µi,max =
np,maxLr,i,max/mi,min where np,max = max{np,1, . . . , np ,n }.

The adaptive decentralized control law of the current inputs ui 1( · )
and ui 2( · ), i ∈ {1, . . . , n}, is defined as[

Ui 11 Ui 12

Ui 21 Ui 22

][
ui 1

ui 2

]
=

[
τadaptive, i

âi

[
ψ̂2

i 1 + ψ̂2
i 2

]
+ 1

2
Ψ̇d ,i − ρizi

]

(4)

where Ui 11 = −ng ,i ηi ψ̂i 2, Ui 12 = ng ,i ηi ψ̂i 1, Ui 21 = m̂i âi ψ̂i 1,
and Ui 22 = m̂i âi ψ̂i 2,. In (4), the constant ρi > 0, i ∈ {1, . . . , n},
the signals τadaptive, i ( · ), zi ( · ), and ηi ( · ), i ∈ {1, . . . , n}, are defined
as τadaptive, i = ui − θi 3s

3
i , and zi = ψ̂2

i 1 + ψ̂2
i 2 −Ψd ,i , with

η̇i =

{
−[ηiAi 1 +Ai 2], if ηi > µi,max + δi 1

ξi 1, if ηi ≤ µi,max + δi 1
(5)

and ηi (0) > µi,max + δi 1, θi j > 0, i ∈ {1, . . . , n}, j ∈ {2, 3}, the
signal ui ( · ), i ∈ {1, . . . , n}, being defined as

ui =

{
− 1

ε
θ̂2
i 1si − θi 2si , if θ̂i 1|si | ≤ εi

−θ̂i 1sgn [si ]− θi 2si , if θ̂i 1|si | > εi
(6)

the signals Ai 1( · ) and Ai 2( · ), i ∈ {1, . . . , n}, being defined as

Ai 1 = n2
g ,i k

2
µ ,i s

2
i

[
u2
i 1 + u2

i 2

]
, kµ ,i = ηi/(ηi − µi,max)

(7a)

Ai 2 = 2ng ,i |si |
[∣∣ψ̂i 2

∣∣ |ui 1|+
∣∣ψ̂i 1

∣∣ |ui 2|
]

(7b)

and the constant δi 1, ξi 1 > 0, i ∈ {1, . . . , n}, being the designed
ones. In (6), the signal εi ( · ), i ∈ {1, . . . , n}, is defined by ε̇i =
−piεi + wi , εi (0) > 0, where the constant pi , wi > 0. The time-
varying signal εi ( · ), i ∈ {1, . . . , n}, is used as the boundary layer
in our approach. Since the rotor fluxes of induction motors are immea-
surable, the rotor-flux observer is designed as

˙̂
ψi 1 = −âi ψ̂i 1 − np,ing ,i q̇i ψ̂i 2 + m̂i âiui 1 (8a)

˙̂
ψi 2 = −âi ψ̂i 2 + np,ing ,i q̇i ψ̂i 1 + m̂i âiui 2 (8b)

i ∈ {1, . . . , n}, with ψ̂2
i 1(0) + ψ̂2

i 2(0) > 0, where the signals
ψ̂i 1( · ) and ψ̂i 2( · ) are the estimates of ψi 1( · ) and ψi 2( · ), re-
spectively. The adaptive law for parametric uncertainty is designed
as

˙̂
θi 1 = γi 1|si | − σi 1θ̂i 1, θ̂i 1(0) ≥ 0 (9a)

˙̂ai =
{−âiAi 3, if âi > ai,max + δi 2

ξi 2, if âi ≤ ai,max + δi 2
(9b)

m̂i =

{
−m̂i (t)Ai 4(t), if m̂i (t) > mi,max + δi 3

ξi 3, if m̂i (t) ≤ mi,max + δi 3
. (9c)

with âi (0) > ai,max + δi 2, m̂i (0) > mi,max + δi 3, where the con-
stants γi 1, σi 1, δi 1, δi 2, ξi 1, and ξi 2 > 0, i ∈ {1, . . . , n} are the
designed ones, and the signal Ai 3( · ), Ai 4( · ), i ∈ {1, . . . , n}, are
defined, respectively, as

Ai 3 = [ψ̂i 1 − m̂iui 1]
2 + [ψ̂i 2 − m̂iui 2]

2 (10a)

Ai 4 = a2
i ,max

[
u2
i 1 + u2

i 2

]
(10b)

We adopt the norm of the vector-valued signals as follows: For signals
x : [0,∞) → Rn , ‖x‖T , the norm of x( · ) for T > 0, is defined as
‖x‖|T ≡ supt∈[0,T ]‖x(t)‖2. A useful lemma is guaranteed now:

Lemma 1: If there exists a constant T > 0 such that ‖s‖T exists,
then there are positive constants β1, β2, and β3 such that for all t ∈
[0, T ],

‖v[t, q(t), q̇(t)]‖2 ≤ β1 + β2‖s‖T + β3‖s‖2
T . (11)

Proof: The proof is referred to that in [5] and omitted here. The
performance of the proposed scheme is given as follows.

Theorem 2: Under assumption (A1)–(A7), consider robotic manip-
ulators driven by current-fed induction motors (1) with the control law,
(4), flux observer, (8), and adaptive law, (9). Then, all the signals are
bounded, and further, the position tracking error e( · ), velocity track-
ing error ė( · ), and tracking error of the fluxes eψ ,i ( · ), i ∈ {1, . . . , n},
will converge to a residue set whose size can be reduced by using
the smaller wmax and σ1,max, where wmax = max{w1, . . . , wn }, and
σ1,max = max{σ1 1, . . . , σn 1}.

Proof: The proof proceeds in the following four steps.
Step 1: Prove that if there exists a T > 0 such that ‖s‖T exists,

then the current inputs ui 1(t) and ui 2(t), i ∈ {1, . . . , n},
are well-defined for all t ∈ [0, T ], and zi (t) is monotoni-
cally decreasing from t = 0 to t = T . According to current
inputs (4), and flux observer, (8), we have żi = −2ρiz, i ∈
{1, . . . , n}, which implies that zi (t) is monotonically de-
creasing from t = 0 to t = T so that ψ̂2

i 1(t) + ψ̂2
i 2(t) �=

0, i ∈ {1, . . . , n}, for all t ∈ [0, T ] when assumption (A4)
is valid. Since the updated parameter for induction motors
are always bounded and positive, the current inputs given
in (4) are well-defined for all t ∈ [0, T ].

Step 2: Prove that (1/2)
∑n

i=1
[ψ̃2

i 1(t) + ψ̃2
i 2(t)] + (1/4)

∑n

i=1

[âi (t)− ai ]
2 + (1/4)

∑n

i=1
[m̂i (t)−mi ]

2 is monotoni-
cally decreasing from t = 0 to t = T . Consider the
Laypunov-like function as

V1 =
1

2

n∑
i=1

[
ψ̃2

i 1 + ψ̃2
i 2

]
+

1

4

n∑
i=1

[âi − ai ]
2

+
1

4

n∑
i=1

[m̂i −mi ]
2. (12)

Computing V̇1(t) yields that for all t ∈ [0, T ]

V̇1(t) = −
n∑

i=1

(ai − 1)
[
ψ̃2

i 1(t) + ψ̃2
i 2(t)

]
≤ 0. (13)

From (13), it follows that the statement in Step 2 is valid.
Step 3: Prove that the signal s( · ) are bounded. Consider the

Laypunov-like function as

V2 =
1

2
sTD[q(t)]s+

1

2

n∑
i=1

[
ψ̃2

i 1 + ψ̃2
i 2

]
+

1

2

n∑
i=1

z2
i

+
1

4

n∑
i=1

[âi − ai ]
2 +

1

4

n∑
i=1

[m̂i −mi ]
2

+
1

4

n∑
i=1

[ηi − µi ]
2. (14)

Computing V̇2(t) yields that

V̇2(t) ≤
n∑

i=1

si (t)τadaptive, i (t)

+ ‖s(t)‖2‖v[t, q(t), q̇(t)]‖2
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−
n∑

i=1

(ai − 1.5)
[
ψ̃2

i 1(t) + ψ̃2
i 2(t)

]

− 2

n∑
i=1

ρiz
2
i (t) (15)

where property (P4) is applied. Hence, we have

V̇2(t) ≤ − θ3,min
1

n
‖s(t)‖4

2 + ‖s(t)‖2‖v[t, q(t), q̇(t)]‖2

−
n∑

i=1

(ai − 1.5)
[
ψ̃2

i 1(t) + ψ̃2
i 2(t)

]

− 2

n∑
i=1

ρiz
2
i (t) (16)

where τadaptive, i , i ∈ {1, . . . , n}, is taken into to account.
Now assume that the signal s( · ) is unbounded. Then there
is always a smallest time T1 ≥ 0 such that s(T1) = l1 for
large l1 ∈ R, and we have

V̇2(t) ≤− θ3,min
1

n
‖s(t)‖4

2 + ‖s(t)‖2

(
β1 + β2l1 + β3l

2
1

)

−
n∑

i=1

(ai − 1.5)
[
ψ̃2

i 1(t) + ψ̃2
i 2(t)

]

− 2

n∑
i=1

ρiz
2
i (t) (17)

for all t ∈ [0, T1], where Lemma 1 is applied. Considering
a sufficiently lager l1 and following the conclusion in Steps
1 and 2, it follows due to the first term in the right-hand side
of (17) that the s(T1) �= l1 is bounded, which is in contra-
diction with our previous assumption. Thus, the signal s( · )
is bounded.

Step 4: Prove that all the signals are bounded, and that the signals
s( · ) and eψ ,i ( · ), i ∈ {1, . . . , n}, converge asymptotically
to a residual set whose size can be reduced by using smaller
wmax and σ1,max. Now consider the Lyapunov-like func-
tion as follows:

V3 =
1

2
sTD[q(t)]s+

1

2

n∑
i=1

[
ψ̃2

i 1 + ψ̃2
i 2

]
+

1

2

n∑
i=1

z2
i

+
1

4

n∑
i=1

[âi − ai ]
2

+
1

4

n∑
i=1

[m̂i −mi ]
2 +

1

4

n∑
i=1

[ηi − µi ]
2

+
1

2

n∑
i=1

γ−1
i 1

[
θ̂i 1 − θ∗i 1

]2
(18)

where the constant θ∗i 1 > 0, i ∈ {1, . . . , n}, is desirable
but unknown for θi 1( · ), i ∈ {1, . . . , n}. From the time
derivative of (18) along the trajectories of the closed-loop
system, we conclude that for sufficiently large θ∗1,min =
min{θ∗1 1, . . . , θ

∗
n 1}

V̇3(t) ≤− θ2,min‖s(t)‖2
2

−
n∑

i=1

(ai − 1.5)
[
ψ̃2

i 1(t) + ψ̃2
i 2(t)

]

TABLE I
DESIGN PARAMETERS IN SECTION IV (I = 1, 2, 3)

Fig. 1. Tracking errors.

− 2

n∑
i=1

ρiz
2
i (t)−

1

2

n∑
i=1

γ−1
i

[
θ̂i 1(t)− θ∗i 1

]2

+

n∑
i=1

εi (t) +
1

2

n∑
i=1

γ−1
i σi 1θ

∗2
i−1 (19)

for all t ≥ 0, where θ2,min = min{θ1 2, . . . , θn 2}. The
inequality, (19), implies that the signals s( · ), ψ̃i 1( · ),
ψ̃i 2( · ), θ̂i 1( · )− θ∗i 1, i ∈ {1, . . . , n}, converge asymp-
totically to a residual set, centered at the zero, whose size
can be reduced by wmax and σ1,max such that the signals
e( · ), ė( · ), and eψ ,i ( · ), i ∈ {1, . . . , n}, have the same con-
verging property. Finally, since the signals in (5), (9b), and
(9c) are bounded, all of the signals are bounded.

IV. SIMULATION RESULTS AND DISCUSSION

In order to demonstrate the performance of the proposed scheme,
simulation studies on the first three-DOF of a robot, PUMA 560, driven
by current-fed inductionmotors are discussed now [1], [3], [7], inwhich
the nominal value of the rotor resistance is 0.53Ω. The rotor-resistance
variation is the same as that in [6]. We consider the desired joint trajec-
tory as qd (t) = [qd,1(t), qd ,2(t), qd ,3(t)]

T where qd,1(t) = (π/4)−
(π/4) cos((π/2)t) (rad), qd ,2(t) = −(π/4)− (π/4) cos((π/2)t)
(rad), and qd,3(t) = (π/4) + (π/4) cos((π/2)t)(rad). In addition,
the flux reference signal Ψd ,i (t) ∈ R, i ∈ {1, 2, 3}, is Ψd ,i (t) =
0.5 (wb2). The initial conditions of the electromechanical system in
this simulation study were q1(0) = 0 (rad), q2(0) = −π/2 (rad),
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Fig. 2. Current inputs.

q3(0) = π/2 (rad), and q̇i (0) = 0 (rad/s), ψi j (0) = 0 (wb),
i ∈ {1, 2, 3}, j ∈ {2, 3}. The value of design parameters was shown
in Table I. The initial conditions of the adaptive decentralized control
scheme were ψ̂i j (0) = 1 (wb), θ̂i 1(0) = 1, âi (0) = 11, m̂i (0) =
0.095, ηi (0) = 5, εi (0) = 0.5, i ∈ {1, 2, 3}, and j ∈ {1, 2}. Fig. 1
indicates that all of the tracking errors converge to a residual set,
centered at the origin. Fig. 2 displays that all the currents inputs are
bounded.

V. CONCLUSION

This paper proposed an adaptive decentralized control scheme with
a rotor-flux observer for tracking control of robotmanipulators actuated
by current-fed induction motors was proposed. Due to the decentral-
ized manner, it can be implemented with simple hardware. To handle
parametric uncertainty in the electromechanical systems, an adaptive
law was designed such that all of the signals are bounded and the track-
ing errors of position, velocity, and rotor fluxes converge to a residual
set, centered at the origin, whose size can be reduced by using proper
value of design parameters. A satisfactory numerical study of a robot,
PUMA 560, driven by current-fed induction motors was provided to
verify the effectiveness of the proposed scheme.
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Modeling and Design of Polymer-Based Tunneling
Accelerometers by ANSYS/MATLAB

Wei Xue, Jing Wang, and Tianhong Cui

Abstract—A prototype design of an inexpensive polymer-based tunnel-
ing accelerometer is described in this paper. Instead of silicon, polymethyl
methacrylate (PMMA) is used as the mechanical material. By using silicon
molds fabricated by conventional lithography and wet-etching techniques
in hot embossing, PMMA structures can be replicated within 20 min. The
performance of the tunneling sensor can be estimated and improved based
on mechanical-level analysis by ANSYS and system-level analysis by MAT-
LAB. The nonlinear tunneling mechanism and electrostatic actuation are
linearized using small-signal approximation. To enhance the stability and
broaden the bandwidth of the tunneling accelerometer system, a feedback
control system with one zero and two poles is designed. The dynamic range
of the system is greatly enhanced. The bandwidth of the closed-loop system
is approximately 15 kHz.

Index Terms—Feedback control system, hot embossing, polymer, tun-
neling accelerometer.

I. INTRODUCTION

Electron tunneling effect has been extensively investigated, devel-
oped, and used in many applications, since Binning and Rohrer were
awarded theNobel Prize for their original design of the scanning tunnel-
ing microscope (STM) in 1986 [1]–[4]. High-performance accelerom-
eters are in great demand in many applications such as acoustic mea-
surement, seismology, and navigation. Considerable research work on
accelerometers has been reported by several groups [5]–[8]. Compared
to other common and well-developed accelerometers such as capaci-
tive, piezoresistive, piezoelectric accelerometers, tunneling accelerom-
eters may easily achieve higher sensitivity and higher resolution with
smaller size due to the exponential relationship between the tunneling
current and the tunneling gap. However, tunneling sensors are usually
more difficult to be fabricated than others. Since tunneling current can
only be observed when the gap between the tunneling tip electrode and
its counter electrode is in the range of 10 Å, tunneling sensors nor-
mally operate in closed-loop mode. Several models and systems were
developed for tunneling accelerometers [6]–[8].

Polymer-based microelectromechanical systems (MEMS) have
gained a broad theoretical interest and practical applications in the
past 10 years [9]–[13]. Polymers offer many advantages for sensor
technology. They are low cost, flexible, chemically and biologically
compatible, and easy to be processed. Polymer microsensors are be-
coming more and more important, and can be low-cost alternatives to
the silicon-based or glass-based microsensors.
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